ABSTRACT.—Between 9 and 12 years Larix eurolepis grew annually about 1.3 m in height and 0.6 cm in diameter. In plots with 0.8 to 1.5 m² of growing space, total woody biomass increased from 70.1 to 98.8 mt/ha, and the mean annual biomass increment from 7.8 to 8.2 mt/ha.

KEY WORDS: “Scotch plaid design”, spacing, growth, allometry, biomass distribution.

A previous study of Larix eurolepis, a hybrid between L. decidua and L. leptolepis, documented its excellent growth and biomass production under intensive culture through age 9 (Zavitkovski et al. 1982). At this age, the mean annual biomass increment (MABI) in plots with growing space of 0.3 m² (8 ft²) and larger averaged 7.6 mt/ha (3.4 tons/acre) and the data indicated that in the next 5 to 10 years higher yields may be reached in plots with more growing space. The present study documents growth and production from 9 to 12 years of age.

METHODS

The plantation was established in a “Scotch Plaid” design in 1972 with 2-month-old seedlings propagated in a greenhouse. A Scotch Plaid design consists of rows of trees planted at ever-increasing spacing on both the X and Y axes from a common point of origin (Zavitkovski et al. 1982). The planting was fertilized and irrigated and weeds were controlled with herbicides. Tree heights and d.b.h.'s were measured at irregular intervals; the last measurements were taken in the winter of 1983/84 when the planting was 12 years old. At this time two larger trees—d.b.h. 8.6 and 10.3 cm (3.4 and 4.0 in.) and heights 11.2 and 11.5 m (36.7 and 37.7 ft)—were harvested and processed as described in the previous paper (Zavitkovski et al. 1982). Allometric growth models, based on 8 trees harvested at age 9, and 2 trees at age 12, were developed for stem, branch, and whole tree (above ground) dry weights (table 1). Regression coefficients for stems and whole trees of the new growth model were very similar to those at age 9, suggesting that the form of the 12-year-old trees remained as it was at age 9.

RESULTS AND DISCUSSION

From age 9 to 12, the average height of dominant trees increased from 7.5 to 11.4 m (24.5 to 37.5 ft) or by 1.3 m (4.25 ft) per year. The average d.b.h. of living trees increased from 6.5 to 8.3 cm (2.6 to 3.3 in.), or by 0.6 cm (0.25 in.) per year. In plots with growing space of 0.8 to 1.5 m² (9 to 16 ft²), the survival decreased from 91 percent at age 9 to 80 percent at age 12. In plots with less than 0.23 m² (2.5 ft²), survival was only 25 percent.

MABI's for growing space less than 0.7 m² (7 ft²) decreased between age 9 and age 12. A slight increase in MABI was determined in larger plots (table 2). In plots with 0.8 to 1.5 m² (9 to 16 ft²), woody MABI increased from 7.8 to 8.2 mt/ha (3.4 to 3.6 tons/acre) between 9 and 12 years, and is likely to further increase. In addition, the proportion of branches in the biomass decreased from 29 to 16 percent.

In comparison to heights reported in other studies with Larix species, the intensively cultured L. eurolepis grew faster. Its height at age 12 was comparable to 20-year heights reported by Chodzicki (1967) for L. decidua, L. leptolepis, and L. eurolepis.
Table 1.—Coefficients of allometric regression equations of 9- and 12-year-old Larix eurolepis (10 trees total)

<table>
<thead>
<tr>
<th>Tree component</th>
<th>a</th>
<th>b</th>
<th>R²</th>
<th>S<sub>b</sub></th>
<th>Correction factor<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole tree<sup>3</sup></td>
<td>-2.0089</td>
<td>2.1526</td>
<td>0.98</td>
<td>0.1264</td>
<td>1.0080</td>
</tr>
<tr>
<td>Stem wood with bark</td>
<td>-2.5575</td>
<td>2.2964</td>
<td>0.99</td>
<td>0.1199</td>
<td>1.0072</td>
</tr>
<tr>
<td>Live and dead branches</td>
<td>-2.6009</td>
<td>1.6733</td>
<td>0.82</td>
<td>0.3519</td>
<td>1.0618</td>
</tr>
</tbody>
</table>

¹For model Y = a + bX where Y is ln (dry weight in kg) and X is ln (d.b.h. in cm).
²According to Baskerville (1972).
³Above ground without needles.

Grown in plantations in Poland. Our hybrid was taller than 14-year-old L. eurolepis in Denmark (Keiding 1980). It was taller than 15-year-old trees (17 years from seed) L. decidua in New York (Morrow 1978) and 18-year-old trees of the same species in Norway (Robak 1982). It was also taller than 16-year-old L. leptolepis in Scotland (Lines 1967), 14-year-old trees (16 years from seed) of the same species in Vermont (Turner and Myers 1972), and about 50 percent taller than 18-year-old trees in Japan (Hatiya et al. 1966). However, perhaps, as a result of closer spacing, diameter growth of our hybrid lagged behind diameters reported in some of the previously mentioned studies: 15-year-old L. decidua's diameters ranged from 10 to 15 cm (4 to 6 in.) (Morrow 1978) and 14-year-old L. leptolepis reached 15.5 cm (more than 6 in.) in Vermont (Turner and Myers 1972). The d.b.h. of a dense plantation of L. leptolepis averaged only 7.1 cm (2.8 in.) at age 18 (Hatiya et al. 1966). We found only one study dealing with biomass of L. eurolepis. MABI of a 28-year-old plantation in Great Britain was 6.4 mt/ha with needles (Ovington 1966). In that study, L. decidua and L. leptolepis produced 4.1 and 3.8 mt/ha/yr, respectively. Plantations of L. leptolepis in Japan, produced 4.9 mt/ha/yr at age 13 (Hatiya et al. 1966) and 3.8 mt/ha/yr at age 21 (Satoo 1974). In Wisconsin, a 7-year-old, intensively cultured L. laricina produced 5.2 mt/ha/yr (Zavitkovski and Dawson 1978). A plantation of L. sibirica in the Volga river region produced 4.4 mt/ha/yr (Utkin et al. 1980). The most encouraging result of the present study is the continued high biomass production of the hybrid. At age 9, the MABI of woody parts was 7.8 mt/ha; it reached 8.2 mt/ha at age 12, and may increase still further at wider spacing.

LITERATURE CITED

Utkin, A. I.; Atiskov, N. V.; Ermolova, L. S.; Vatkovsky, O. S.; Oskina, N. V. (Biological productivity of *Pinus sylvestris* L. and *Larix sibirica* Ledeb. in the Volga river region (Kuibyshev district)). Lesovedenie 2: 21-31; 1980.
