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Abstract

At the Harvard Forest, Petersham, MA, the impact of 20 years of annual ammo-

nium nitrate application to the mixed hardwood stand on soil bacterial commu-

nities was studied using 16S rRNA genes pyrosequencing. Amplification of 16S

rRNA genes was done using DNA extracted from 30 soil samples (three treat-

ments 9 two horizons 9 five subplots) collected from untreated (control), low

N-amended (50 kg ha�1 year�1) and high N-amended (150 kg ha�1 year�1)

plots. A total of 1.3 million sequences were processed using QIIME. Although

Acidobacteria represented the most abundant phylum based on the number of

sequences, Proteobacteria were the most diverse in terms of operational taxo-

nomic units (OTUs). UniFrac analyses revealed that the bacterial communities

differed significantly among soil horizons and treatments. Microsite variability

among the five subplots was also evident. Nonmetric multidimensional scaling

ordination of normalized OTU data followed by permutational MANOVA further

confirmed these observations. Richness indicators and indicator species analyses

revealed higher bacterial diversity associated with N amendment. Differences in

bacterial diversity and community composition associated with the N treatments

were also observed at lower phylogenetic levels. Only 28–35% of the 6 936 total

OTUs identified were common to three treatments, while the rest were specific

to one treatment or common to two.

Introduction

The composition of soil bacterial communities is influ-

enced by numerous factors ranging from their geographic

location (Fulthorpe et al., 2008) to site-specific environ-

ment. These factors include, but are not limited to, soil

type (Roesch et al., 2007), soil pH, (Neufeld & Mohn,

2005; Fierer & Jackson, 2006; Lauber et al., 2009; Rousk

et al., 2010), plant diversity and composition (Carney &

Matson, 2006; Uroz et al., 2010), mycorrhizal content

(Uroz et al., 2007), and land management practices (Wu

et al., 2008; Fierer et al., 2011). Over the last decade,

studies of forest soils have provided valuable baseline

information about bacterial community structure and

diversity in both undisturbed and disturbed forest ecosys-

tems (Axelrood et al., 2002; Chow et al., 2002; Hackl

et al., 2004; Chan et al., 2006). Additional studies are

needed to address the effects of forestland management

practices on bacterial community structures.

Nitrogen (N) is a key regulator of ecosystem processes

(Nadelhoffer et al., 1984; Nadelhoffer, 2001; Galloway

et al., 2004). Whereas low N availability often limits plant

growth and forest productivity in a temperate forest, soil

C has been implicated as the key limiting factor for

microbial metabolism (Aber et al., 1998; Demoling et al.,

2008; Allison et al., 2009, 2010). In the northeastern

United States, N concentrations in forest soils have

increased over time because of emissions from fossil fuel

combustion (Galloway et al., 1984). Bobbink et al. (2010)

discussed the worldwide threat of environmental N

deposition for eight major ecosystems and its influences

on vegetation, including changes in plant communities,

plant physiology, and the resistance of plants to pathogens

and insect pests. Earlier reports on soils from various
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forests revealed that N fertilization reduces microbial

biomass and activity (Arnebrant et al., 1996; Thirukkumaran

& Parkinson, 2000; Bowden et al., 2004; Frey et al., 2004;

Wallenstein et al., 2006). A range of inorganic N fertilizer

treatments was also demonstrated to decrease soil

microbial respiration levels in aspen and pine forests as

well as in grasslands (Ramirez et al., 2010).

It has been proposed that elevated N in the soil may

cause saturation of the N-retention capacity of forest

ecosystems (Aber et al., 1989; Aber, 1992). To study plant

and soil microbial responses to elevated N in the soil and

to mimic future N additions due to anthropogenic

factors, experimental plots subjected to chronic N

addition were established in 1989 within pine and mixed

hardwood stands at the Harvard Forest Long-Term

Ecological Research (LTER) site (http://harvardforest.fas.

harvard.edu) in Petersham, MA. These plots have been

subjected to NH4NO3 addition on a regular basis for over

20 years. Nitrogen saturation due to these treatments has

negatively impacted the soils and tree growth at this site,

presumably by increasing physiological stress, which leads

to tree mortality (Aber et al., 1993, 1998; Magill & Aber,

1998, 2000; Bauer et al., 2004; Magill et al., 2004; McDo-

well et al., 2004). Frey et al. (2004) and Wallenstein et al.

(2006) reported major changes in the bulk composition

of soil microorganisms in response to long-term N addi-

tion; there was also a decrease in the active fungal bio-

mass, with little change in the bacterial biomass. This

resulted in negative shifts in fungal: bacterial biomass

ratios, microbial biomass carbon (MBC), and selective

induced respiration (SIR) rates, hinting at alterations in

the microbial community composition (Wallenstein et al.,

2006). The decline in fungal biomass was largely attrib-

uted to a decrease in ectomycorrhizae forming associa-

tions with major hardwood species, suggesting that fungi

are more susceptible to long-term N fertilization than

bacteria. However, no details are available concerning the

diversity of either the bacterial or fungal populations that

may have been impacted by N amendment at this site.

The structure of bacterial communities, including N-fix-

ing (Tan et al., 2003), nitrifying, (Compton et al., 2004;

He et al., 2007), and denitrifying (Enwall et al., 2005)

bacteria, has been confirmed to change in response to N

fertilization in forested and agricultural soils. In a previ-

ous study by our group, a Ca-supplemented watershed at

the Hubbard Brook Experimental Forest (NH) exhibited

an altered bacterial composition compared to a reference

watershed (Sridevi et al., 2012).

The overall goal of the present study was to test the

hypotheses: (1) long-term chronic N-amended organic

and mineral soils depict different bacterial community

composition compared with control soil; (2) Chronic

N-amended soils show an abundance of selected taxa

involved in N cycling. Using high-throughput 16S rRNA

pyrosequencing (454), we investigated the changes in

bacterial community structure in the soils of mixed hard-

wood stand at Harvard Forest in response to two decades

of N fertilization. Specifically, we compared (1) the chem-

istry of the organic and the mineral soil horizons and (2)

the bacterial community structure, diversity, and relative

abundance associated with each soil horizon and treat-

ment.

Materials and methods

Site description and experimental design

This work was conducted in soils from the mixed hard-

wood stand included in the chronic N amendment LTER

study at Harvard Forest (http://harvardforest.fas.harvard.

edu); the site coordinates are 42° 30′ N and 72° 10′W.

The hardwood stands were approximately 95 years old in

2009, and their history is well documented (Aber et al.,

1993). The dominant soils at the study site are typic

dystrochrepts of glacial origin and stony to sandy loams

with a thick organic horizon (Bowden et al., 2004). The

vegetation, climate, average rainfall, site topology, and

details of the applied N amendments are described in

Bowden et al. (2004) and Magill et al. (2004).

Briefly, the study involved three plots that were

established as a part of a larger study initiated in 1989

(Aber et al., 1993), two of which were treated with

NH4NO3 every year during the growing season, whereas

the third was kept as a control. Each plot (309 30 m) was

divided into 36 subplots (each measuring 5 9 5 m). The

treatments were as follows: untreated control (Con), low

N (LN, treated with 50 kg N ha�1 year�1), and high N

(HN, treated with 150 kg N ha�1 year�1). In September

2009, soil cores were collected from five randomly selected

subplots within each treatment plot using a soil corer

(7.5 cm diameter) to a depth of approximately 15 cm. For

each soil core, the upper, dark brown organic horizon

(Org) was separated from the lower, light brown mineral

horizon (Min). A total of 30 soil samples (five cores per

plot 9 two horizons 9 three treatments) were collected

and brought to the laboratory on ice in polyethylene bags.

Each sample was given a designation consisting of the

treatment name-subplot name-soil horizon. The samples

were sieved (2 mm pore size) to remove roots and stones

and stored at �20 °C until further use.

Soil chemical analyses

Air-dried soil samples (20–40 g) were sent to the Soil

Testing Service Laboratory at the University of Maine,

Orono, ME (http://anlab.umesci.maine.edu) for chemical
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analyses. The total N and C contents were measured by

combustion analysis at 1350 °C. Exchangeable P, Al, and

base cations were extracted with 1 M NH4Cl at a ratio of

2 g of organic soil or 5 g of mineral soil to 100 mL of

extraction solution (Blume et al., 1990). After shaking for

1 h, the extracts were vacuum filtered (Whatman # 42,

Whatman Inc., Clifton, NJ) and analyzed using flame

emission spectroscopy for K and Na and plasma emission

spectroscopy for Ca, Mg, and Al. The exchangeable

acidity was measured in 1 M of KCl extracts using

endpoint titration (Blume et al., 1990). The percentage of

soil organic matter in the oven-dried samples was deter-

mined using loss-on-ignition (LOI) for 12 h at 550 °C
with a muffle furnace. The effective cation-exchange

capacity (ECEC) was calculated as the sum of the

exchangeable base cations (Ca, Mg, K, and Na) plus the

exchangeable acidity.

DNA isolation, PCR amplification, and

pyrosequencing

Total DNA was isolated from 0.5 g of each soil sample

using the PowerSoil® DNA isolation kit (MO-BIO Labo-

ratories, Carlsbad, CA) following the manufacturer’s

instructions, with minor modification that included bead

beating for only 7 min with vortex adaptor to minimize

DNA shearing. The obtained DNA was quantified and

examined for purity (A260 : A280 ratio between 1.6 and

1.8 and A260 : A230 ratio between 2.0 and 2.2) with a

NanoDrop spectrophotometer (Thermo-Fisher Scientific,

Waltham, MA). In preparation for pyrosequencing, uni-

versal primers with 30 different barcodes (10 bp, one for

each of the 30 soil samples) were designed to amplify a

433-bp fragment of the hypervariable region (V6-V8) of

the bacterial 16S rRNA gene from the soil samples.

The primers used were F968 (5′AA CGC GAA GAACCT

TAC3′) and R1401-1a (5′CGG TGT GTA CAA GGC CCG

GGA ACG3′) as described in Brons & van Elsas (2008).

The amplification reactions were conducted in triplicate

using Phusion® Taq Master Mix (New England Biolabs,

Ipswich, MA) with 50 ng of template DNA in a final

volume of 50 lL. The reactions were performed in a

PTC-100® Programmable Thermal Cycler (MJ Research,

Inc., Waltham, MA) with the following conditions: an

initial denaturation at 95 °C for five min, followed by 20

cycles of denaturation at 95 °C for 30 s, annealing at 61 °
C for 30 s, and extension at 72 °C for 45 s, with a final

extension at 72 °C for 10 min. The triplicate reaction

products (amplicons) from each soil sample were pooled

for sequencing (Margulies et al., 2005). The pooled PCR

products were purified using a DNA purification kit

(Zymo Research, Irvine, CA) and subjected to further clean-

ing via the Agencourt® AMPure® XP Bead Purification

method (Agencourt Bioscience Corporation, Beverly,

MA) to remove fragments < 100 bp. The quality of the

PCR products was evaluated in an Agilent 2100 Bioana-

lyzer using the DNA 1000 LabChip (Agilent Technologies,

Palo Alto, CA). The 30 bar-coded samples were pooled in

equimolar quantities and processed for sequencing in a

full picotiter plate (Roche 454 GS-FLX Titanium System)

at the University of Illinois, (www.biotec.illinois.edu/

centers/Keck/Highthroughput/).

Data processing

The sequencing data were processed using the Quantita-

tive Insights into Microbial Ecology (QIIME) toolkit –Ver-
sion 1.4.0 (Caporaso et al., 2010 b) with default settings

for most of the steps, except where specified. The pipeline

used for data processing is shown in Supporting information,

Fig. S1.

In the first step, the sequences were trimmed and

assigned to each soil sample based on their barcodes.

Using average quality scores and other parameters, the

sequences were also trimmed for quality according to

published recommendations (Huse et al., 2008). Multiple

steps were required to trim the sequences, including

removal of sequences that exhibited the following charac-

teristics: < 200 bp, ambiguous base calling, six-base

homopolymer runs, lack of primers, primer mismatches,

or uncorrectable barcodes. Similar sequences were clus-

tered into operational taxonomic units (OTUs) using de

novo UCLUST (Edgar, 2010) set at a 97% identity threshold,

which is a generally acceptable convention for defining an

OTU (Lauber et al., 2009). Each OTU consists of a group

of sequences identified in a taxonomic study, without

designation of their terminal taxonomic rank. The most

abundant sequence in the cluster for each OTU was

selected as a representative sequence for that OTU. The

OTU representative sequences were submitted to NCBI

Genbank and were assigned accession numbers JQ049082

–JQ060105.
The representative OTU sequences were aligned using

PYNAST (Caporaso et al., 2010 a) with the Greengenes

database (core set aligned December 16, 2010) (DeSantis

et al., 2006), which was set at a minimum sequence iden-

tity of 75% and a minimum sequence alignment length

of 100 bp. Putative chimeric sequences were removed

with Chimera Slayer (Haas et al., 2011). A taxonomic

designation was assigned to each representative sequence

using the ribosome database project (RDP) classifier with

a minimum confidence level of 0.80 (Cole et al., 2005).

Singleton OTUs were filtered from the OTU table using

the script filter_otus_from_otu_table, and the output was

used to perform all other downstream steps. The Lane-

mask file (the Greengenes core set in the QIIME workflow)
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was used to screen out hypervariable regions, and the

default settings were followed for the gap fraction and the

alignment threshold in the filtering step. Each of the 30

samples was rarefied to the soil sample exhibiting the

lowest number of reads (11 000 sequences) for both

a diversity (Rarefaction curves) and b diversity (UniFrac)

analyses. Rarefaction curves were generated for Chao1,

phylogenetic diversity, and observed species. Alpha rare-

faction analyses were performed by computing the aver-

age richness metric value from five subplots for each of

the six soil types (three treatments 9 two horizons).

Unweighted UniFrac distances were computed based on

the Jackknifed OTU table to create a UPGMA tree using

the Fast Tree algorithm and visualized with the FIGTREE

programme (Price et al., 2009). This dendrogram was

then used to analyze differences in bacterial community

composition (Lozupone et al., 2006). Weighted UniFrac

distances were used to create a 2D PCoA plot. Processed

data were visualized using QIIME and PC-ORD. Sequence

and OTU data were also processed using Microsoft Excel.

Unique OTU calculations

Operational taxonomic unit data were processed sepa-

rately for each soil horizon and for each treatment within

a horizon for (1) the mean of five subplots and (2) the

number of OTUs that were unique to each treatment

(where each unique OTU was counted only once, regard-

less of how many of the five subplots contained a copy).

The number of OTUs that were unique to the organic or

mineral soil samples was also calculated by counting each

unique OTU only once regardless of how many of the 15

samples contained copies of that OTU (three treat-

ments 9 five subplots/treatment). Similarly, the number

of OTUs that were unique to all 30 soil samples collected

from the Harvard Forest soils was determined by count-

ing each unique OTU only once, regardless of how many

of the total 30 soil samples contained a copy of the OTU.

Statistical analyses

SYSTAT (Version 10.2) software was used to carry out stan-

dard statistical tests, including paired t-tests and two-way

analysis of variance (ANOVA) on the soil chemistry data.

Nonparametric Kruskal–Wallis test was performed on the

taxonomic data. Nonmetric dimensional scaling (NMS)

analyses were conducted using PC-ORD (Version 6.03,

MJM Software Design, Gleneden Beach, OR). To normal-

ize the data, digit one was added to all data before log10

transformation. Bray–Curtis distances were used to delin-

eate patterns between the various treatments and soil

horizons (Kruskal, 1964; Mather, 1976). The following

conditions were used for the NMS analyses: number of

axes = 3, maximum number of iterations = 500, stability

criterion (the standard deviation in stress over the last 10

iterations) = 10�6, number of runs with real data = 100

and the number of runs with randomized data = 250.

Random numbers were chosen as a source of starting

ordinations. The tie handling was done by penalizing

unequal ordination distance (Kruskal’s secondary

approach). The following were chosen as output options:

varimax, randomization test, plot stress vs. iterations, and

calculate scores for OTUs by weighted averages. Two-

dimensional solutions were finally selected for these anal-

yses based on the assessment using a graph of stress as a

function of dimensionality (scree plot). A Monte Carlo

test was used to test the stress and the strength of the

NMS results. Two-way permutational MANOVA was con-

ducted using the Bray–Curtis distances to evaluate the

effect of the horizons and the treatments and the inter-

action between them. A Mantel test was conducted to

evaluate the significance of the correlations among the

Bray–Curtis distance scores and the soil chemistry param-

eters. A joint plot overlay (soil chemical parameters) indi-

cates the relative significance of each axis on a variable

based on its length and direction. Indicator species analy-

ses were conducted separately for organic and mineral

soil samples using the following setup: treatments as the

grouping variable, Dufrêne & Legendre’s Indicator Species

Analysis (quantitative or presence-absence data) and ran-

domization test with 9999 runs. Dufrene & Legendre’s

(1997) method combines information on the concentra-

tion of OTUs abundance in a particular group with its

occurrence in that group. It produces indicator values

for each OTU for each treatment. These are then tested

for statistical significance using a randomization

technique. The indicator data reported here are for

P � 0.05.

Results

Soil chemistry

The chemistry of the Con-Org (control organic) soil was

significantly different from that of the Con-Min (control

mineral) soil (Table 1). The former exhibited a lower pH

and higher concentrations of all of the measured inor-

ganic ions, acidity, cation-exchange capacity (CEC), %

loss-on-ignition (LOI),% total N, and% total C, but simi-

lar C/N ratios. Amendment of the soil with low N did

not affect any of the measured parameters, with the

exception of resulting in a 30–50% reduction in Na ions

in LN-Org (low N organic) and LN-Min (low N mineral)

horizons (Table 1). However, the HN-Org (High N

organic) soil possessed significantly lower K and Zn

concentrations compared with the Con-Org soil; little or
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no change was observed for the HN-Min (High N

mineral) soil.

Pyrosequencing data analysis

A total of 1 273 206 sequences were obtained from the 30

samples; the sequence length ranged from 200 to 521 bp,

with an average read length of 451 bp. Approximately

15% of these sequences were removed by quality filtering.

The remaining sequences were distributed between for-

ward primer (FP) and reverse primer (RP) sequences

(approximately 42% each). The FP sequence data, for

which the mean number of sequences per sample (sub-

plot) was 17 578 ± 658, were used for the detailed analy-

ses presented here. Clustering (by UCLUST) of all of the FP

sequences (527 340) resulted in 13 060 unique OTUs

(Table S1). The Org soil samples were represented by

276 693 sequences and the Min soil samples by 250 647

sequences. Greater than 99% of the representative OTU

sequences could be aligned with PYNAST. Chimera Slayer

detected a total of 2032 chimeric OTUs from all of the 30

samples combined (15% of the 13 060 total OTUs) which

left 11 028 OTUs for downstream processing. Further

analysis allowed us to assign 83.7% of the sequences from

the Org soil samples and 77.7% of the sequences from the

Min soil samples to various bacterial phyla. The remaining

sequences (15–20%) could not be classified beyond the

bacterial domain and were categorized as ‘unclassified bac-

teria’. A small number (< 1%) of the OTUs remained

unclassified under the bacteria division. After removing

4092 singletons from 11 028 OTUs, the remaining 6936

OTUs were processed further. Processing of the RP data

showed only minor differences between the two sets of

results (< 10% – details not shown).

Diversity analyses

Clustering of the unweighted UniFrac values for all 30

samples via UPGMA (Fig. 1) revealed that the bacterial

composition of Org and Min soil samples was similar to

each other by about 85% (UniFrac, P test significance

analyses, P < 0.001). The dendrogram also showed that

for most plots except for Con-Org, one subplot among

five was an outlier (Fig. 1). These analyses did reveal

some overlaps in the community composition of three

treatment plots within each horizon. Two-dimensional

PCoA plots using weighted UniFrac distances for all 30

samples depicted that the principal component 1

explained maximum variation of 15.22%, while principal

component 2 explained 6.62% (Fig. 2). Organic soil sam-

ples were spatially separated from mineral samples. The

figure also showed that soils from subplots for each treat-

ment plot grouped together exhibiting similarity. Control

samples for each type of soil horizon were distinctly sepa-

rated from LN and HN samples.

Nonmetric multidimensional scaling (NMS; the final

stress for the two-dimensional solution was 12.97 with 87

iterations, and the P value for stability was 0.00000)

followed by permutational MANOVA (with ordination scores,

that is, the Bray–Curtis distance, obtained from the nor-

malized total OTU data) predicted that the bacterial

community composition of the N-amended samples was

Table 1. Soil chemistry of the control and the N–amended soils divided into their organic and mineral horizons

Organic horizon Mineral horizon

Mean of five subplots Control Low N High N Control Low N High N

Soil pH 4.00 ± 0.10 4.10 ± 0.10 4.00 ± 0.15 4.60 ± 0.02a 4.70 ± 0.07a 4.60 ± 0.09a

% LOI (organic matter) 28.1 ± 4.6 28.7 ± 4.6 27.2 ± 3.8 9.3 ± 0.4a 9.5 ± 0.8a 11.2 ± 0.4a

Total N (%) 0.60 ± 0.08 0.60 ± 0.04 0.60 ± 0.07 0.20 ± 0.01a 0.20 ± 0.02a 0.20 ± 0.01a

Total C (%) 15.1 ± 2.1 15.4 ± 2.3 15.0 ± 1.9 4.30 ± 0.2a 4.20 ± 0.4a 5.00 ± 0.4a

Ca (mg Kg�1) 115 ± 30 110 ± 12 134 ± 37 13.0 ± 2.4a 16.2 ± 2a 12.6 ± 3a

K (mg Kg�1) 223 ± 54 132 ± 5 118 ± 15** 38.7 ± 9b 37.7 ± 4a 36.3 ± 4a

Mg (mg Kg�1) 102.5 ± 29.1 62.3 ± 6.7 53.6 ± 12.6 11.6 ± 1.9a 10.8 ± 1.9a 12.0 ± 1.1a

P (mg Kg�1) 24.6 ± 8.1 10.1 ± 2.0 11.5 ± 2.2 3.30 ± 0.6a 1.60 ± 0.8a 2.60 ± 0.2a

Al (mg Kg�1) 513 ± 28 650 ± 73 595 ± 35 265 ± 29a 224 ± 42a 333 ± 32a

Fe (mg Kg�1) 85.1 ± 7.3 66.5 ± 9.1 70.5 ± 10.9 12.7 ± 1.7a 7.8 ± 4.0a 19.0 ± 5.9a

Mn (mg Kg�1) 26.8 ± 8.1 11.2 ± 2.1 13.5 ± 3.4 5.80 ± 2.5b 3.60 ± 1.9b 2.70 ± 1.7a

Na (mg Kg�1) 18.9 ± 2.3 10.6 ± 1.9** 14.7 ± 2.5 6.00 ± 0.6a 4.10 ± 0.7*,a 7.90 ± 1.1a

Zn (mg Kg�1) 17.80 ± 4.36 9.40 ± 1.26 7.60 ± 1.04** 2.10 ± 0.69a 2.00 ± 0.24a 1.80 ± 0.28a

Acidity (meq 100 g�1) 9.80 ± 1.10 9.30 ± 1.06 11.10 ± 0.98 4.00 ± 0.28a 3.40 ± 0.64a 4.90 ± 0.56a

CEC (meq) 11.9 ± 0.7 10.8 ± 1.2 12.6 ± 1.3 4.30 ± 0.3a 3.70 ± 0.7a 5.10 ± 0.6a

C : N Ratio 24.7 ± 0.6 26.3 ± 2.3 23.7 ± 1.9 21.0 ± 1.6 20.8 ± 1.6 21.1 ± 1.6

The data displayed are the mean ± SE of five subplots. The superscripts aP � 0.05 and bP � 0.1 denote significant differences between the Org

and Min soil samples irrespective of treatment. *P � 0.1 and **P � 0.05 denote significant differences between the Con and N-amended samples.
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significantly different from the control samples within the

corresponding horizons (Fig. S2). In case of mineral soil,

there was an overlap between LN-Min and HN-Min bacte-

rial communities. Samples from all five subplots within a

treatment plot clustered together and displayed stronger

similarities among their OTUs compared to the subplots

within other treatment plots. This analysis also revealed

significant differences (P < 0.0001) between the Org and

Min soil horizons, irrespective of the treatment. This result

could also be inferred from the length of the Bray–Curtis
distance between the centroids of all of the Org vs. Min

Fig. 1. Tree generated with the pairwise un-weighted UniFrac

distances between the samples showing a sample on each node. Each

tip represents one sample of a total of 30 (three treatments 9 two

soil horizons 9 five subplots per treatment) and is denoted by the

treatment-subplot-soil horizon; all five subplots of each soil type are

represented by a single color. The colored nodes on the left indicate

P values and significance level: red = < 0.001, highly significant;

yellow = (0.001–0.01) significant; green = (0.01–0.05) marginally

significant; and blue (0.05–0.1) suggestive.

Fig. 2. Two-dimensional PCoA plot generated using pairwise

weighted UniFrac distances from the 30 samples.

Table 2. Relationship between the soil chemistry and Bray-Curtis

(Sorenson) distance measures of the log10-transformed total OTU

data (Mantel test)

Soil chemistry

Organic horizon Mineral horizon

Mantel r P value Mantel r P value

pH �0.102 0.320 0.202 0.267

Ca �0.038 0.720 0.176 0.280

P 0.235 0.033** 0.020 0.912

Mn 0.151 0.205 �0.093 0.467

K 0.201 0.091* 0.086 0.622

Zn 0.178 0.098 0.320 0.071*

Na 0.222 0.047 �0.034 0.860

Mg 0.122 0.292 0.050 0.764

Acidity 0.337 0.001** �0.164 0.291

Al 0.155 0.176 0.029 0.843

All 15 samples from each horizon were pooled for these analyses.

The iterations were set to 1000. *P � 0.01 and **P � 0.05 indicate

significant correlations.

Table 3. Effect of N treatment on OTU diversity and richness, as

indicated by phylogenetic diversity (PD) estimates, Chao1 values, and

the observed species

Treatment

PD estimate

mean ± error

Chao1

mean ± error

Observed species

mean ± error

Pooled organic and mineral horizon

Con 93 ± 8 2025 ± 249 1294 ± 132

LN 101 ± 7** 2330 ± 170** 1462 ± 90**

HN 102 ± 8** 2320 ± 271** 1482 ± 150**

Organic

Con-Org 90 ± 8 1974 ± 244 1278 ± 121

LN-Org 96 ± 6* 2207 ± 150** 1415 ± 87**

HN-Org 97 ± 7* 2217 ± 261** 1401 ± 145**

Con-Min 95 ± 8 2076 ± 243 1310 ± 141

LN-Min 106 ± 2** 2452 ± 75** 1508 ± 64**

HN-Min 107 ± 5** 2423 ± 239** 1562 ± 106**

The data depicted are the mean of five subplots for each treatment in

the organic and/or mineral horizons ± error at 97% confidence inter-

vals. These estimates were calculated in QIIME after normalization (rare-

faction) of the data to 11 000 sequences per sample. *P � 0.1 and

**P � 0.05 denote significant differences between the Con and

N-amended samples. A two-sampled t test was conducted in QIIME to

evaluate differences among the samples.
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subplot cloud points (Fig. S2). The permutational MANOVA

results revealed that there was no significant interaction

between the horizon and the treatment. Whereas the hori-

zon explained approximately 31% (P � 0.0001) of the

variation among the samples, the treatment accounted for

< 10.4% (P � 0.002) of the variation.

The Mantel test revealed that there were strong positive

correlations of P, K, and acidity with the ordination

scores in the Org horizon (Table 2). In the Min horizon

soils, only Zn exhibited a significant positive correlation

(Table 2). A strong positive correlation with acidity

indicated it strongly influenced the bacterial communities

in the Org soil samples (Table 2).

Richness indices, such as PD, Chao, and Observed

species, revealed significantly higher values in the

N-amended soils when compared to control soils (P � 0.05)

that indicate greater richness of bacterial taxa in N-

amended soils (Table 3). Alpha rarefaction curves also

showed increasing richness with an increase in the num-

ber of sequences analyzed for the N-amended vs. the con-

trol samples implying higher richness in N-amended soils

(Table 3, Fig. S3).

Unique OTUs

The total number of OTUs that were unique to each treat-

ment (each OTU was counted once, regardless of how

many of the subplots contained a copy) was higher than

the mean OTU number (Table 4). The sequence abun-

dance varied among the OTUs within each soil horizon:

2% of the OTUs unique to each soil horizon contained 48–
52% of the sequences (high abundance OTUs); an addi-

tional 18% of the OTUs accounted for 37–41% of the

sequences (intermediate abundance OTUs); and > 80% of

the OTUs could be classified as low abundance OTUs and

these accounted for only 10–14% of the total sequences

Table 4. The number of mean OTUs and the number of OTUs unique to each treatment for the organic and mineral soil horizons

OTU numbers in the organic horizon

Mean ± SE Unique to Mean ± SE Unique to Mean ± SE Unique to

Phylum Con-Org Con-Org LN-Org LN-Org HN-Org HN-Org

Acidobacteria 290 ± 16 535 357 ± 21* 618 321 ± 18 604

Actinobacteria 126 ± 9 236 129 ± 6 226 139 ± 2 249

Bacteroidetes 7 ± 2 26 6 ± 1 21 4 ± 1 16

Chlamydiae 95 ± 7 282 168 ± 25** 451 129 ± 18** 384

Chloroflexi 0 ± 0 2 1 ± 0 3 1 ± 0 3

Firmicutes 10 ± 3 40 10 ± 2 31 14 ± 7 50

Gemmatimonadetes 6 ± 1 15 7 ± 1 16 6 ± 1 11

Nitrospira 0 ± 0 1 1 ± 0* 1 1 ± 0* 1

Proteobacteria 435 ± 32 1066 582 ± 48* 1362 513 ± 15 1223

TM7 16 ± 4 51 20 ± 3 56 25 ± 1* 68

Verrucomicrobia 118 ± 7 204 130 ± 6 219 131 ± 5 1097

Un-Bacteria 357 ± 28 863 464 ± 41* 1088 472 ± 36** 225

OTU numbers in the mineral horizon

Mean ± SE Unique to Mean ± SE Unique to Mean ± SE Unique to

Phylum Con-Min Con-Min LN-Min LN-Min HN-Min HN-Min

Acidobacteria 285 ± 13 517 326 ± 16 572 322 ± 14* 571

Actinobacteria 99 ± 12b 200 114 ± 13 230 118 ± 6 222

Bacteroidetes 4 ± 1 18 4 ± 1 14 5 ± 1 14

Chlamydiae 114 ± 17 357 170 ± 8** 470 143 ± 22 436

Chloroflexi 3 ± 0a 4 3 ± 0 4 3 ± 1 4

Firmicutes 29 ± 3a 77 30 ± 8 77 20 ± 4 55

Gemmatimonadetes 6 ± 0 10 8 ± 0** 14 7 ± 1 10

Nitrospira 1 ± 0a 2 1 ± 0 3 1 ± 0 2

Proteobacteria 386 ± 42 1042 495 ± 43 1269 451 ± 34 1131

TM7 11 ± 2 39 13 ± 2 47 10 ± 1 40

Verrucomicrobia 109 ± 6 199 126 ± 8 239 120 ± 6* 226

Un-Bacteria 468 ± 30 1073 583 ± 26** 1294 585 ± 30** 1262

Each unique OTU was counted only once for the organic or mineral horizon of each treatment, regardless of how many of the five treatment

subplots contained a copy of the OTU. Un-bacteria denotes unclassified bacteria. aP � 0.05 and bP � 0.1 denote significant differences

between the Org and Min soil samples, irrespective of the treatment. **P � 0.05 and *P � 0.1 denote significant differences between the Con

and N-amended samples.
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(Fig. 3). This group of low abundance OTUs was the most

diverse in terms of the identifiable bacterial taxa across var-

ious phyla (data not shown).

Con-Org and Con-Min contained 3324 and 3543 unique

OTUs, respectively, with approximately 45% of these OTUs

being shared between the two horizons (Fig. 4a). There-

fore, only 4729 unique OTUs were found in the control soil

samples (Org plus Min) across both horizons.

The number of OTUs in the LN (4096) and HN (3937)

samples was greater than in the control (3324) samples

(Fig. 4b). The number of unique OTUs within the Org soils

was 5711 of a total of 11 357 identified from all 15 samples.

For this calculation, each OTU was counted once, regardless

of how many of the 15 samples contained a copy. Similarly,

in the mineral soil horizon, the LN (4238) and HN (3979)

treatments exhibited higher numbers of unique OTUs com-

pared with the control samples (3543) (Fig. 4c). The num-

ber of unique OTUs within the Min soils was 5836 of a

total of 11 760 identified from all 15 samples.

Further examination of the organic and mineral hori-

zon OTU data revealed that among the 5711 total OTUs

unique to the 15 organic samples, 9, 13, and 14% were

found only in the Con-Org, LN-Org, and HN-Org

samples, respectively (Fig. 4b); among the 5836 OTUs

unique to the Min horizon, 9, 14 and 12% were found only

in the Con-Min, LN-Min, and HN-Min samples, respectively

(Fig. 4c). From 28 to 35% of the OTUs were common to all

of the treatments within each horizon, whereas only approxi-

mately 10% were common to the two N-amended soils

within each horizon. Overall, a greater number of OTUs were

common to the N-amended soils (13–14%) than to either

the LN or the HN samples and the control (5–9%) samples

for each horizon (Figs. 4b and 4c). The OTUs that were

unique to each treatment were further processed at the

phylum level, and after the OTUs common among the three

treatments were removed, the net result was the number of

OTUs that were specific to each treatment (Fig. 5a and b).

These data revealed that the number of treatment-specific

OTUs was higher for the N treatments. Thus, the diversity

and the composition of the N-amended soil were higher

compared to the control soil. More details regarding the

unique and shared OTU distributions among the treatments

at the phylum level are shown in Table S2.

Bacterial community composition of untreated
(control) soils of Harvard Forest

Sequence tables were created by counting only those genera

that were represented by 10 or more mean sequences in at

least one soil type of six. The phylum Acidobacteria was

represented by the greatest number of sequences (43–48%)

in both horizons of the control soils at this site (Table 5).

This group was followed in abundance by the Proteobacteria,

Actinobacteria, and Verrucomicrobia, which ranged from 4 to

16% in terms of relative sequence abundance (Table 5). The

phyla Chlamydiae, Firmicutes, Gemmatimonadetes, TM7,

Bacteroidetes, Chloroflexi, and Nitrospira were each contrib-

uted � 1–2% of the total sequences. Although the phylum

Acidobacteria was the most abundant in terms of sequence

number (Table 5), the phylum Proteobacteria was the most

diverse in terms of OTUs (Table 4). Whereas there were

many OTUs corresponding to the Actinobacteria in the

Con-Org samples, the Con-Min samples showed a high

number of OTUs representing the Chloroflexi, Firmicutes,

and Nitrospira (Table 4).

In terms of relative sequence abundance, no significant

differences were observed between the Con-Org and the

Con-Min samples for Acidobacteria, Bacteroidetes, Chlamydiae,

TM7, and Proteobacteria (Table 5). Other noteworthy differ-

ences in terms of the relative sequence abundance at a lower

phylogenetic level are shown in Table S3.

Bacterial communities differed among the
treatments

At the phylum level, significantly more Chlamydiae and

Proteobacteria sequences were observed in the LN-Org

(a)

(b)

Fig. 3. Relationship between the OTUs unique to each treatment and

the percent of the total sequences within a treatment for the (a)

organic and (b) mineral horizons. Each unique OTU was counted only

once, regardless of how many of the five subplots contained a copy.
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samples compared to the control samples (Table 6),

whereas for TM7 and unclassified bacteria sequences were

higher in the HN-Org samples compared to the Con-Org.

No differences with respect to sequence numbers were

observed for the mineral soils at the phylum level. In

terms of OTUs, LN-Org exhibited greater numbers corre-

sponding to Acidobacteria, Chlamydiae, Nitrospira, Proteo-

bacteria, and unclassified bacteria (Table 4). Among the

mineral samples, the phyla Chlamydiae and Gemmatimona-

detes displayed higher numbers of OTUs in the LN-Min

samples. Additionally, Acidobacteria and Verrucomicrobia

OTUs were more abundant in the HN-Min samples,

whereas unclassified bacteria were more abundant in both

types of N-amended Min soil samples (Table 4). To assess

the differences in bacterial community structure between

the control and the N-amended samples (i.e. the mean

OTU and sequence numbers) at lower phylogenetic levels,

analyses were performed at genus level (Table S3, Fig. S4).

The OTUs and sequences corresponding to unclassified

bacteria were more abundant in the N-amended samples

vs. the controls from both horizons (Tables 4 and 5).

Indicator OTUs

Comparison of organic and mineral soil

Indicator species analyses revealed that a total of 176 and 186

OTUs were significant indicators of organic and mineral

horizon, respectively (P � 0.05, Table 6). In phylum

Acidobacteria, specific indicator OTUs belonging to subdi-

visions Gp1, 2, 3 and 13 could be found in each horizon

but those of Gp 4, 5, 6, 7 &10 were present only in mineral

soils (Table S4). Phylum Actinobacteria was represented by

indicator OTUs of genus Sporichthya, Actinospica and

Conexibacter in organic soils. In mineral soils it was repre-

sented mostly by OTUs of unclassified genera of families

Streptomycetaceae and Rubrobacteraceae. While indicator

OTUs of genus Gemmatimonas (phylum Gemmatimonade-

tes) were present in each horizon, presence of OTUs

belonging to Parachlamydia (Chlamydiae) was indicative of

mineral soils. Specific OTUs of Chloroflexi, Firmicutes, and

Nitrospira were indicative of mineral soils. In Proteobacteria

while some indicator OTUs of classes a, d & c were present
in each horizon, OTUs of b-Proteobacteria were indicators

only of mineral soils. In phylum Verrucomicrobia the OTUs

of genera Opitutus and Verrucomicrobium were linked with

organic soils while that for Subdivision 3 and Xiphinemato-

bacteriaceae were present in both horizons. Twice as many

unclassified indicator OTUs were found in mineral horizon

compared to organic.

Comparison of three treatments within each
soil horizon

In organic soils, in phylum Acidobacteria specific indica-

tor OTUs of subdivision Gp1 were present in each of the

three organic soil plots whereas those of Gp2 were pres-

ent only in N-amended soils (Table S5). HN-Org, on the

(a)

(b) (c)

Fig. 4. Venn diagrams showing the

distribution of the operational taxonomic units

(OTUs) that were unique or common to the (a)

Control Organic and Control Mineral soil

horizons; (b) Organic horizon for Con, LN, and

HN treatments; and (c) Mineral horizon for the

three treatments.
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other hand, had indicator OTUs of Gp13 and Gp6 subdi-

visions. Genus Opitutus (Verrucomicrobia) was repre-

sented by indicator species in Con-Org and HN-Org soils

(Table S4). Specific OTUs of genera Actinospica (Actino-

bacteria), Mycobacterium (Actinobacteria), Parachlamydia

(Chlamydiae), Rhabdochlamydia (Chlamydiae), and Bacil-

lus (Firmicutes) were indicators of LN-Org soils. Indicator

OTUs of genus Aquicella (c-Proteobacteria) were found in

LN-Org and HN-Org soils.

In mineral soils, specific indicator OTUs for subdivi-

sions, Gp1 and 3 (Acidobacteria) were present in each of

the three treatments; indicator OTUs of Gp 6 were pres-

ent only in LN-Min soils and for Gp5,10, and 13 were

present only in HN-Min soils (Table S6). Genus Opitutus

(Verrucomicrobia) was represented by specific indicator

species in all three soils. Indicator OTUs representing the

genus Sporichthya (Actinobacteria) were present in LN

and HN-amended mineral soils. Specific OTUs of Nitro-

spira were indicative of LN-Min soils (Table S6). For

more details on indicator species data see the Tables S4

and S5.

Discussion

The present study tested whether N-amended forest soils

had altered bacterial community composition compared

to control soil and that these alterations were specific to

each soil horizon. Data for zero time are not available for

this study because high-throughput analytical tools for

analysis of microbial populations did not exist in 1989. In

addition, none of the groups working at present at Har-

vard Forest have frozen soils for time zero. This has also

been the case for other studies that used similar

approaches to analyze microbial populations in different

environments (Campbell et al., 2010; Shen et al., 2010;

Fierer et al., 2011; Sridevi et al., 2012).

UPGMA tree generated based on the unweighted

UniFrac distances revealed significant differences between

two soil horizons for each of the three treatment plots. This

analysis also revealed that there were differences among the

five subplots within each treatment plot, which can be

ascribed to microsite-dependent heterogeneity in soil

chemistry. The higher number of unique OTUs compared

to the mean number of OTUs found for each treatment

(Table 4) supports this argument. These results are consis-

tent with those of Sridevi et al. (2012), who also observed

microsite variation in soil samples from the Hubbard

Brook Experimental Forest, NH. However, the variability

among the subplots was much lower than the variability

between the treatment plots, as demonstrated by the

weighted PCoA and weighted NMS analyses.

Campbell et al. (2011) reported that in coastal bacterial

populations, a small number of OTUs contained the

majority of sequences, whereas a limited number of

sequences were present in most OTUs. Based on the com-

parison of rRNA activity with the respective OTU fre-

quencies, these authors further concluded that the rare

group of OTUs represented more active bacteria com-

pared to abundant OTUs. In the present study, approxi-

mately 2% of the OTUs contained 50% of the total

sequences in each sample, and 10% of the total sequences

generated 80% of the OTUs. However, no attempt was

made in this study to relate the activity of these OTUs to

their relative frequencies.

The majority (70–80%) of the sequences included in

these data fell into four known bacterial phyla, viz., the

Acidobacteria, Proteobacteria, Actinobacteria, and Verruco-

microbia, all of which are considered to be universally

present in soils (Hugenholtz et al., 1998; Janssen, 2006).
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Fig. 5. The effect of N treatment on the OTU numbers per phylum

for the organic (a) and mineral (b) soil horizons. Each bar represents a

unique set of OTUs that are only present in a particular sample (e.g.

the OTUs present in Con-Org are absent from the N-amended LN-Org

or HN-Org samples), thus indicating the change in diversity and

composition with N amendment. OTUs shared among more than one

treatment are absent from this figure.
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The phylum Acidobacteria was the most abundant in

terms of sequence numbers, followed by the Proteobacteria,

which is in agreement with previous reports on forest

soils across different climatic conditions (Janssen, 2006;

Jones et al., 2009; Nacke et al., 2011). It has been

suggested that soils sharing similar physicochemical char-

acteristics harbor similar bacterial communities, despite

geographic distances (Fierer & Jackson, 2006). According

to Smit et al. (2001), the Acidobacteria to Proteobacteria

ratio of > 1.0 may indicate low nutrient conditions in the

soils of the Harvard Forest. Among the Acidobacteria, 10

subgroups (1, 2, 3, 4, 5, 6, 7, 8, 10 and 13) were detected

out of a total 26 groups identified thus far (Hugenholtz

et al., 1998; Zimmermann et al., 2005; Barns et al., 2007).

Among the Proteobacteria present, the sequences from the

c-proteobacteria class were more abundant than those of

the other three classes.

The bacterial communities in the organic and

the mineral soil horizons are different

Whereas the organic and the mineral horizons of the con-

trol (untreated) soil samples exhibited similar total num-

bers of OTUs, the bacterial community structure within

the two horizons was significantly different as demon-

strated by the weighted NMS and weighted PCoA analy-

ses. Only 25–30% of the total OTUs were specific to each

horizon which indicates that the two horizons harbored

substantially different bacterial taxa despite vertical sepa-

ration of only a few centimeters. This fact was also vali-

dated by indicator species analyses. Differences in the soil

chemistry of the two horizons are likely to be the major

contributors to this variation. Axelrood et al. (2002)

reported major differences in the bacterial composition of

organic and mineral soils from forests in British Colum-

bia, where Actinobacteria dominated the mineral soil in

terms of sequence numbers, and the b-proteobacteria class

dominated organic soil. However, in the present study,

the phylum Acidobacteria was the most abundant in both

horizons in terms of sequence numbers. Differences in

the aboveground plant communities present at these

study sites as well as the different methodologies used

(clonal library sequencing vs. pyrosequencing) may

account for these divergent results. At Harvard Forest,

whereas the diversity (numbers of OTUs) of the Con-Org

samples was greater than that of the Con-Min samples

for Actinobacteria, the reverse was the case for Firmicutes

(Table 4). Twice as many unclassified bacteria were iden-

Table 5. Effect of N treatment on the relative abundance of sequences within bacterial phyla

Phylum

Organic horizon Mineral horizon

Con Low N High N Con Low N High N

Acidobacteria 7369 ± 385 (48%) 9069 ± 1212 8427 ± 521 6757 ± 254 (43.5%) 8020 ± 584 6164 ± 740

Actinobacteria 1453 ± 179 (9.5%) 1517 ± 141 1636 ± 166 696 ± 222a (10.3%) 950 ± 313 671 ± 73

Bacteroidetes 10 ± 3 (0.07%) 8 ± 2 6 ± 1 9 ± 5 (0.06%) 4 ± 1 8 ± 3

Chlamydiae 321 ± 47 (2.1%) 531 ± 102* 451 ± 61 344 ± 73 (2.2%) 531 ± 64* 393 ± 92

Chloroflexi 1 ± 0 (0.01%) 1 ± 1 2 ± 2 10 ± 2a (0.06%) 15 ± 7 11 ± 2

Firmicutes 19 ± 6 (0.1%) 11 ± 2 33 ± 18 92 ± 28a (0.5%) 110 ± 61 47 ± 13

Gemmatimonadetes 31 ± 6 (0.2%) 36 ± 5 32 ± 5 62 ± 21 (0.4%) 78 ± 45 65 ± 16

Nitrospira 0 ± 0 (0%) 2 ± 1 1 ± 1 6 ± 1a (0.04%) 42 ± 15** 16 ± 10

Proteobacteria 2355 ± 355 (15.4%) 3544 ± 335** 3339 ± 278* 2270 ± 679 (14.6%) 2646 ± 358 2274 ± 285

TM7 31 ± 12 (0.2%) 32 ± 7 64 ± 8** 21 ± 4 (0.1%) 18 ± 3 14 ± 2

Verrucomicrobia 1286 ± 95 (8.4%) 1418 ± 175 1827 ± 196** 2105 ± 258a (13.5%) 2153 ± 146 1568 ± 79*

Un-Bacteria 2325 ± 217 (15.2%) 3016 ± 440 3411 ± 246** 3140 ± 285a (20.2%) 4011 ± 693 3761 ± 160

The data depicted are the mean ± SE of five subplots. Un-Bacteria denotes unclassified bacteria. The values in parentheses represent a percent of

a given category within the total number of bacteria; percent data are presented only for the control treatments. This table was created by

counting only those genera that were represented by 10 or more mean sequences in at least one soil-type out of six. aP � 0.05 and bP � 0.1

denote significant differences between the Org and Min soil samples, irrespective of the treatment. *P � 0.1 and **P � 0.05 denote significant

differences between the Con and N-amended samples.

Table 6. Unique indicator OTUs present in each soil type and

treatment. OTUs that were unique to a plot at P � 0.05 are listed

below in this table. For classification of each indicator OTUs at genus

level refer to Tables S3, S4 and S5.

Soil Horizon

Unique indicator Species present in each

soil horizon

Organic 176

Mineral 186

Unique indicator species comparison

among three types of treated soils within

each horizon

Soil Horizon Con LN HN

Organic 27 82 77

Mineral 21 40 59
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tified as indicator OTUs in mineral soil compared to

organic validating prior reports that bacterial taxa of sub-

surface soils are not as well annotated as the surface soils.

Verrucomicrobia are found more often in deeper soil

layers because they show a metabolic preference for low

nutrient availability or low C concentrations (da Rocha

et al., 2010). Fierer et al. (2003) reported a decrease in

soil organic C content with increasing depth. The exis-

tence of a greater number of Verrucomicrobia sequences

in the Con-Min soil samples compared to the Con-Org

samples at Harvard Forest is in accord with the above

findings (Table 1).

The bacterial communities are different in the

control and the N-amended soils

The observation that only 28–35% of the unique OTUs

were common to all three treatments within each soil

horizon points to major rearrangements in the bacterial

community structure associated with N amendment.

Although each of the soil types retained its own unique

bacterial community, the LN and HN samples shared a

greater number of OTUs than either sample shared with

the control samples. The disappearance of some OTUs

and the appearance of a larger number of new ones in

N-amended soils validates the above point of genera

rearrangements in these soils. Indicator species (OTU)

analyses validated these unique OTU observations by

showing the presence of indicator OTUs that were signi-

ficantly associated with a particular treatment. This

observation also emphasizes the important role of N

amendment in shaping the bacterial populations in forest

soils. Similarly, at Hubbard Brook Experimental Forest,

NH, Ca-supplemented soils exhibited a significantly differ-

ent bacterial composition (20%) compared to the compo-

sition of reference watershed soils (Sridevi et al., 2012).

Although the specific physiological functions of the

Acidobacteria in the soil remain unknown, their abun-

dance suggests that this group must play an important

role in soil ecosystem functioning. Acidobacteria tend to

favor soils with low C availability (Fierer et al., 2007).

The dissolved organic C content in the Harvard Forest

soils was low regardless of the N amendments applied

(Magill & Aber, 2000), which might be responsible for

the abundance of this group in soils under all three treat-

ments. The long-term N-fertilization regime also had no

effect on the predominant Gp1 and Gp2 subdivisions

within the Acidobacteria in terms of their relative abun-

dance and diversity at this site. The proportions of the

other subdivisions varied with the applied treatments.

Whereas the Acidobacteria contributed the highest

number of sequences in the N-amended samples, the

Proteobacteria displayed the greatest number of mean and

unique OTUs which implies that the latter group of

organisms may adapt better to changes in the soil chemis-

try. The classes a- and b-Proteobacteria, whose members

were most abundant in the N-amended soils at Harvard

Forest, contain well-known N-fixing and N-transforming

genera (e.g. Bradyrhizobium, Burkholderia, Mesorhizobium,

and Magnetospirillum) as well as methane-oxidizing

genera (e.g. Methylocella) (Dedysh et al., 1998). In fact,

the genus Burkholderia was detected as an indicator spe-

cies in the HN-Min soil. Unlike previous studies that

reported either positive or negative impacts of N fertiliz-

ers on the abundance of methanotrophs (Bodelier et al.,

2000; Mohanty et al., 2006), the present data did not

reveal any change in the numbers of these bacteria. A

preliminary study of changes in ammonia monooxygenase

(amoA) gene restriction fragment length polymorphism

(RFLP) patterns in response to N amendment at Harvard

Forest (Compton et al., 2004) found a higher abundance

of Nitrospira compared to other ammonia-oxidizing bac-

teria in N-amended soils. Quantitative PCR analysis of

amoA genes also revealed higher abundance of Nitrospira

in N-fertilized soils compared to controls (Wertz et al.,

2012). Similarly, in our N-amended soil samples, higher

numbers of Nitrospira sequences were observed, which

indicates a possible increase in nitrification activity.

Genus Nitrospira was detected in the LN-Min as an indi-

cator species.

Nemergut et al. (2008) reported a higher relative

abundance of the Bacteroidetes and the Gemmatimonade-

tes and a lower abundance of the Verrucomicrobia (which

include methane oxidizers) (Dunfield et al., 2007) in

long-term N-treated soils of the alpine tundra. At Har-

vard Forest, the relative abundance of sequences and

unique OTUs for the phylum Verrucomicrobia was higher

in the N-amended soils, whereas there was no major

change in abundances for the Bacteroidetes and Gemmati-

monadetes. Because the two ecosystems possess such

different plant communities, these differing responses to

N amendment are understandable. In addition, the func-

tional diversity among the members within any individual

phylum is typically large; thus, it cannot be expected that

all of the members of a phylum will share common eco-

logical and metabolic characteristics. At Harvard Forest,

specific OTUs of genus Opitutus (Verrucomicrobia) were

detected as indicators of different soil types. This observa-

tion reveals that there were major rearrangements of

species within this genus with N amendments.

Soil chemistry and bacterial composition are

strongly correlated

Whereas reductions in the soil Ca, Mg, and P contents

were observed at Harvard Forest from 1995 to 2000
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(Minocha et al., 2000), the data included in the current

study (from 2009) showed no change in the exchangeable

soil Ca and Mg contents but did reveal a decrease in the

K, Na, Zn, and Mn contents. Previous studies that have

documented the impact of K content on plant growth

and physiology support the conclusion that K plays an

important role in forest primary productivity (Tripler

et al., 2006). The base cation losses in the soil in the

N-amended plots at Harvard Forest have shown to be

positively correlated with foliar nutrient imbalances,

increases in foliar free putrescine (a general stress indica-

tor in plants), growth declines, and increased mortality of

red maple (Aber et al., 1995; Minocha et al., 1997, 2000;

Bauer et al., 2004; Magill et al., 2004). Maple mortality in

the N-amended plots during the past few years and the

increase in litter fall in response to N additions may have

contributed to the observed changes in the soil Ca, Mg,

and P contents in 2009 and related bacterial community

changes. Chemical interactions between plant and bacte-

rial communities have been demonstrated for symbiotic

associations (Bright & Bulgheresi, 2010 and references

therein; Rooney et al., 2010). The positive correlation

between the base cations and the Bray–Curtis (Sorensen)

distances for the bacterial communities of both soil hori-

zons indicates that some of the variance in the bacterial

communities may be caused by the soil chemistry of the

treatment plots. These results further confirmed a strong

correlation between the soil microflora and changes in

soil acidity due to various environmental and anthropo-

genic factors and fertilizer treatments. Major rearrange-

ments in bacterial communities in N-amended soils

without any change in total C and N is an unexpected

finding. The exact sequence of events accompanying or

causing the changes in soil chemistry and the plant and

microflora as well as the ecological and physiological

impacts of these changes following N amendments are,

however, not known at present.

Conclusions

At Harvard Forest, chronic N treatment affected the diver-

sity and the composition of bacterial communities within

organic and mineral soil horizons. N-amended samples

exhibited a greater richness of bacterial taxa compared with

control samples. Whereas about 50% of the total sequences

corresponded to only 2% of the total OTUs, approximately

10% of the total sequences were highly diverse and contrib-

uted up to 80% of the total OTUs. Shifts in the bacterial

communities were obvious at the family and genus levels.

The changes observed in the bacterial community structure

in response to chronic N treatments may be a cumulative

outcome of N-driven soil base cation changes, net changes

in aboveground plant productivity, and changes in fungal

biomass as reported earlier by our and other groups.

Future studies must examine the metabolic functions of

these bacterial populations following changes in response

to chronic N amendment and changes that occur after

short-term N amendment.
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