EFFECT OF NUCLEopolyHEDROSIS VIRUS ON TWO AVIAN
PREDATORS OF THE GYPSY MOTH

—J.D. PODGWAITE
Microbiologist

and P.R. GALipeau
Forestry Technician
Northeastern Forest Experiment Station,
Hamden, Conn.

ABSTRACT. The nucleopolyhedrosis virus (NPV) of the gypsy moth was fed
to black-capped chickadees and house sparrows in the form of NPV-infected
gypsy moth larvae. Body weight and results of histological examination of
organs of treated and control birds indicated that NPV had no apparent short
term effect on these two important predators of the gypsy moth.

Keywords: biological control, gypsy moth, nucleopolyhedrosis virus.

The nucleopolyhedrosis virus (NPV) of the gypsy moth (Lymantria dispar L.) is being
developed by the U.S. Department of Agriculture as a biological control agent. After an aerial ap-
pllication of NPV, many avian predators of the gypsy moth are likely to ingest infected larvae,
pupae, and adults. Studies have indicated that some insect viruses do not harm birds (Ignoffo
1975), but the effects of gypsy moth NPV have not been determined. This paper reports the effects of
NPV on the black-capped chickadee (Parus atricapillus L.), and the house sparrow (Passer
domesticus L.). These species were chosen because of their importance as gypsy moth predators,1 ease
of capture, and adaptability to caged conditions.

Methods

In September 1975, six black-capped chickadees and nine house sparrows were captured in mist

nets (ATX mesh) and in box traps that had been placed in wooded areas of Bethany, Connecticut. The
birds were transported to the laboratory and caged individually in 0.9-m³ wooden enclosures
that were fitted with wire-mesh tops and fronts. The bottom of each enclosure was lined with
paper, which was changed daily to maintain sanitary conditions. The birds were fed wild bird seed,
sunflower seeds, healthy gypsy moth larvae, and mealworms. Water was provided through a
standard J-tube. After a 3-day adjustment period, the birds were weighed and placed in treated or
control groups. Treated birds included three chickadees and five sparrows; three chickadees
and four sparrows served as controls.

On day 1 and on alternate days for 3 weeks, treated birds were fed NPV-infected 4th-instar
gypsy moth larvae rather than the normal diet. In-
fected larvae were produced by allowing 3rd-
instar larvae to feed on a diet containing 1.0 x 10⁴
polyhedral inclusion bodies (PIB) of the gypsy
moth NPV per ml. These larvae were in their 8th
day of infection when fed to the treated birds; each larva contained from 3.3 x 10⁷ to 2.1 x 10⁸
PIB. During the test period, each treated

¹The work herein was funded in part by a U.S. Department of
Agriculture sponsored program entitled “The Expanded
Gypsy Moth Research and Development Program”.
¹Galipeau, P.R. 1974. Avian Predators of the gypsy moth.
Unpublished report. Forest Insect and Disease Laboratory,
Hamden, Conn.
chickadee ate 70 to 80 infected larvae (2.3 x 10⁶ to 1.7 x 10⁷ PIB), while each treated sparrow ate 90 to 100 infected larvae (3.0 x 10⁶ to 2.1 x 10⁷ PIB).

Control animals were fed a normal diet throughout the test period. All birds were observed daily for mortality or signs of disease.

On day 22, birds were weighed and then delivered to the Department of Pathobiology at the University of Connecticut, Storrs, for necropsy and histopathological examination. After necropsy, the following organs were fixed in 10-percent neutral formalin: brain, lung, heart, kidney, liver, spleen, gizzard, pancreas, and intestine. Organs were embedded in paraffin, processed routinely, sectioned at 5 to 7 μm, stained with hematoxylin and eosin, and examined by light microscopy.

Results and Discussion

All birds adjusted to captivity, and neither treated nor control birds displayed signs of disease during the test period. The weight of treated and control birds is shown in Table 1. Most of the birds lost weight, as might be expected when they were caged, but only one treated chickadee lost a significant amount (28 percent). Also, t-tests to compare means revealed no significant changes in weight in treated or control birds.

Necropsy and histological examination revealed no lesions of disease in chickadees. Examination of sparrows revealed foci of lymphoid cells in the livers and lungs of both treated and control birds. However, these lesions are common to these species, so their presence was not considered important. We found severe lesions only in one study bird — there was evidence of diffuse infiltration by lymphocytes in the liver of a control sparrow.

The results of this study, though limited by the small number of birds available, indicate that eating NPV-infected gypsy moth larvae has no apparent short-term effect on black-capped chickadees or house sparrows.

Acknowledgments

The authors thank Dr. E.S. Bryant and Dr. L. van der Heide of the Department of Pathobiology, The University of Connecticut, for conducting the histopathological examinations and interpreting the findings, and Connecticut's Department of Environmental Protection, Wildlife Unit, for permission to capture and cage the birds used in this study.

Literature Cited

Ignoffo, C. M.

Table 1. Weight comparisons for treated and control black-capped chickadees and house sparrows, in grams.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Bird no.</th>
<th>Before treatment</th>
<th>After treatment</th>
<th>Percent change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-capped chickadees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>1</td>
<td>16.9</td>
<td>12.2</td>
<td>-27.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.5</td>
<td>10.0</td>
<td>-4.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11.0</td>
<td>11.0</td>
<td>0</td>
</tr>
<tr>
<td>Mean and SD</td>
<td>1</td>
<td>12.8 ± 3.6</td>
<td>11.1 ± 1.1</td>
<td>-</td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td>10.0</td>
<td>9.6</td>
<td>-4.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.3</td>
<td>11.8</td>
<td>+4.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11.2</td>
<td>10.6</td>
<td>-5.4</td>
</tr>
<tr>
<td>Mean and SD</td>
<td>1</td>
<td>10.8 ± 0.7</td>
<td>10.7 ± 1.1</td>
<td>—</td>
</tr>
<tr>
<td>House sparrows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>1</td>
<td>29.8</td>
<td>28.0</td>
<td>-6.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>29.0</td>
<td>26.7</td>
<td>-7.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25.8</td>
<td>25.9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24.8</td>
<td>22.7</td>
<td>-8.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>23.5</td>
<td>22.7</td>
<td>-3.4</td>
</tr>
<tr>
<td>Mean and SD</td>
<td>1</td>
<td>26.6 ± 2.7</td>
<td>25.2 ± 1.1</td>
<td>—</td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td>27.8</td>
<td>26.5</td>
<td>-4.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>28.6</td>
<td>26.8</td>
<td>-6.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24.9</td>
<td>25.9</td>
<td>+4.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>26.4</td>
<td>24.7</td>
<td>-6.4</td>
</tr>
<tr>
<td>Mean and SD</td>
<td>1</td>
<td>26.9 ± 1.6</td>
<td>26.0 ± 0.9</td>
<td>—</td>
</tr>
</tbody>
</table>