Remote Sensing of Environment 128 (2013) 176-185

Contents lists available at SciVerse ScienceDirect B
E_mirl’iumnt'
]

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

An accuracy assessment of forest disturbance mapping in the western Great Lakes
P.L. Zimmerman *°, LW. Housman €, C.H. Perry **, R.A. Chastain ¢, ].B. Webb €, M.V. Finco ¢

@ USDA Forest Service, Northern Research Station, St. Paul, MN, USA
b University of Minnesota, School of Statistics, Minneapolis, MN, USA
© USDA Forest Service, Remote Sensing Applications Center, Salt Lake City, UT, USA

ARTICLE INFO ABSTRACT

Article history:

Received 22 December 2011

Received in revised form 21 September 2012
Accepted 22 September 2012

Available online 8 November 2012

The increasing availability of satellite imagery has spurred the production of thematic land cover maps based
on satellite data. These maps are more valuable to the scientific community and land managers when the ac-
curacy of their classifications has been assessed. Here, we assessed the accuracy of a map of forest disturbance
in the watersheds of Lake Superior and Lake Michigan based on an improved version of the Vegetation
Change Tracker algorithm (VCTw). We constructed a probability-based sampling design using two stages
of sampling with stratification at each stage. Results are presented for the portion of the map within the
U.S. as well as separately for the U.S. portion of Lake Superior's watershed and for Lake Michigan's watershed.
We also present estimates and standard errors of the percent cover for each land cover class that incorporate
both the map's data and our sample data. The overall accuracy for the U.S. portion of the map is estimated
to be 91% with a standard error of 0.8%. We discuss the relative strengths of the VCTw algorithm as
well as the dependence of such an algorithm's success on the characteristics of the landscape being
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1. Introduction

The Great Lakes Restoration Initiative (GLRI) is a multi-year and
multi-agency investment in the improved health of the Great Lakes
coordinated by the US Environmental Protection Agency (EPA). The
Great Lakes watersheds are approximately 54% forested, and the wise
management of forest in watersheds has long been identified as critical
to the maintenance of high quality streamflow (Gregory et al., 1991;
Karr & Schlosser, 1978; Naiman & Bilby, 1998; Peterjohn & Correll,
1984; Sweeney, 1992). The USDA Forest Service serves as a partner in
the GLRI, with a particular focus on investigating the relationship
between land management in watersheds and the health of the Great
Lakes.

Recent publications provide information on forest land uses and land
use change in Michigan (Pugh et al., 2009), Wisconsin (Perry et al., 2008),
and Minnesota (Miles et al., 2011), focusing on states as analysis units,
but actual management occurs on an owner-by-owner basis within
states. Forest restoration and management activities will be more effec-
tive at achieving identified water quality objectives if implemented
through a watershed perspective. Additionally, the existing data are not
designed to provide insight on the watershed-level spatial patterns in-
herent in forest ecology and management.

As an alternative to state-level analysis, Landsat Time Series Stacks
(LTSS) and the Vegetation Change Tracker (VCT) algorithm (Huang
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et al.,, 2010) can be used to map forest cover and disturbance at a spa-
tial scale effective for informing watershed-level management. We
have adapted the VCT process for the watersheds of Lake Superior
and Lake Michigan using a surrogate source of winter images to
reduce commission errors in the predictions of forest disturbance
classes. The result is a product we call VCTw, which is used to map
forest disturbance and described in detail by Stueve et al. (2011)
(Fig. 1).

Basing land management decisions on a land-cover map will always
be more defensible if a proper accuracy assessment has been performed.
In fact, an accuracy assessment of land-cover classifications is considered
to be a necessary part of the publication of any such map (Cihlar, 2000).
References exist in the literature to help plan such accuracy assessments
(Congalton & Green, 1999; Stehman, 2009a; Stehman & Czaplewski,
1998; Strahler et al., 2006), but tailoring an assessment to a particular
map can still be challenging; what constitutes an effective assessment
of one map may be a poor assessment of another. Some examples of
specially-tailored assessments are those by Nusser and Klaas (2003)
and Stehman et al. (2003). Here, we describe our assessment procedure
and report results for the portion of the map within the U.S. of the forest
disturbance map produced by VCTw.! Additionally, we present improved
estimates of the percent cover of each disturbance class that take advan-
tage of the sample data collected in the accuracy assessment.

! Due to limited availability of data, the Canadian portion of the map was considered
in a separate, later assessment.
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Fig. 1. Forest disturbance map produced by VCTw.

2. Methods

The accuracy assessment was conducted by comparing the forest
disturbance map data to “reference data” for a sample of map pixels.
By reference data, we mean disturbance classes that were assigned by
photointerpreters after inspecting high-resolution imagery (i.e., a
proxy for “ground truth”). In this section, we will briefly review the
creation of the VCTw data, explain how the sample of map pixels
was selected, and how the reference data were obtained for the
sample.

2.1. Disturbance mapping

Although VCT has been described in several previous papers
(Huang et al., 2009, 2010), it may be helpful to briefly describe the
more recently developed VCTw. A detailed description is available
in Stueve et al. (2011).

The standard VCT protocol was used to process 36 Landsat path/
rows that intersect the Lake Superior and Lake Michigan basins, but
the resulting forest disturbance map appeared to contain large areas
of incorrectly classified persisting forest and forest disturbance.
After reviewing some apparent mapping errors, it was hypothesized

that the errors were due to the spectral inseparability between forest
and both leafy cultivated crops and emergent herbaceous wetlands.
Because cropland and wetlands are highly variable across time, they
were also often classified as forest disturbance. This motivated the
development of the winter Landsat Time Series Stack (LTSSw) false pos-
itive mitigation technique (Stueve et al., 2011). For each path/row, a
LTSSw was constructed with roughly quadrennial imagery with
the key requirement that the entire image was snow-covered. VCT's
cloud masking model was then applied to identify all non-forested,
snow-covered areas. Any pixel that was classified as a cloud or cloud
edge throughout every mask in the LTSSw, and did not demonstrate a
long-term recovery trend was included in a non-forest mask. This
mask successfully eliminated a substantial portion of classification er-
rors committed by the standard VCT operating procedure.

A minimum mapping unit (MMU) of 0.356 ha (4 contiguous pixels)
was applied to all masked VCT disturbance year outputs. Afterward, the
classes initially assigned by VCTw were collapsed into broader classes
based on the temporal resolution of available reference data (see
Section 2.3.1). Specifically, the typical biennial disturbance classes
used by VCT (e.g., “disturbed between 1988 and 1989”) were collapsed
into an early (1985-1999) (D1) or late (2000-2008) (D2) class. Also,
the pre-series disturbance class was collapsed into the persisting forest
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(PF) class. The persisting non-forest (PNF) and persisting water (PW)
classes remained unchanged.

2.2. Sampling design

A probability sampling design consists of a list of sampling units
that form a partition of the mapped area and a randomized process
by which each of these units may be selected with known, strictly
positive probability. The first decision we made was to use the set
of mapped pixels (30 m-by-30 m areas) as our sampling units. A
pixel-based approach was chosen over an object-based approach in
order to keep the process of assigning classes to the reference data
as straightforward as possible. The primary concern with using an
object-based approach was that it would often be difficult to assign
a single reference class to large objects.

Choosing an appropriate sampling design for an accuracy assessment
requires balancing practical considerations (e.g., the cost of collecting of
reference data) with statistical considerations (e.g., ensuring that rare
classes will be adequately sampled). In our case, there were three main
considerations that motivated decisions. First, one of our objectives was
to produce results for both the U.S. portion of the map as well as separate-
ly for regions, which were considered to be logical landscape units. The

US portion of the Lake Superior basin (LSB) constituted one region,
and the Lake Michigan basin (LMB) constituted another. The LMB was
further split into two separate regions — the northern half of the basin
where the typical late-season imagery was used by the VCTw algorithm
and the southern half of the basin where an abundance of row-cropped
agricultural land required that early-season imagery be used. This split
was not motivated by the desire to produce separate sets of results for
the two halves of the LMB, but by statistical considerations. If distinct
patterns of accuracy were observed in the two half-basins, stratification
could result in more precise estimates (Sarndal et al., 1992, Section 3.7).
Consequently, the map was split into three geographic strata corre-
sponding to these regions, and independent samples were drawn
from each (Fig. 2).

Second, there was a two-level cost structure to obtaining the refer-
ence data. In order to observe one sampling unit, a raster image had
to be processed, and then a photointerpreter had to inspect the imagery
at the location of the unit and assign a class. Most of the cost of this ob-
servation was incurred during the first step, which suggested that more
than one unit should be observed in each processed raster image.
Hence, in each geographic stratum, two stages of sampling were
conducted. In the first stage, a stratum was tessellated into 1/8x1/8°
(450/450") quadrangles. These quadrangles constituted the primary
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Fig. 2. The first-stage sampling frame for each of three geographic strata with highlighted sample PSUs. The Canadian portion of the map was not included in this assessment.
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sampling units (PSUs), and a simple random sample of them was select-
ed. In the second stage, map pixels constituted secondary sampling
units (SSUs).

Third, another of our objectives was to produce results specific to
each disturbance class. In an effort to provide an adequate amount of
information about each class, SSUs were stratified by VCTw distur-
bance class (PNF, PF, PW, D1, or D2) during the second stage of sam-
pling. A stratified random sample of SSUs was drawn from each PSU
sampled during the first stage (Fig. 3).

Once the structure of the design was set, we determined the alloca-
tion of sample units. We first ignored the stratification at the second
stage of sampling, and used guidelines offered by Cochran (1977,
Section 10.10) to help determine the allocation of PSUs across geo-
graphic strata and the total number of SSUs sampled per PSU. To this
end, we employed estimates of costs and variances based on a small
amount of pilot data and on the technical expertise of specialists that
had been involved in the creation of the VCTw data. This led to the
selection of 17 PSUs from the LSB and 35 PSUs from each half of the

LMB. Afterwards, we allocated the SSUs across second-stage strata
according to the corresponding disturbance classes' relative importance
to the larger project, which emphasized disturbance (Table 1). One
exception to the allocations shown in Table 1 was that, if a PSU did
not contain any PW pixels, one extra SSU in the D1 and D2 classes
were to be sampled. Note that this aspect of the design was planned
before observing the sample.

Conditional on our sampling design, the probability of including a
given pixel in a sample was known, and is defined in Appendix A.

2.3. Response design

2.3.1. Reference imagery

The reference disturbance classes were obtained through photo-
interpreting image sets from the Nation High Altitude Program
(NHAP), National Aerial Photography Program (NAPP), and the National
Agriculture Imagery Program (NAIP). A total of one NHAP image
set (1986-1989), two NAPP image sets (1992-1994, 1998-1999), and
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Fig. 3. Stratification used for the second stage of sampling. The lower-right image shows the footprint of a PSU. The prevalence of sample SSUs falling on edges of disturbance classes

is discussed in Section 4.1.
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Table 1

Allocation of SSUs (pixels) across disturbance classes (strata) per sampled PSU. The north-
ern and southern halves of the LMB are denoted ULMB and LLMB, respectively. PNF =
persisting non-forest, PF = persisting forest, PW = persisting water, D1 = disturbed dur-
ing 1985-1999, and D2 = disturbed during 2000-2008.

PNF PF PW D1 D2
LSB 9 9 2 10 10
ULMB 5 5 2 6 6
LLMB 10 10 2 5 5

two NAIP image sets (2005, 2008) were available over the entire study
area. The NAIP images, which have a spatial resolution of one meter, are
required to have 95% of test points fall within 6 m of true ground
(Davis, 2011). NHAP and NAPP images were manually georeferenced
within the ArcMap environment to match the NAIP images. Due to the
time gaps between these sets, Landsat Thematic Mapper (TM) imagery
from both winter and summer phenological phases was occasionally
used to supplement these data.

2.3.2. Interpretation of reference imagery

Interpreters based classifications of sampled SSUs on inspection of
all five imagery sets. Because of the NAIP imagery's high level of spa-
tial resolution and registration accuracy compared to the size of an
SSU, interpreters limited inspection of NAIP imagery to a spatial
support area defined by the footprint of the SSU (pixel). For NHAP
or NAPP imagery however, it was occasionally necessary to expand
this spatial support area to a three-by-three grid of Landsat pixels
surrounding and including the SSU. This expanded support area was
necessitated by the typically coarser spectral resolution of NHAP
and NAPP images compared to NAIP images. If classification based
on the aerial imagery was problematic (typically due to insufficient
spectral resolution of the NHAP or NAPP imagery or to a time gap be-
tween the aerial imagery sets), Landsat imagery was also examined.
Although the spatial resolution of Landsat is inferior to that of aerial
imagery, its superior temporal and spectral resolution provided use-
ful insight.

The disturbance class of each SSU was derived using a rule set that
closely resembles that which was used to create the final VCTw
disturbance class output. If an SSU's most recent disturbance (as ob-
served in the reference imagery) was between 2000 and 2008, it
was assigned to the D2 class. If its most recent disturbance was
between 1985 and 1999, it was assigned to the D1 class. If an SSU
appeared to be non-forest in the earliest imagery but to transition
to forest in later imagery, it was classified as PF. Note that this is con-
sistent with collapsing the VCT pre-series disturbance class into the
PF class.

2.4. Statistical analysis

In this section, we explain the methods used to calculate statistical
estimates related to map accuracy. The first estimation goal was to es-
timate accuracy parameters — i.e., confusion matrices, omission and
commission error probabilities, and overall accuracies for the entire
target region and for each basin. For a summary of the suite of classi-
fication accuracy parameters used to assess maps based on remote
sensing data, see Stehman and Czaplewski (1998). The second goal
was to estimate the percent cover of each disturbance class for the
entire target region and for each basin. We first discuss accuracy
estimates, then standard error estimates, and finally percent cover
estimates.

2.4.1. Accuracy estimates

Every accuracy parameter to be estimated is of the form p =}
where N, is the total number of pixels in some class a (e.g., pixels cor-
rectly classified as PF) and Nj, is the total in some less restrictive class

b (e.g., all pixels classified as PF). For each p to be estimated, we used

a ratio estimator, which is of the form py = N,/N, are the Horvitz-
Thompson estimators (also known as 1 estimators) of N, and Np, re-
spectively (Sdrndal et al., 1992, Section 2.8). To describe the
calculation of these estimators, we loosely follow the approach of
Stehman et al. (2003). We define y,(k) and y,(k) to be the indicator
functions that equal one when SSU k is in classes a and b, respectively,
and equal zero otherwise. We also define m to be the inclusion prob-
ability of SSU k, as defined in Appendix A. Finally, we define s to be the
set of SSUs in the sample. Then,

ﬁR _ Zkesya(k)/nk

2 ieesYp (K) /Ty
where k€ s in the subscript of the summation means to sum across all
units k in s.

2.4.2. Standard errors

In order to calculate standard errors, so-called “linearized” variances
were used. This technique is an approximation, necessitated here by the
use of ratio estimators which are non-linear functions of two estima-
tors, and whose variance cannot be easily expressed. The linearization
technique substitutes a first-order linear (Taylor series) approximation
of pg based at p, and estimates this approximation's variance instead
(Sarndal et al., 1992, Section 5.5). In two-stage sampling designs, the es-
timation of variances and standard errors is algebraically complicated,
and is therefore described in Appendix B. Computations (for this and
all other estimation) were performed using the R statistical package,
and the contributed R package survey, which are both freely available;
see http://cran.r-project.org (Lumley, 2004, 2011; R Development
Core Team, 2011). Some details on the survey package are given in
Appendix C.

2.4.3. Percent cover estimates

In addition to estimating accuracy parameters, a sample of reference
data can also be used to produce statistical estimates of the percent
cover of each disturbance class over some area (e.g. Czaplewski &
Catts, 1992; Magnussen et al., 2003; Stehman, 2009b). To be clear in
this discussion, let p be the proportion of pixels that truly (according
to our response design) falls into a given disturbance class, C, out of N
total pixels. We then define y,{k) to be the indicator function that
equals one when the reference class of the kth pixel is C and zero other-
wise. Now,

1 N
D= N § .&ref(k)<
k=1

Ratio estimation and linearized standard errors, as described
above, could be used to estimate p as the mean of y,.. However, the
difference estimator (Sarndal et al., 1992, Section 6.3), which has
been applied to remote sensing in a similar scenario by McRoberts
(2011), is another possible strategy. To see how a difference estima-
tor can be applied here, let ymq(k) be the indicator function that
equals one when the mapped disturbance class of the kth pixel is C
and zero otherwise, and set d(k) = Yrefk) — Ymap(k). Now, p can be
reformulated as follows.

1¢ 1
b= N ;? 1.}‘ map (k) + N;d(k)
— k=

Since the mean of y g, is known, the choice of how to estimate p
becomes a decision of whether to estimate the mean of y,r or the
mean of d. If we presume that the map data are mostly correct, d
will usually equal zero and have little variability. This implies that
an estimate of the mean of d will be very precise, and that a difference
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Table 2

Estimated confusion matrix (and SEs) for entire target region. Sample size information is denoted by n. Estimates are given in percents, i.e. 100 times proportion. In cases where a SE

had been rounded to zero, it is replaced with a "not applicable" (NA).

VCTw
PNF PF PW D1 D2 n

Reference PNF 34.88 (2.05) 1.83 (0.47) 0 (NA) 0.21 (0.04) 0.28 (0.04) 845
PF 2.12 (0.41) 50.9 (2) 0 (NA) 0.37 (0.06) 0.17 (0.03) 829
PW 0.08 (0.03) 0 (NA) 1.72 (0.33) 0 (NA) 0 (NA) 158
D1 0.35 (0.15) 1.85 (0.53) 0 (NA) 23 (0.34) 0.01 (0.01) 409
D2 0.02 (0.02) 1.54 (0.49) 0 (NA) 0.01 (0.01) 1.36 (0.15) 399
n 678 678 152 566 566

Table 3
Estimated commission (P¢) and omission (Py) error probabilities for each disturbance
class for the entire target region.

Pc SE(Pc) Po SE(Po)
PNF 6.84 1.14 6.24 1.26
PF 9.29 131 497 0.80
PW 0.26 0.24 4.29 1.71
D1 20.66 3.25 48.93 7.33
D2 25.05 2.75 53.53 7.46

estimator should be used. In estimating the mean of d, we used ratio
estimation. The resulting estimator is

. > kesd(k)/m,
Pd *N;ymap(k) + Zkes]/nk .

Since the first term in this estimator is known, its variance only
depends on the second term (the ratio estimator of the mean of d).
We used a linearized standard error estimator.

3. Results

The overall accuracy for the entire target region was estimated
to be 91% with an estimated standard error (SE) of 0.8%. Table 2
provides the estimated confusion matrix and the corresponding esti-
mated SEs. Table 3 provides the estimated omission and commission
error probabilities along with their SEs. Approximate confidence in-
tervals can be constructed where desired by adding and subtracting
the SE multiplied by the relevant critical value from the Normal distri-
bution to the estimate, e.g. use the estimate plus or minus SE times
1.96 for a 95% confidence level. Note that such intervals are based
on the assumptions that the estimators are Normally distributed
and that SEs are known, not estimated. Simulation studies have
suggested that the actual coverage probability of such intervals is typ-
ically smaller than the nominal probability (Wolter, 2007). That is, if
we repeatedly drew samples and calculated 95% confidence intervals,
we could expect that less than 95% of them would contain the true
parameter value.

The most striking characteristic of these results is the comparatively
high rate of errors associated with the D1 and D2 classes. For example,
the estimated commission error probabilities for D1 and D2 are about

21% and 25%, respectively. In other words, we estimate that about one
out of five to one out of four pixels classified by the map as disturbed
is incorrectly classified. The estimated omission error probabilities for
the D1 and D2 classes are about 49% and 54%, respectively, which sug-
gests that VCTw has found somewhere in the neighborhood of one
half of the truly disturbed pixels. Note, however, that the standard er-
rors associated with omission errors (here and elsewhere) are large.
Studying the confusion matrix, we can see that, when a pixel is inaccu-
rately classified as disturbed, results suggest that it is typically either PF
or PNF. Likewise, when a truly disturbed pixel is missed, it is typically
misclassified as either PF or PNF.

The overall accuracy for the LSB was estimated to be 87% with an
estimated standard error of 2% while the overall accuracy of the LMB
was estimated to be 92% with an estimated standard error of 1%. For
the LSB, Table 4 provides the estimated confusion matrix and its
corresponding SEs, while Table 5 provides the estimated omission
and commission error probabilities along with their estimated SEs.
For the LMB, Table 6 provides the estimated confusion matrix and
its corresponding SEs while Table 7 provides the estimated omission
and commission error probabilities along with their estimated SEs.
Approximate confidence intervals can be constructed in the same way
here as before. Note that the smaller sample sizes for region-specific
estimates will negatively affect the coverage probabilities of these
intervals.

Comparing the LSB and LMB results, two different patterns of
errors emerge. In the LSB, estimated commission error probabilities
for all classes besides PF were relatively small (between approximate-
ly 0% and 10%), while the estimated probabilities of omission errors
for PNF, D1, and D2 were relatively large (greater than 25%). These re-
sults, along with an examination of the basin's estimated confusion
matrix, suggest that the common errors were misclassifying PNF,
D1, and D2 pixels as PF. So, pixels that are classified as disturbed are
likely to be disturbed, but we estimate that less than half of truly
disturbed pixels are classified correctly. In contrast, in the LMB, only
the D1 and D2 classes had estimated omission or commission error
probabilities above 10%. Here, both omission and commission errors
related to the disturbance classes were common.

Percent cover estimates are presented in Table 8. Comparing the
estimates to the map data for the entire target region, the primary
difference is the larger estimates of both disturbance classes. Specifi-
cally, the percent cover D1 estimate is 4% compared to the 3% derived
from the map data, and the percent cover D2 estimate is 3% compared

Table 4

Estimated confusion matrix (and SEs) for the LSB. Sample size information is denoted by n. In cases where a SE had been rounded to zero, it is replaced with a NA.
VCTw

PNF PF PW D1 D2 n
Reference PNF 10.99 (2.56) 3.93 (1.45) 0 (NA) 0.12 (0.06) 0.16 (0.04) 184

PF 0.54 (0.23) 67.77 (2.61) 0 (NA) 0.15 (0.06) 0.03 (0.02) 166
PW 0.13 (0.06) 0 (NA) 2.27 (1.07) 0 (NA) 0 (NA) 34
D1 0.17 (0.07) 4.45 (1.84) 0 (NA) 4.04 (1.42) 0.03 (0.02) 156
D2 0.09 (0.09) 3.24 (1.14) 0 (NA) 0.01 (NA) 1.89 (0.53) 140
n 153 153 30 172 172
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Table 5
Estimated commission (P¢) and omission (Py) error probabilities for each disturbance
class for the LSB. In cases where a SE had been rounded to zero, it is replaced with a NA.

Pc SE(Pc) Po SE(Po)
PNF 7.83 344 27.69 7.39
PF 14.63 2.56 1.06 0.38
PW 0.00 NA 5.29 2.84
D1 6.47 3.31 53.51 13.04
D2 10.11 3.93 63.78 10.13

to 2%. On a regional level, the largest differences between the esti-
mates and the map data appear in the LSB, where the percent cover
PF estimate is 67% versus the 78% as derived from the map data.
The percent cover D1 and D2 estimates (9% and 6%, respectively),
make up much of the difference, and are roughly double what is
given by the map data.

As expected, the precision of the percent cover estimates depends
on the accuracy of the map. For the PNF, PF, and PW classes, the coef-
ficient of variation (CV) of percent cover estimates is almost always
less than 5%. In contrast, for the D1 and D2 classes, which were clas-
sified with less accuracy, the CV of percent cover estimates ranges
from 10% to 26%.

4. Discussion
4.1. Sampling and response design

The chosen sampling design was successful in that it allowed the
estimation of accuracy parameters and SEs with acceptable statistical
modeling assumptions and very little approximation (the use of
linearized variances constitutes the sole approximation). A key to
achieving this simplicity was following the guidelines of invariance
and independence (Sdrndal et al., 1992, Section 4.3). These guidelines
place restrictions on what second-stage sampling can depend upon:
the second-stage design to be used in a given PSU, if it is selected, can-
not depend upon which other PSUs are selected (invariance), and the
selection of SSUs in a given selected PSU must be independent from
the selection of SSUs in any other selected PSU (independence).
These restrictions allow for a relatively simple decomposition of the
sampling variability of an estimate into variability due to the first
and second stages of sampling.

An important implication of these restrictions is that it would not
have been possible to increase the number of disturbed pixels sam-
pled from a given selected PSU because of a shortage of disturbed
pixels in other selected PSUs. This means that, unfortunately, the
principles of invariance and independence cannot be followed in
every accuracy assessment, especially when a two-stage design is
used and very rare classes are of interest (e.g. Stehman et al., 2003).
An attractive alternative in such a scenario is to conduct a second in-
dependent survey designed specifically to sample the rare class and
combine the information from both surveys to produce an improved
estimator of population characteristics related to the rare class (see
Czaplewski, 2010). For this assessment, we were able to allay fears
of such a shortage by studying the composition of each PSU in the en-
tire target region before finalizing the design. We discovered that,
with the minor exception of the PW class described above, in every
PSU the map assigned at least as many pixels to each class as we
planned to sample.

Another simplifying characteristic of our accuracy assessment was
that sufficient reference data was actually available for every sam-
pling unit in the target region. This was achieved partly through col-
lapsing the biennial disturbance classes and partly through making
auxiliary use of Landsat imagery. Consequently, statistical issues re-
lated to nonresponse were avoided, and interpretations can legiti-
mately be made on the level of the target region.

As an alternative to using simple random sampling within strata, for
either PSUs or SSUs, systematic sampling could have been used.? The
decision to use simple random sampling was motivated by a desire for
statistical simplicity. In order to produce standard errors for estimates
based on systematic samples, assumptions must be made concerning
the structure of the population. The typical assumption made is that
the population is in random order, which implies that SEs should be cal-
culated as if a simple random sample had been selected. If the popula-
tion actually exhibits positive spatial autocorrelation (things close
together are more similar than things far apart), this assumption will
likely lead to underestimating the precision of estimates. However,
depending on the actual structure of the population, it is possible to
overestimate precision (e.g. Moisen et al., 1994). Hence, a gain in preci-
sion may have been possible by using systematic sampling, but its real-
ization through the calculation of SEs is not straightforward.

A complication in the sampling procedure for this assessment arose
through the use of the Arc tool Create Random Points. The tool had a pref-
erence to select pixels on the edges of disturbance class polygons, partic-
ularly for polygons with very irregular shapes. This preference is apparent
in Fig. 3. We examined the proportion of SSUs that fell on the edge of
polygons in our sample and in the population for each combination of
first- and second-stage strata. In some of these combinations, the propor-
tion was much higher in the sample than in the population. In other
words, our sampling procedure evidently over-sampled SSUs on the
edges of disturbance class polygons. This was concerning because it is
plausible that SSUs on edges are less likely to be correctly classified
than those in interiors. Over-sampling edges could then lead to substan-
tially under-estimating accuracy. We checked whether this was the case
by post-stratifying our accuracy estimates (confusion matrix elements
and commission and omission error probabilities) by an edge/interior
stratification. The post-stratified estimates were negligibly different
from our original set of estimates. In particular, all post-stratified esti-
mates were within one percentage point of the original estimate, except
in the case of a few omission error probabilities whose large standard
errors dwarfed the discrepancy. We chose to present our original set of
estimates rather than the post-stratified estimates because the post-
stratified sample configuration no longer contained at least two sample
SSUs in every stratum within each PSU, necessitating the use of approxi-
mations in variance estimation.

A primary difficulty in the response design of this assessment was
due to the land cover change aspect of the VCTw algorithm; the long
time scale (1985-2008) of the map being assessed necessitated mul-
tiple sets of reference imagery. This increased the difficulty of assign-
ments due to temporal gaps and inconsistency in the composition of
the reference imagery. In particular, the appearance of disturbances
varied among the NHAP, NAPP, and NAIP image sets. Also, even with-
in a NHAP or NAPP image set, the appearance of disturbances varied
due to differences in phenology among acquisition years. These ob-
stacles motivated the use of Landsat as an auxiliary source of consis-
tent reference imagery, which was largely successful in resolving
problematic classifications.

Another difficulty in assigning reference classes arose when an
SSU had apparently heterogeneous land cover. This problem has
been solved in other studies by allowing so-called “fuzzy” classifica-
tion (Gopal & Woodcock, 1994). However, we assigned only a single
reference class to all sampled units. In the heterogenous cases, the
disturbance class was chosen that reflected the majority of the
area within the 30 m-by-30 m sampled unit. We found this method
acceptable because, regardless of whether a single classification suffi-
ciently described the true land cover of a unit, the classification's
purpose is to assess an algorithm which is solely concerned with
land cover characteristics aggregated to this scale.

2 See Stevens and Olsen (2004) and the associated contributed R package spatstat
(Baddeley & Turner, 2005; R Development Core Team, 2011) for an interesting alterna-
tive to both simple random and systematic sampling.
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Table 6

Estimated confusion matrix (and SEs) for the LMB. Sample size information is denoted by n. In cases where a SE had been rounded to zero, it is replaced with a NA.
VCTw

PNF PF PW D1 D2 n
Reference PNF 41.38 (2.51) 1.25 (0.46) 0.01 (0.01) 0.24 (0.04) 0.31 (0.05) 661

PF 2.55 (0.52) 46.31 (2.44) 0 (NA) 0.44 (0.08) 0.2 (0.04) 663
PW 0.06 (0.03) 0 (NA) 1.57 (0.29) 0 (NA) 0 (NA) 124
D1 0.39 (0.19) 1.14 (0.46) 0 (NA) 1.83 (0.21) 0.01 (NA) 253
D2 0 (NA) 1.07 (0.54) 0 (NA) 0.02 (0.01) 1.22 (0.13) 259
n 525 525 122 394 394

Table 7
Estimated commission (P¢) and omission (Pg) error probabilities for each disturbance
class for the LMB.

Pc SE(Pc) Po SE(Po)
PNF 6.77 1.20 419 1.06
PF 6.97 1.49 6.44 1.11
PW 0.36 0.34 3.89 213
D1 27.28 334 45.73 8.70
D2 29.98 2.83 4721 11.31

4.2. Statistical analysis

Ratio estimators were used for every accuracy parameter, but
these were not the only possible choice. Except for the case of omis-
sion error probabilities, the denominator in p = Ny/N}, was known,
making p another possible estimator where

ﬁ :Na/Nb~

Both p and py are design consistent and p is design unbiased while
Dr is approximately design unbiased. However, the decision between
the two should really be made based on which has a smaller expected
mean square error (which is variance plus squared bias). It seems
counterintuitive that estimating the quantity N, would be preferable
to using the known value, but this is often the case. See Sarndal et
al. (1992, Section 5.7) for a discussion.

The linearized variance technique was used for every SE calcula-
tion, but it was also not the only possible choice. Jackknife SEs are
based on the idea of repeatedly drawing subsamples from the ob-
served sample and studying the amount of variability among these
subsamples. This technique was appropriate for our sampling design
and readily available in the survey package (Lumley, 2004, 2011).
In fact, there is some empirical (i.e., anecdotal) evidence that jack-
knife SEs are preferable to linearized SEs with respect to the coverage
probability of confidence intervals (Wolter, 2007). With this in mind,
jackknife SEs were also calculated for every estimate. In almost all
cases the jackknife SE was slightly smaller than the linearized SE,
but not enough to make any substantial difference in the interpreta-
tion of the estimate. Consequently, linearized SEs, which are probably
more familiar to most readers, were used. However, for a couple of
region-specific estimates (the omission error probabilities for D1 in
the LSB and for D2 in the LMB), the confidence interval based on

Table 8
Percent cover estimates for the entire target region, the LSB, and the LMB. ppgp is the
map-only estimate, and p, is the difference estimator described in Section 2.4.3.

Entire region LSB LMB

Pmap  Pa SE(P4) Pmap  Pa SE(P4) Pmap  Pa SE(Pa)

PNF 3992 39.67 0.69 13.19 1646 1.60 47.08 4588 0.75
PF 53.20 50.65 0.89 7755 66.66 2.21 46.68 4639 0.95
PW 200 207 0.03 185 198 0.06 204 210 0.04
D1 282 442 057 442 878 184 239 325 053
D2 206 3.18 049 3.00 612 1.14 181 238 0.54

the jackknife was much larger; linearized SEs are suspicious here be-
cause they are known to sometimes perform poorly in small sample
sizes (Wolter, 2007). The jackknife SEs were not substituted in
these cases out of a desire for simplicity and because the confidence
intervals based on linearized SEs are so wide already that the differ-
ence is probably not practically important. Nevertheless, jackknife
SEs should be considered for future accuracy assessments, especially
in small sample scenarios.

The use of the accuracy assessment sample to estimate the percent
cover of each disturbance class was a substantial improvement over
reporting percent cover estimates based only on map data. By using
all the available information, not only can these estimates be expected
to be more accurate, but their potential magnitude of error can be
directly assessed through estimated standard errors. In contrast, the po-
tential magnitude of error of map-only estimates must be interpreted
through the raw accuracy estimates. Also, the difference estimator and
its standard error can be calculated using the same procedures as
those already being used to calculate accuracy estimators. As the use
of probability-based accuracy assessments becomes standard practice
in the remote sensing field, the use of sample data to improve percent
cover (or total area) estimates should also become standard practice.

4.3. Map accuracy

Although this project is currently the only implementation of the
VCTw algorithm, it can - with some reservations - be compared to
an implementation of the VCT algorithm presented by Huang et al.
(2010) and by Thomas et al. (2011). For a collection of six North
American Forest Dynamics (NAFD) sites and aggregated across all
biennial disturbance classes, Thomas et al. (2011) report estimated
commission error probabilities between roughly 15% and 45% and es-
timated omission error probabilities between roughly 45% to 60%
(with the exception of one NAFD site with very few pixels in a dis-
turbed reference class). These results are roughly consistent with
the VCTw results given above, but it should be noted that collapsing
to only two disturbance classes (D1 and D2) certainly improved the
VCTw results compared to what they would have been if the accuracy
of disturbance classifications had been assessed within biennial time
steps. Thomas et al. (2011) also report very similar results for the
PNF class: estimated omission and commission error probabilities
are all below 15% except for an estimated probability of omission of
33% which corresponded to a Minnesota site that contained many
wetlands. The performance of VCTw for PNF showed the same pattern
in that the estimated omission error probability in the LSB (which
contains many wetlands) was relatively large. For the PF class,
Thomas et al. (2011) report similar estimated omission error probabil-
ities (mostly below 15%) to those seen here, but larger estimated com-
mission error probabilities (between 15% and 43% compared to 5% and
15% for VCTw). This improvement is likely a consequence of the use
of winter imagery to mask non-forest areas in the VCTw algorithm
(Stueve et al.,, 2011).

The preponderance of mapping errors related to the D1 and D2
classes may be explained, at least in part, by the fact that VCT - and,
thus, VCTw - is best suited for detecting stand-clearing forest
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disturbance (Huang et al., 2010). Note that, because a small propor-
tion of land is truly disturbed, VCTw and VCT are still able to achieve
relatively high overall accuracies.

Another important theme of the accuracy results presented here,
consistent with the results presented by Thomas et al. (2011), is
that the accuracy of forest disturbance mapping is highly dependent
on the characteristics of the landscape being mapped. The landscapes
studied here alternate between abundant and sparse forest cover and
have varying degrees of agricultural and developed land. These differ-
ences seem to have translated into very distinct patterns of accuracy.
For instance, compared to the LMB, the LSB estimates exhibit a reduc-
tion of about 8% in the commission error probability for the PF class
and about 25% in the omission error probability for the PNF class.
These results suggest that efforts to map forest disturbance on large
scales (i.e., regional and above) should consider flexible procedures that
can take advantage of and avoid the pitfalls associated with features of re-
gional landscapes. In the VCTw algorithm, the use of early-season imagery
in the southern half of the LIMB to accommodate row-cropped agricultural
land and the use of winter imagery to identify snow-covered non-forest
land are two examples of this.

5. Conclusion

The usefulness of any land-cover map is dependent on a sound accu-
racy assessment of its land-cover classifications. Here, we presented an
assessment of a map of land cover change in the basins draining into
Lake Superior and Lake Michigan produced by Stueve et al. (2011)
using the VCTw algorithm. Our use of two-stage cluster sampling im-
proved the efficiency of reference data collection relative to single stage
sampling, and our use of stratification allowed us to purposely distribute
data collection across geographic regions and mapped disturbance clas-
ses. Constructing a reference data set was challenging because of the
large spatial and temporal scales of the assessment, but the response de-
sign was able to utilize Landsat imagery as an auxiliary source of data
when reference classifications based solely on aerial imagery were not
reliable. The estimation procedures produced almost-unbiased, design-
consistent estimates of accuracy parameters, and all estimates were
accompanied by SEs. We also used the observed reference data to
improve the map-based percent-cover estimates. As a whole, these deci-
sions produced a useful assessment that was conducted efficiently and is
statistically defensible.
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Appendix A. Inclusion probabilities

In order to define the inclusion probability mm, of SSU k, we will first
define the inclusion probability of PSU i, denoted my;. Let g be the geo-
graphic stratum containing i, N;g be the number of PSUs in this stra-
tum, and ny be the number of sample PSUs in this stratum. Now,
;= N1g/N1g.

Next, we define the conditional inclusion probability of SSU k
given that the PSU containing it, i, has been selected. Let h be the dis-
turbance class stratum containing k, N;, be the number of SSUs in PSU
i and stratum h, and n;; be the number of sample SSUs in PSU i and
stratum h. Then, the conditional inclusion probability is ;= nis/Ni.
Finally, the inclusion probability of SSU k, contained in PSU i, can be
written as m, = 1fly;.

Appendix B. Linearized standard errors

We now present details on estimating the variance of a ratio estima-
tor, pg under the sampling design used in our assessment. In order to
remain concise, we will assume that the reader is familiar with some cen-
tral concepts of design-based sampling statistics, and will refer to results
given in Sdrndal et al. (1992). We must deal with two complicating fac-
tors: pg has a non-linear form, and a complex sampling design was used.

First, we deal with the non-linearity of p by assuming that its var-
iance is equal to that of the linear approximation

. 1 Ya(k)—pyy(k)
= + _ P T
P=p Ny kZE:s m

as in Sdrndal et al. (1992, Result 5.6.2). So, instead of looking at both
yq and y,, we only pay attention to the variable e(k) =y, (k) — pyp(k),
and its sample version é(k) =y,(k)—pgy,(k). We now can write

the linearized variance estimator of py as V(NE) /N2 where
2 (e(k)/my).
kes

Next, we deal with the complex sampling design. To simplify the
variance resulting from the two stages of sampling used in our assess-
ment, we decompose the variance of N, into elements that corre-
spond to the first and second stages of sampling, as in Sdrndal et al.
(1992, Result 4.3.1). To recognize the stratification in the second
stage of sampling, we use the special case of Eq. (4.3.5) in Sarndal
et al. (1992) that applies to a stratified random sample. Finally, to
recognize the use of stratification in the first stage of sampling, we

estimate V(Ne) separately for each first-stage stratum, and weight
them in the typical fashion.

Appendix C. The survey package

We now present details on the R software environment (R
Development Core Team, 2011) and the survey package (Lumley,
2004, 2011), which were used for all computing. In order to calculate
an estimate and corresponding SE, a user needs to first create a survey
design object that provides information about the sampling design,
and then use an estimator function. We will provide some example
code applicable to the estimates calculated for our assessment. Define
the following data vectors, all of the same length, where the kth
element in each vector corresponds to the kth sampled SSU:

psu — an index identifying k's PSU

ssu — an index identifying k's SSU

region — the first-stage stratum of k's PSU

map — the second-stage stratum of k's SSU

fpcl — the number of PSUs in the same first-stage stratum as k
fpc2 — the number of SSUs in the same second-stage stratum and
same PSU as k

match — the correctness of the k's map class

ind — the number 1.

Now, the following code could be used to obtain the ratio estimate
and linearized SE (as described in this paper) for the proportion of cor-
rect SSUs in a map under the sampling design used in our assessment.

des<-svydesign (ids="psu+ssu, strata="region+map, fpc=
“fpcl+fpc2,vars=data. frame (match, ind))

svyratio(numerator="match, denominator="ind, design=
des)

In order to calculate the SE here, the svyrecvar function will be
called by svyratio. This function uses a recursive algorithm to calculate
the estimated variance contributed by both stages of sampling. For more
details, see Lumley (2010).



P.L. Zimmerman et al. / Remote Sensing of Environment 128 (2013) 176-185 185

References

Baddeley, A., & Turner, R. (2005). Spatstat: An R package for analyzing spatial point
patterns. Journal of Statistical Software, 12, 1-42.

Cihlar, J. (2000). Land cover mapping of large areas from satellites: Status and research
priorities. International Journal of Remote Sensing, 21, 1093-1114.

Cochran, W. G. (1977). Sampling techniques (3rd ed.). New York: Wiley.

Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data:
Principles and practices. Boca Raton: Lewis Publishers.

Czaplewski, R. L. (2010). Complex sample survey estimation in static state-space. Gen.
Tech. Rep. RMRS-239. Fort Collins, CO: U.S. Department of Agriculture, Forest
Service, Rocky Mountain Research Station.

Czaplewski, R. L., & Catts, G. P. (1992). Calibration of remotely sensed proportion or area
estimates for misclassification error. Remote Sensing of Environment, 39, 29-43.

Davis, D. (2011). 2011 NAIP information sheet. United States Department of Agriculture,
Farm Service Agency, Aerial Photography Field Office, http://www.fsa.usda.gov

Gopal, S., & Woodcock, C. (1994). Theory and methods for accuracy assessment of
thematic maps using fuzzy set. Photogrammetric Engineering and Remote Sensing,
60, 181-188.

Gregory, S. V., Swanson, F. ], McKee, W. A,, & Cummins, K. W. (1991). An ecosystem
perspective of riparian zones. BioScience, 41, 540-551.

Huang, C., Goward, S. N., Masek, J. G., Gao, F., Vermote, E. F., Thomas, N., et al. (2009).
Development of time series stacks of Landsat images for reconstructing forest
disturbance history. International Journal of Digital Earth, 2, 195-218.

Huang, C.,, Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010). An
automated approach for reconstructing recent forest disturbance history using
dense Landsat time series stacks. Remote Sensing of Environment, 114, 183-198.

Karr, J. R., & Schlosser, 1. J. (1978). Water resources and the land-water interface. Science,
201, 229-234.

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software, 9,
1-19.

Lumley, T. (2010). Complex surveys: A guide to analysis using R. New Jersey: Wiley.

Lumley, T. (2011). Survey: Analysis of complex survey samples. R package 3.24.

Magnussen, S., Stehman, S. V., Corona, P., & Wulder, M. A. (2003). A Pélya-urn
resampling scheme for estimating precision and confidence intervals under one-stage
cluster sampling: Application to map classification accuracy and cover-type frequencies.
Forest Science, 50, 810-822.

McRoberts, R. E. (2011). Satellite image-based maps: Scientific inference or pretty
pictures? Remote Sensing of Environment, 115, 715-724.

Miles, P. D., Heinzen, D., Mielke, M. E., Woodall, C. W., Butler, B. J., Piva, R. ], et al.
(2011). Minnesota's Forests 2008. Resour. Bull. NRS-50. Newtown Square, PA: U.S.
Department of Agriculture, Forest Service, Northern Research Station.

Moisen, G. G., Edwards, T. C, Jr., & Cutler, D. R. (1994). Spatial sampling to assess
classification accuracy of remotely sensed data. In W. K. Michener, J. W. Brunt, &
S. G. Stafford (Eds.), Environmental information management and analysis: Ecosystem
to global scales (pp. 159-176). New York: Taylor & Francis.

Naiman, R. J., & Bilby, R. E. (Eds.). (1998). River ecology and management: Lessons from
the Pacific Coastal Ecoregion. New York: Springer-Verlag.

Nusser, S. M., & Klaas, E. E. (2003). Survey methods for assessing land cover map accuracy.
Environmental and Ecological Statistics, 10, 309-331.

Perry, C. H., Everson, V. A., Brown, I. K., Cummings-Carlson, J., Dahir, S. E., Jepsen, E. A.,
et al. (2008). Wisconsin's forest, 2004. Resour. Bull. NRS-23. Newtown Square, PA:
U.S. Department of Agriculture, Forest Service, Northern Research Station.

Peterjohn, W. T., & Correll, D. L. (1984). Nutrient dynamics in an agricultural watershed:
Observations on the role of a riparian forest. Ecology, 65, 1466-1475.

Pugh, S. A, Hansen, M. H., Pedersen, L. D., Heym, D. C,, Butler, B. ], Crocker, S. ]., et al.
(2009). Michigan's forests 2004. Resour. Bull. NRS-34. Newtown Square, PA: U.S.
Department of Agriculture, Forest Service, Northern Research Station.

R Development Core Team (2011). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing, http://www.R-project.org

Sarndal, C. E., Swensson, B., & Wretman, J. (1992). Model-assisted survey sampling.
New York: Springer-Verlag.

Stehman, S. V. (2009a). Sampling designs for accuracy assessment of land cover.
International Journal of Remote Sensing, 30, 5243-5272.

Stehman, S. V. (2009b). Model-assisted estimation as a unifying framework for esti-
mating the area of land cover and land-cover change from remote sensing. Remote
Sensing of Environment, 113, 2455-2462.

Stehman, S. V., & Czaplewski, R. L. (1998). Design and analysis for thematic map accuracy
assessment: Fundamental principles. Remote Sensing of Environment, 64, 331-344.

Stehman, S. V., Wickham, ]. D., Smith, ]. H., & Yang, L. (2003). Thematic accuracy of the
1992 National Land-Cover Data for the eastern United States: Statistical methodology
and regional results. Remote Sensing of Environment, 86, 500-516.

Stevens, D. L, Jr., & Olsen, T. R. (2004). Spatially balanced sampling of natural resources.
Journal of the American Statistical Association, 99, 262-278.

Strahler, A. H., Boschetti, L., Foody, G. M., Friedl, M. A., Hansen, M. C., Herold, M., et al.
(2006). Global land cover validation: Recommendations for evaluation and accuracy
assessment of global land cover maps. GOFC-GOLD Report No. 25. Luxemburg: Office
for Official Publications of the European Communities.

Stueve, K. M., Housman, I. W., Zimmerman, P. L., Nelson, M. D., Webb, ]. B, Perry, C. H.,
et al. (2011). Snow-covered Landsat time series stacks improve automated distur-
bance mapping accuracy in forested landscapes. Remote Sensing of Environment,
115(12), 3203-3219, http://dx.doi.org/10.1016/j.rse.2011.07.005.

Sweeney, B. W. (1992). Streamside forests and the physical, chemical, and trophic
characteristics of piedmont streams in Eastern North America. Water Science and
Technology, 26, 2653-2673.

Thomas, N. E., Huang, C., Goward, S. N., Powell, S., Rishmawi, K., Schleeweis, K., et al.
(2011). Validation of North American forest disturbance dynamics derived from
Landsat time series stacks. Remote Sensing of Environment, 115, 19-32.

Wolter, K. M. (2007). Introduction to variance estimation (2nd ed.). New York:
Springer-Verlag.


http://www.fsa.usda.gov
http://www.R-project.org
http://dx.doi.org/10.1016/j.rse.2011.07.005

	An accuracy assessment of forest disturbance mapping in the western Great Lakes
	1. Introduction
	2. Methods
	2.1. Disturbance mapping
	2.2. Sampling design
	2.3. Response design
	2.3.1. Reference imagery
	2.3.2. Interpretation of reference imagery

	2.4. Statistical analysis
	2.4.1. Accuracy estimates
	2.4.2. Standard errors
	2.4.3. Percent cover estimates


	3. Results
	4. Discussion
	4.1. Sampling and response design
	4.2. Statistical analysis
	4.3. Map accuracy

	5. Conclusion
	Acknowledgments
	Appendix A. Inclusion probabilities
	Appendix B. Linearized standard errors
	Appendix C. The survey package
	References


