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a  b  s  t  r  a  c  t

Large-scale  inventories  of  downed  woody  debris  (DWD;  downed  dead  wood  of  a minimum  size)  often
record  decay  status  by  assigning  pieces  to  classes  of decay  according  to  their  visual/structural  attributes
(e.g.,  presence  of  branches,  log  shape,  and  texture  and  color  of  wood).  DWD  decay  classes  are not  only
essential for  estimating  current  DWD  biomass  and  carbon  stocks,  but  may  also  facilitate  the  prediction  of
future  DWD  attributes.  Estimating  temporal  transitions  between  decay  classes  may  provide  a  mechanism
for  projecting  DWD  attributes  in  forest  ecosystems.  To  date, modeling  decay  class transitions  for  individ-
ual DWD  pieces  has  not  been  fully  explored  in this  context.  The  goal  of  this  study  was  to  use  a  repeated
DWD  inventory  across  the eastern  US  to estimate  decay  class  transitions  to  inform  DWD  dynamics  across
this broad  geographic  region.

Using  matched  and  non-matched  DWD  from  the  repeated  inventory,  ordinal  regression  techniques
were  used  to estimate  the  five-year  probability  of  a DWD  piece  remaining  in  the  same  decay  class  or
moving  into  more  advanced  decay  classes.  Models  indicated  that  these  transitions  were  largely  related
to DWD  piece  length  and  climatic  regime,  as  transitions  occurred  more  slowly  for  longer  DWD  pieces
located  in  regions  with  a low  number  of degree  days  (a  climatic  variable  serving  as  a proxy  for  decompo-
sition  potential).  Cumulative  link  mixed  models  allowed  the  estimation  of  forest  type-specific  effects  (i.e.,
random  effects)  on the  DWD  transition  process.  Hardwood  species  transitioned  into  subsequent  decay
classes  more  rapidly  than softwoods.  Model  assessments  indicated  that  the correct  decay  class  observed
after five  years  was  correctly  predicted  for approximately  50–70%  of  observations,  but  was  dependent
on  forest  type  and  initial  decay  class.

Results  differed  depending  on the  models  under  examination.  For  example,  using  the  matched  data,
the  average  number  of  classes  moved  per five  years  was  1.28  ±  0.07  (mean  ± SE) classes  for  decay  class  1
logs  found  in  spruce-fir  forests,  however,  using  the  matched  plus  non-matched  data,  the  average  number

of classes  moved  per  five  years  was 3.51 ±  0.19  for these  same  logs.  These  two  model  sets  (matched
and  matched  plus  non-matched  DWD  pieces)  may  denote  upper  and  lower  bounds  for  DWD  decay  class
transition  rates.  Analyses  presented  herein  provide  an  initial  assessment  of  DWD  decay  across  eastern  US
forests  and  thus  provide  quantitative  tools  that  apply  to emerging  bioenergy  questions  and  associated
DWD  dynamics  research.  Developed  models,  coupled  with  traditional  forest  productivity  simulation
tools,  may  be  used  in  the future  to determine  accurate  estimates  of future  forest  C stocks.
. Introduction
Forest ecosystems and their management have become a cen-
ral focus of global strategies aimed at reducing greenhouse gas
GHG) emissions and possibly mitigating future climate change
ffects (Ryan et al., 2010; Malmsheimer et al., 2011; McKinley et al.,
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2011). Forests may  reduce GHG emissions by sequestrating carbon
(C) through afforestation, wood substitution in building materi-
als, and substitution of forest-derived bioenergy for fossil fuels
(Malmsheimer et al., 2008; Malmsheimer et al., 2011). In contrast,
forests may  contribute to GHG emissions through deforestation
and/or management activities that inadvertently promote reduced
C storage (Ryan et al., 2010). Given the complex pathways of C

emissions/sequestration associated with forest ecosystems, there
are substantial knowledge gaps regarding C implications of forest
management activities (Malmsheimer et al., 2011; McKinley et al.,
2011).
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In particular, the fate of downed woody debris (DWD; downed
ead wood of a minimum size) has emerged as a knowledge gap
ampering our ability to fully evaluate temporal changes in forest C
ools (Birdsey et al., 2006) and implications of expanded bioenergy
roduction from harvest residues (MCCS, 2010; Lippke et al., 2011).
ince DWD  C stocks represent a balance between accretion (e.g.,
ree mortality) and depletion (e.g., combustion; decay), the DWD

 pool may  appear relatively stable over long time periods. Exam-
les here might include forests with no disturbances and contain
lowly decaying DWD  pieces. In contrast, some forests may  expe-
ience dramatic changes in DWD  stocks over very short periods
f time. Examples here include forests that see rapid DWD  inputs
e.g., combustion; harvest) or losses (e.g., biomass harvest; DWD
ndergoing rapid decay). Residence time, defined as the duration
hat a DWD  piece remains in a given decay class, is an important
spect of forest C stock dynamics as it reflects respiration and C flux
ates from DWD  and measures losses from the DWD  biomass and C
ools. Despite its importance, limited information exists on DWD
ynamics for most forest types (Harmon et al., 2011a).  As a result,
uantifying the fate of these DWD  pieces through time has emerged
s a substantial knowledge gap associated with deadwood ecology
nd C accounting.

A decay class matrix model, also termed the “stage-based”
odel, has been used to estimate the time it takes for a DWD

iece to transition into subsequent decay classes or to leave
he DWD  pool (Kruys et al., 2002; Aakala, 2010, 2011). How-
ver, there are two limitations of using the stage-based approach
or quantifying DWD  residence at large spatial scales. First, time
ince death for DWD  pieces is often obtained through detailed
endrochronological analyses. Although this provides a compre-
ensive assessment of individual log dynamics, substantial time
nd effort would be required to collect such detailed information
s part of large-scale forest inventories or in ecosystems in which
ccurate dendrochronological data across tree species cannot be
btained. This challenge is reflected in the nature of previous stud-
es that have modeled individual log dynamics, as they have been
ased on data collected from a limited number of sites and a few
elect species. As examples, Aakala (2010) collected data on DWD
ieces of a single species at three locations, while Kruys et al. (2002)
ampled from 21 stands, but collected data only from one species
ound in a specific stand type. Second, these models often rely on
ite- and species-specific mean residence times of DWD  in each
ecay class. These variables are likely absent from large-scale DWD
ssessments, such as national forest inventories, which favor field
rotocols covering a wide range of species, ecosystems, and geo-
raphic scales.

Ordinal regression techniques have become an attractive
ethod for modeling deadwood dynamics through their ability to

ncorporate the ordered nature of deadwood in various stages of
ecay (Bater et al., 2009; Eskelson et al., 2012; Russell et al., 2012).
o be effective for integration into life cycle assessments and quan-
ifying forest C dynamics across wide geographic regions, models of
WD  dynamics would gain from incorporation of large-scale for-
st inventory data from remeasured permanent sample plots that
mploy a hierarchy of information related to DWD  decay. This hier-
rchy might range from the forest type and climate conditions (i.e.,
orest-level), to the DWD  piece attributes (log-level).

As the monitoring of downed deadwood across the US has
een conducted for over a decade (Woodall and Monleon, 2008),

 DWD  piece matching algorithm (individual DWD  pieces from a
ubsequent inventory were matched with a previous inventory)
as recently developed to utilize data collected from a national
orest inventory to inform DWD  dynamics (Woodall et al., 2012).
his algorithm resulted in remeasurement of a series of permanent
ample plots across the eastern US, presenting a unique dataset to
uantify DWD  decay class transitions. Aside from the traditional
Fig. 1. Approximate locations of inventory plots across eastern US where downed
woody debris pieces were assessed, 2002–2010.

years since death and residence time variables (e.g., Kruys et al.,
2002; Aakala, 2010), DWD  decay rates have been modeled in rela-
tion to climate and/or geographic locale (Yin, 1999; Mackensen
et al., 2003; Radtke et al., 2009; Zell et al., 2009), DWD  size
(Mackensen et al., 2003), and species (Zell et al., 2009). The question
of which of these and other variables influence DWD  decay class
transitions for forests across the eastern US remains unanswered.

The primary goal of this study was to quantify DWD  decay class
transitions across forests in the eastern US for the purpose of pro-
jecting future DWD  biomass and C dynamics. Specific objectives
were to: (1) analyze a dataset of matched and non-matched DWD
pieces from a repeated DWD  inventory to determine the variability
in DWD  attributes across eastern US forests, (2) develop and assess
a DWD  decay class transition model that can be applied to varying
climatic conditions, forest types, and species groups, and (3) apply
the transition model to estimate DWD  residence times in eastern
US forests.

2. Methods

2.1. Study area

Forests of the eastern US are diverse, ranging from hemlock-
white pine-northern hardwood (north), oak-hickory (west), and
southern pine forests (south and east) (Braun, 1950). The study
area ranged eastward from the state of Minnesota to Maine in
the north to Louisiana and Georgia in the south, spanning 18◦ of
latitude and 29◦ of longitude (Fig. 1). Mean annual temperatures
range from 1.4 to 19.8 ◦C and precipitation from 55 to 201 cm
(Table 1). Assignment of forest types in the USDA Forest Service’s
Forest Inventory and Analysis (FIA) program was developed using
historical FIA data, forest type lists obtained from the Society of
American Foresters, and FIA typing algorithms (Woudenberg et al.,
2010). Seventy-five forest types were identified that represented

14 broader forest type groups. Forest types with the largest num-
ber of DWD  observations were observed in the sugar maple-yellow
birch-beech, white oak-red oak-hickory, and aspen types (n = 691,
502, and 212, respectively).
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Table 1
Summary statistics for climatic conditions of inventory plots across eastern US where downed woody debris pieces were assessed.

Scale Variablea Mean SD Min Max

Hardwoods
Forest type n = 68

Plotb

n = 1261
MAT  (◦C) 8.6 3.9 1.4 19.8
MAP  (cm) 104.4 21.0 55.4 200.5
DD5  (>5 ◦C) 2491.6 797.4 1104.0 5415.0

Softwoods
Forest type n = 62

Plotb

n = 592
MAT  (◦C) 7.4 4.9 1.4 19.8
MAP  (cm) 105.3 22.1 62.4 185.1
DD5  (>5 ◦C) 2304.3 1018.9 1104.0 5415.0
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a Variables are mean annual temperature (MAT), mean annual precipitation (MA
b Climate data obtained from USDA Forest Service (2012).

.2. Data

The FIA program is responsible for inventorying forests of the US,
ncluding both standing trees and dead wood on permanent sam-
le plots established across the US using a three phase inventory
Bechtold and Patterson, 2005). During the inventory’s first phase,
ample plot locations are established at an intensity of approxi-
ately 1 plot per 2400 ha. If the plot lies partially or wholly within

 forested area, field personnel visit the site and establish a second
hase inventory plot. These plots consist of four 7.32-m (24.0-ft)
xed radius subplots for a total plot area of approximately 0.07 ha
here standing tree and site attributes are measured (Fig. 2).

During FIA’s third phase, a subset of plots (approximately
ne of every 16 phase two plots in this study) is sampled for
owned woody materials including DWD. Downed woody pieces
re defined as downed woody debris in forested conditions with a

iameter greater than 7.62 cm (3.0 in.) along a length of at least
.91 m (3.0 ft) and a lean angle greater than 45◦ from vertical
Woodall and Monleon, 2008). Dead woody pieces with a lean angle
ess than 45◦ from vertical are considered standing dead trees (i.e.,

able 2
owned woody debris decay class definitions.

Decay class Observed in Structural integrity/description Texture of rott
portions

1 Field Sound, freshly fallen, intact logs Intact, no rot; 

stem decay ab

2  Field Sound Mostly intact; 

partly soft (sta
decay) but can
pulled apart by

3  Field Heartwood sound; piece supports its
own weight

Hard, large pie
sapwood can b
apart by hand 

sapwood absen

4 Field Heartwood rotten; piece does not
support its own  weight, but maintains
its shape

Soft, small bloc
pieces; a meta
be pushed into
heartwood

5  Field None, piece no longer maintains its
shape, it spreads out on ground

Soft; powdery
dry

5+ Office Piece is non-matched OR
non-detectable, IF it was observed at
an initial measurement

– 
 number of degree days (DD5).

snags) and were not included in this study. DWD  pieces are sam-
pled on each of three 7.32-m horizontal distance transects radiating
from each FIA subplot center at azimuths of 30, 150, and 270◦,
totaling 87.8 m for a fully forested inventory plot. Data collected
for every DWD  piece include location information (i.e., plot, sub-
plot, and transect number; horizontal distance along a sampling
transect from subplot center to DWD  location) and individual piece
attributes (transect diameter, small-end diameter, large-end diam-
eter, decay class [DC], length, and species). Transect diameter is
the diameter of a DWD  piece measured perpendicular to its cen-
ter longitudinal axis at the point of intersection with a sampling
transect. Length is defined as the total length of the DWD  piece
between the small- and large-end diameter measurements. Decay
class is a subjective determination of the amount of decay present
in an individual DWD  piece summarized across its entirety. A DC of
one is the least decayed (freshly fallen log), while a DC of five is an

extremely decayed log (Sollins, 1982; Waddell, 2002; Harmon et al.,
2008) (Table 2). The species of each fallen log is identified through
determination of species-specific bark, branching, bud, and wood
composition attributes. For DC5 pieces, species is not identified and

en Color of wood Invading roots Branches and twigs

conks of
sent

Original Absent If branches are present,
fine twigs are still
attached and have tight
bark

sapwood
rting to
not be

 hand

Original Absent If branches are present,
many fine twigs are
gone and remaining
fine twigs have peeling
bark

ces;
e pulled
or
t

Reddish-brown or
original

Sapwood only Branch stubs will not
pull out

ky
l pin can

Reddish or light brown Throughout Branch stubs pull out

 when Red-brown to dark
brown

Throughout Branch stubs and pitch
pockets have usually
rotted down

– – –
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C2 =
�DC1

 DC

 DC

measured at T1, were used to estimate the DWD  DC transitions
ig. 2. Plot-level sample design for the USDA Forest Service Forest Inventory and
nalysis monitoring of downed woody debris, 2002–2010.

nd diameters are not measured to gain field efficiency. All remea-
ured FIA plots in the eastern US where DWD  was measured were
ncluded in this study (Fig. 1). Plots were initially measured in 2002
r soon thereafter, then were remeasured on an average of 5 years
ater (Woodall et al., 2012). The final remeasurements occurred in
010. Nearly 10,700 DWD  pieces were measured at time one (T1)
nd over 11,000 DWD  pieces measured at time two  (T2). For further
etails regarding FIA’s inventory, see Woodall and Monleon (2008)
nd Woodall et al. (2010).

.3. Estimating matched DWD  pieces

A matching algorithm was used in this study to match DWD
ieces sampled along FIA transects at T1 with probable DWD  pieces

ampled along the same transect at T2 (Woodall et al., 2012). In
hort, the algorithm consisted of three steps. First, the plot, sub-
lot, and transect number were aligned in an attempt to relocate
ieces measured at T1 and T2. Second, individual piece metrics (e.g.,

arge-end diameter and decay class) were ranked on a scale from
deal- to no-match. In this approach, ideal matches were defined
s DWD  pieces at T2 that were not only in the same spatial loca-
ion as T1, but also ideally matched the individual metrics of T1
ieces. Third, a scoring index of DWD  attributes was  developed
hat acknowledged inherent decay class and measurement errors
ntrinsic with such a large-scale inventory (Westfall and Woodall,
007). This index ranked individual DWD  piece metrics as ideal
score = 1), potential (score = 0.5), or non-matched (score = 0). The
roduct of these scores resulted in the scoring index. For most for-
st type groups, this study’s algorithm matched between 20% and

P(k = DC1) = �DC1 = �1

P(k = DC1 or DC2) = �DC1 + �D

P(k = DC1 or DC2 or DC3) = 

P(k = DC1 or DC2 or DC3 or

P(k = DC1 or DC2 or DC3 or
0% of DWD  pieces between inventories. In addition, the matching
ndex provided an objective method for selecting one match from

 list of “one to many” DWD  matches.
odelling 251 (2013) 22– 31 25

Hereafter, we  define the collection of the matched DWD  pieces
as the “matched data” (M), the collection of DWD  pieces mea-
sured initially which failed to be matched with remeasured pieces
as the “non-matched data” (NM), and both datasets combined as
the “matched plus non-matched data” (M + NM). Datasets were
comprised of 3579 M and 10,837 M + NM pieces. The proportion
of hardwood species was  0.65 and 0.60 for the M and M + NM
data respectively. For hardwood species observed at T1 for the
M + NM data, mean large-end diameter and length for DWD  pieces
was 18.3 ± 8.8 cm (mean ± SD) and 5.7 ± 5.1 m,  respectively. For
softwoods these same values were 18.5 ± 8.8 cm and 6.3 ± 5.5 m,
respectively. Modeling efforts employed data from 1095 and 1516
FIA plots for the M and M + NM datasets, respectively.

2.4. Modeling DWD  decay class transitions

Stage-based matrix models developed by Kruys et al. (2002)
predict the five-year probability of deadwood advancing from one
decay class to another. Using this approach, DWD  pieces in DC
i can either (1) remain in the same class i, (2) move to DC i + 1,
or (3) move to DC i + 2. In analyses that use either known (e.g.,
Kruys et al., 2002; Aakala, 2011) or estimated time since death (e.g.,
Russell and Weiskittel, 2012), calculation of the mean residence
time that a DWD  piece remains in a given DC is a key attribute
of the stage-based model. Hence, calculation of mean residence
time is straightforward in these approaches because the number
of years since death is known. In the FIA data, however, year of
death for DWD  pieces is not determined. Hence, we  sought a mod-
eling approach that estimates DWD  DC transition independent of
residence time.

Cumulative link models (CLMs) are a type of ordinal regression
model in which response variables are considered categorical or
ordered (Agresti, 2007). First, we  considered the M dataset, where
the DC was  noted in any of the k = 5 decay class codes for each DWD
piece i. In the cumulative link model, the probability of DWDi mov-
ing through each of the successive k decay classes (DC1, DC2, DC3,
DC4, DC5, respectively) was modeled as cumulative probabilities
(�k), such that:

 �2

+ �DC2 + �DC3 = �3

4) = �DC1 + �DC2 + �DC3 + �DC4 = �4

4 or DC5) = �DC1 + �DC2 + �DC3 + �DC4 + �DC5 = �5

(1)

Cumulative probabilities were then estimated by:

logit(�ik) = �k − xT
i  ̌ + εi (2)

where �k is the intercept term for DC k (also termed a threshold
or cut-point), xi is a vector of independent variables for the ith
DWD observation,  ̌ is the corresponding set of parameters to be
estimated, and εi ∼ N(0,�2) is the random parameter.

To examine the extent to which decay class transitions were
influenced by a host of variables, thirty-year (1961–1990) climate
data were obtained by specifying latitude, longitude, and eleva-
tion of each FIA plot location to a spline surface model developed
from climate station data across forests of North America (Rehfeldt,
2006; USFS, 2012). As a measure of decomposition potential across
the study plots, the number of degree days greater than 5 ◦C (DD5),
coupled with the length of the DWD  piece (LEN; m)  and DC as
for the M data. Incorporating additional climate variables into the
modeling framework (e.g., growing season precipitation, length
of frost-free period, mean annual temperature/precipitation) and
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arious measures of DWD  piece size (e.g., large-end diameter, com-
ined variable of large-end diameter squared multiplied by length)
id not reduce Akaike’s information criteria and log-likelihood
alues. The mixed CLM model was parameterized to incorporate
ariability that may  be attributed to the FIA forest type (ForType)
n which the DWD  piece resides. Hence, the final model fitted to
he M data was:

ogit(�ikj) = �k − ˇ1DD5 − ˇ2LEN − u(ForTypej) (3)

here parameters were fitted using maximum likelihood with
he Laplace approximation (Azevedo-Filho and Shachter, 1994).
he random effect u(ForTypej) was specified to represent forest
ype-specific effects on the transition process and is assumed to
e random and independent and identically distributed such that
(ForTypej)∼N(0, �2

j
). Likelihood ratio tests concluded that incor-

orating forest type as a random effect was significant and thus
ppropriate to use in the model built from the M data. To lend some
pecificity to species groups, model parameters for hardwoods and
oftwoods were estimated separately. Estimated random effects
ere graphed against key physiographic variables such as latitude,

ongitude, elevation, slope and aspect (each of which was  com-
uted as the mean value within each forest type) to identify factors
etermining DC transitions.

For the M + NM data, alternative strategies were needed to
odel DWD  DC transition. Of considerable importance was the

ate of the NM pieces, which made up a considerable amount of
bservations depending on forest type group (e.g., 84% for the
ak/gum/cypress forest type group; Woodall et al., 2012). For DWD
ieces that were not matched via the algorithm, we employed an
ffice-assigned DC for the T2 measurement that followed DC5. This
lass, termed DC5+, was defined as a DWD  piece that was  mea-
ured at T1, but was either non-matched or non-detectable when
he FIA plot was revisited at T2 (Table 2). Although a piece assigned

 DC5+ may  have undergone a multitude of pathways, including (1)
omplete decomposition, (2) fragmenting in length and now being
elow the minimum FIA size threshold, or (3) being measured with
rror such that they did not pass through the matching algorithm,
he NM data likely provide insight into DWD  DC transitions that

ay  not be observed when analyzing the M data solely.
For modeling the M + NM data, the introduction of DC5+ warr-

nted a sixth categorical variable into which a DWD  piece could
ransition. Hence, Eq. (1) resulted in:

(k = DC1 or DC2 or . . . or DC5+)

= �DC1 + �DC2 + · · · + �DC5+ = �5+ (4)

o reflect the additional DC5+ category. The M + NM data also
equired a change in how species groups were handled. As the
IA program does not identify the species for DC5 pieces and such
ieces were more common in the M + NM data (14% of all obser-
ations) compared to the M data (2%), an indicator variable I was
sed to represent a species group:

IHW = 1 if hardwood,  0 otherwise;

ISW = 1 if softwood,  0 otherwise;

INO-ID = 1 if non-identified,  0 otherwise

(5)

 mixed CLM model was initially parameterized to the M + NM data
similar to Eq. (3)),  however, likelihood ratio tests concluded that
ncorporating forest type as a random effect was insignificant and
hus, we excluded it from the final model, expressed as:
ogit(�ik) = �k − ϕ1DD5 − ϕ2LEN − ϕ3IHW − ϕ4ISW (6)

here �k is the intercept term for DC k (k = 1, 2, 3, 4, 5, 5+), ϕ1–ϕ4 are
arameters estimated with the CLM model, and all other variables
re as previously defined.
odelling 251 (2013) 22– 31

We  present models built on the M and M + NM data to repre-
sent lower and upper bound estimates, respectively, of DWD  DC
transition. Models built with the M + NM data as opposed to the M
data alone likely provide a more rapid transition of DC due to the
large amount of DWD  pieces that were coded as DC5+. As men-
tioned above, the NM pieces may  have decomposed completely or
to the point their size attributes fell below measurement thresh-
olds. In contrast, DC predicted using models designed with the M
data are likely to occur at slower transition rates due to (1) the reli-
ability in matching subsequent measurements of individual pieces,
(2) the supposition that these DWD  pieces were not fully decom-
posed, and (3) the absence of DC5+ pieces. The ‘ordinal’ package
in R (Christensen, 2012) was  used for fitting the models described
here.

2.5. Analyzing model performance

To examine the performance of the developed models, Eqs.
(3) and (6) were applied to the M and M + NM datasets, respec-
tively. In this approach, the five-year probability of a DWD  piece
remaining in the same DC or advancing into subsequent DCs was
predicted using each respective model. We  considered the most
likely DC that a DWD  piece would be observed in at T2 as the
DC displaying the highest predicted probability. The proportion
of predictions in which the model correctly predicted the DC  at
T2 was  computed, as well as the proportion of predictions in
which the model correctly predicted transitions to within one
DC.

To determine the transition rates of DWD  pieces, a random num-
ber (0,1) from a uniform distribution was  drawn for each DWD
piece. If the random number was  less than or equal to the pre-
dicted probability of remaining in the same DC, it remained in the
same class (i.e., the number of decay classes moved per five years
was 0). If the random number fell between the predicted probabil-
ity of remaining in the same DC and the cumulative probability of
remaining in the same DC or advancing one DC, it moved one class.
This process was applied iteratively through all classes to calcu-
late a five-year probability of a DWD  piece moving to each stage of
decay. The mean number of classes moved per five years was cal-
culated by DC for each species group, length size class, and forest
type.

3. Results

3.1. Factors influencing DWD  decay class transition

Model results suggest that DWD  in climates with a greater
number of degree days transition more rapidly than their low
degree day counterparts (Table 3). To illustrate this effect, con-
sider a hardwood DWD  piece in two different climates: the 10th
and 90th quantiles of degree days observed in the M data. At
these respective quantiles, the cumulative probability that a DC1
piece would remain in DC1 or transition to DC2 in five years
was 0.364 and 0.250, respectively (Table 4). Softwoods were pre-
dicted to transition at a slightly lower rate than hardwoods for
a fixed DWD  piece length (e.g., at a low number of degree days,
softwoods would remain in DC1 with a 0.053 probability com-
pared to a 0.017 probability for hardwoods). Longer DWD  pieces
would transition into subsequent decay classes at a lower rate
than shorter pieces, as indicated by the significant negative term

in Eqs. (3) and (6).  Random effects from the mixed models (Eq.
(3)) exhibited no correlation with key physiographic features of
the inventory plot including latitude, longitude, slope, aspect, or
elevation.
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Table  3
Parameter estimates (standard errors in parentheses) for ordinal regression models predicting downed woody debris decay class transitions for forests in the eastern US,
separated by hardwoods and softwoods.

Parametera Estimate Threshold Estimate

Matched datab

Hardwoods
�2 0.346 (0.157) 1|2 −3.739 (0.361)
�3 1.887 (0.156) 2|3 −0.213 (0.243)
�4 5.132 (0.253) 3|4 3.213 (0.258)
DD5  2.995e−4 (7.40e−5) 4|5 7.607 (0.338)
LEN  −2.464e−2 (8.62e−3)

Softwoods
�2 1.583 (0.295) 1|2 −2.637 (0.532)
�3 3.733 (0.313) 2|3 1.008 (0.445)
�4 7.793 (0.452) 3|4 4.940 (0.465)
DD5 2.928e−4 (1.34e−4) 4|5 10.075 (0.583)
LEN  −2.696e−2 (1.18e−2)

Matched + non-matched datac

All species
�2 0.0520 (0.0855) 1|2 −7.376 (0.272)
�3 0.329 (0.0809) 2|3 −4.189 (0.175)
�4 1.547 (0.0933) 3|4 −2.206 (0.170)
�5 2.042 (0.345) 4|5 −1.635 (0.169)
DD5 3.122e−4  (2.58e−5) 5|5+ −1.593 (0.169)
LEN  −6.289e−2 (4.17e−3)
IHW −1.896 (0.135)
ISW −1.212 (0.138)
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a Variables: Number of growing degree days > 5 ◦C (DD5); length of DWD  piece in
b Model: logit(� ikj) = �k − ˇ1DD5 − ˇ2LEN − u(ForTypej); see supplementary mate
c Model: logit(� ik) = �k − ϕ1DD5 − ϕ2LEN − ϕ3IHW − ϕ4ISW.

.2. DWD  model performance

Model performance depended on the forest type group of
nterest and initial decay class. Averaged across all forest types, the
roportion of softwood observations in which the model correctly
redicted the DC at T2 was 0.54 and 0.62 for the M and M + NM
odels, respectively. The performance of the models for hardwood

bservations was slightly better, as this proportion was  0.61 and
.65 for the M and M + NM models, respectively. For the M data,
early all observations were predicted to within ±1 DC (≥0.96
f all observations), however, for the M + NM data, predictions

ere only improved by 4 and 1% for hardwoods and softwoods,

espectively, after comparing predictions that correctly predicted
he DC at T2 to those that predicted DC to within ±1  DC. When
nalyzed within initial DCs, the proportion of observations that

able 4
xample of downed woody debris decay class transitions using the average piece length a
ardwoods and softwoods.

Hardwoods

Degree days = 1638; length = 5.8 m 

To class 

1 2 3 4 5 

From
class

1 0.017 0.347 0.583 0.053 0.001
2  0.288 0.638 0.074 0.001 

3  0.727 0.269 0.005 

4 0.894  0.106 

5  1 

Softwoods

Degree days = 1423; length = 6.1 m Deg

To class

1 2 3 4 5 

From
class

1 0.053 0.628 0.311 0.009 0 Fro
cla2  0.304 0.653 0.043 0 

3  0.722 0.276 0.002 

4 0.884  0.116 

5  1 
N); indicator variable for hardwood (IHW) or softwood (ISW) species.
r predicted random effects for uj term for forest type.

correctly predicted DC at T2 ranged from 0.42 to 0.64 and from
0.53 to 0.65 for the M and M + NM models, respectively (Table 5).

For DC1 pieces in the M data, the average number of classes
moved per five years was  as low as 1.28 ± 0.07 (mean ± SE) classes
for spruce-fir forests and as high as 1.95 ± 0.11 classes for loblolly-
shortleaf pine forests. In contrast, for DC1 pieces in the M + NM data,
the average number of classes moved per five years was as low as
3.37 ± 0.17 classes for aspen-birch forests and as high as 4.31 ± 0.19
classes for white-red-jack pine forests. For the M data, similar mini-
mum and maximum values observed by forest type were predicted
for DC3 pieces. However, for the M + NM data, the average num-

ber of classes moved per five years for DC3 pieces was as low as
1.62 ± 0.07 classes for aspen-birch forests and as high as 2.44 ± 0.09
classes for loblolly-shortleaf pine forests (Fig. 3). For both the M
and M + NM data, there was little difference between the average

nd the 10th and 90th percentile degree days for the matched dataset, separated by

Degree days = 3438; length = 5.8 m

To class

1 2 3 4 5

From
class

1 0.010 0.240 0.661 0.088 0.001
2 0.191 0.688 0.120 0.002
3 0.608 0.384 0.008
4 0.830 0.170
5 1

ree days = 3520; length = 6.1 m

To class

1 2 3 4 5

m
ss

1 0.029 0.506 0.448 0.017 0
2 0.191 0.732 0.076 0
3 0.584 0.411 0.004
4 0.805 0.195
5 1
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Table 5
Evaluations of decay class transition models by forest type group and initial decay class for downed woody debris pieces eastern US forests (n is the number of observations,
DC  is the proportion of observations for which the model predicted the correct decay class, and DC ± 1 is the proportion of observations for which the model predicted the
correct  decay class to within one class).

Matched Matched + non-matched

Hardwoods Softwoods Hardwoods Softwoods

n DC DC ± 1 n DC DC ± 1 n DC DC ± 1 n DC DC ± 1

Forest type
Aspen/birch 211 0.58 0.99 119 0.58 0.98 583 0.57 0.61 317 0.61 0.62
Elm/ash/cottonwood 112 0.61 1.00 24 0.67 0.96 366 0.67 0.70 60 0.60 0.62
Loblolly/shortleaf pine 8 0.88 1.00 58 0.60 0.97 61 0.87 0.87 228 0.71 0.75
Maple/birch/beech 723 0.56 0.98 209 0.56 0.99 1893 0.57 0.61 447 0.51 0.52
Oak/gum/cypress 23 0.65 1.00 10 0.30 1.00 123 0.82 0.82 57 0.82 0.82
Oak/hickory 1066 0.57 0.98 149 0.52 0.99 2869 0.61 0.64 385 0.62 0.63
Oak/pine 59 0.53 0.97 101 0.52 0.96 207 0.67 0.69 255 0.60 0.62
Spruce/fir 55 0.40 0.98 379 0.54 0.99 154 0.47 0.56 855 0.53 0.53
White/red/jack pine 31 0.68 1.00 83 0.53 1.00 84 0.64 0.68 187 0.55 0.55

Initial  decay class
1 66 0.56 0.98 64 0.55 0.97 598 0.55 0.57 154 0.57 0.57
2  284 0.57 0.98 277 0.56 0.98 1603 0.62 0.64 599 0.53 0.53
3  500 0.59 0.98 495 0.64 0.99 2735 0.60 0.62 1189 0.57 0.58
4  310 0.52 1.00 309 0.42 1.00 1507 0.64 0.71 908 0.65 0.67
5  – – – – – – 13 0.00 0.62 26 0.00 0.08

Fig. 3. Mean number of decay class moved per 5 years (with standard errors) by initial decay class for matched (M)  and matched plus non-matched (M + NM)  models
predicting downed woody debris decay class transitions by forest type group.
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umber of classes moved per five years between long (DWD piece
ength ≥ mean DWD  length) and short (DWD piece length < mean
WD  length) DWD  pieces when separated by species group.

. Discussion

Our DC transition models can be used to quantify the degree
o which DWD  transitions from one class to successive classes.
iven the importance that DC plays in estimating the biomass
nd C content of deadwood (Harmon et al., 2011b),  understand-
ng the probabilities of transition between successive decay classes
s crucial for modeling temporal changes in DWD  biomass and

 stocks. Using a dataset compiled from a large-scale repeated
five-year time step) DWD  inventory of matched and non-matched
WD pieces, DC transition models were developed that can be
pplied across eastern US forests. As the selection of matched DWD
ieces provided some level of subjectivity and not all pieces were
atched (up to 40% depending on forest type group; Woodall

t al., 2012), the M model (Eq. (3))  may  provide a lower-bound
e.g., “conservative” estimate) of DWD  DC transition. Conversely,
s non-matched pieces may  have decayed after five years to the
oint that they were non-detectable, or may  have degraded to the
oint that they fell below the sampling thresholds (e.g., diame-
er < 7.62 cm;  length < 0.91 m),  the M + NM model (Eq. (6)) could
rovide an upper-bound (e.g., “liberal” estimate) of DWD  DC transi-
ion. Methodologies developed here could be used to inform DWD
ynamics in areas such as life cycle assessments, forest fuel-load
eductions through time, and ecological simulation models. Which
f these estimates (i.e., upper and lower bound) is used for exam-
ning DWD  dynamics will depend largely on the questions being
sked. For example, estimates derived from the M model may  be
ore suitable for informing questions related to DWD  decay and

esidence time given their reliance on resampled pieces, whereas
 + NM models may  better describe changes in the abundance of
WD  in different decay classes given their linkage to processes

ncluding fragmentation and rapid decay. The modeling tools devel-
ped here would benefit from a comparison to complementary
tudies, particularly those that monitor individual DWD  pieces
hrough time and employ methods that ensure relocation of DWD
ieces.

As discussed by Radtke et al. (2004),  there may  be a large number
f factors influencing DWD  decay in forests, hence, parsimonious
WD  modeling efforts (as displayed here) might be required. This
nalysis indicates that the five-year probability of a DWD  piece
dvancing to subsequent decay classes is related to forest type (i.e.,
eneral species composition), degree days, DWD  piece length, and
he piece’s initial decay class. This hierarchy of information per-

its quantification of decay class transitions for any DWD  piece
cross a wide geographic range. Similar to other studies (Yin, 1999;
ackensen et al., 2003; Radtke et al., 2009; Zell et al., 2009), this

nalysis found climate variables (i.e., degree days) to be useful
n predicting DWD  decay. Traditional stage-based methods (e.g.,
ruys et al., 2002; Aakala, 2010) have not tested climate as a predic-

or of DWD  decay class transitions, perhaps because those studies
ere conducted in a limited geographical area. Random effects

llowed for specificity of differences in DC transitions across the
arious forest types found throughout the eastern US; however,
hese values were not correlated with key physiographic features of
lot locations and were not needed in modeling the M + NM dataset.
ttractively, this finding lends support to using the developed mod-
ls throughout the physiographic regions studied. Conversely, a

ore thorough investigation of this random variation might be

ttributed to more site-specific factors not examined here, such as
he resident wood-decay fungal community, silvicultural regime or
isturbance patterns common to a given forest type.
odelling 251 (2013) 22– 31 29

The number of growing degree days reflects the accumulation
of heat energy and has seen widespread use throughout the agri-
cultural sciences (McMaster and Wilhelm, 1997). There has been
some use of degree days throughout the forest science literature,
but most analyses have focused on its relationship with forest site
productivity (e.g., Monserud et al., 2006; Crookston et al., 2010;
Weiskittel et al., 2011). To our knowledge, degree days have yet to
be used for as a surrogate for decomposition potential in ecological
simulation tools. The advantages for including degree days in these
kinds of models are that it displays wide variability when exam-
ining large spatial scales and can serve as a proxy for both growth
and decomposition potential.

Although several studies have found that log diameter influ-
ences the decay rate of DWD  (Mackensen et al., 2003; Zell et al.,
2009), our findings are consistent with previous work that indi-
cated a lack of relationship between decay rate and log diameter
(e.g., Harmon et al., 1987; Radtke et al., 2009). The finding that
models were more sensitive to DWD  piece length (a measure of
the extent of nonfragmentation and intactness of DWD  logs) as
opposed to large-end diameter may  be due to the line intercept
sampling (LIS) design used in this study (i.e., probability propor-
tional to length). It should be noted that if modeling efforts employ
data collected from national forest inventories (and whether DWD
pieces are tagged or not), a thorough understanding of the field
protocols and sampling design should be noted. Most national for-
est inventories employ either LIS or fixed-area plots for sampling
DWD  (Woodall et al., 2009), yet the protocols of these surveys
are often not clear and not necessarily made publicly available
(Woodall et al., 2009; Gove and Van Deusen, 2011). Comprehen-
sive documentation of inventory protocols will have tremendous
implications when individual DWD  pieces are scaled to rep-
resent plot- and stand-level summaries of deadwood biomass
and C.

The matching algorithm used to generate the M dataset con-
tained no “observed data” for comparing the accurateness of the
matches, but it did match 70% of remeasured DWD  pieces when
two measurements were conducted over a span of a few weeks
(Woodall et al., 2012). An obvious method to improve the reliability
of remeasurements from identical DWD  pieces is to individually tag
and number them. However, after tagging standing deadwood in
managed Pinus taeda L. plantations, Radtke et al. (2009) estimated
that there was an approximately 0.50 probability that individually
tagged standing dead trees would be identifiable ten years follow-
ing tree death for trees located in western locales of the natural P.
taeda range. This highlights the fact that although DWD  could be
tagged in permanent sample plots, factors such as rapid decompo-
sition rates in forest types and water disturbance on plots could
impede “100% matching” if DWD  pieces are tagged. As opposed
to monitoring individual DWD  pieces through time, an expensive
and arduous task for any forest inventory of considerable scope,
inventory planners may  instead pursue well-documented qual-
ity assurance/quality control (QA/QC) measures. As measurement
error could remove approximately a third of all matched DWD
observations (Woodall et al., 2012), proper QA/QC procedures may
help to distinguish non-matched pieces that result from either
measurement error or from effects of the DWD  decay process.

The transition of DWD  through decay classes was shown to be
heavily dependent on whether the M or M + NM models are used.
For example, in the loblolly-shortleaf pine forest type group, model
assessments indicated that DC1 pieces would move 1.95 ± 0.11
and 4.15 ± 0.27 classes in five years for the M and M + NM data,
respectively. Although the true decay pathways of non-matched

DWD  pieces remain unknown, the NM data likely provide insight
into DWD  DC transitions that may  not be observed when analyz-
ing the M data alone. Although there are few studies that have
quantified DWD  decay class transitions across the eastern US,
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here are studies available from specific forest types that can be
sed for comparing general patterns of DWD  decay. Alban and
astor (1993) found Populus tremuloides Michx. logs to decay at

 faster rate than Picea glauca (Moench) Voss. logs at two sites in
innesota: we similarly observed that DWD  found in aspen-birch

orest types would transition more rapidly into subsequent decay
lasses than DWD  found in spruce-fir forest types (1.57 versus 1.28
ecay classes moved per five years for each forest type, respec-
ively). Radtke et al. (2009) reported DWD  half-lives (time to lose
0% of initial biomass) for P. taeda to range between six and seven
ears, which corresponds to the largest number of DCs moved per
ve years that we observed in the loblolly-shortleaf pine forest
ype. Lambert et al. (1980) reported that Abies balsamea (L.) Mill.
WD  found at high elevations in New Hampshire would remain on

he forest floor for 154 years, and Foster and Lang (1982) observed
imilar times of 159 and 140 years for A. balsamea and Picea rubens
arg. DWD, respectively, in New Hampshire. Comparisons of the
esults obtained here are challenging to make with these experi-
ents which estimate DWD  residence time; however, results here

howed that spruce-fir forest types contained the slowest esti-
ates of DC transitions for all forest types examined. Future work

ould focus on using the DC transition models developed here to
xamine the temporal aspects of DWD  dynamics across the study
egion. Only then can such comparisons of DWD  residence time
e made to studies such as Lambert et al. (1980) and Foster and
ang (1982).  By analyzing and modeling the M and M + NM data
eparately, we strive to place lower and upper bounds on DWD
C transitions, which perhaps could be considered “conservative”
nd “liberal” estimates of DC transition for eastern US forests. The
rue rate of DWD  transition should be bounded between these
wo estimates.

Models indicated the average number of classes moved per
ve years within a given DC was dependent on forest type
nd species group. Softwood species were predicted to transi-
ion slower than hardwoods, a finding that has been similarly
hown using nonlinear decay functions (Zell et al., 2009) and a
lobal meta-analysis compiled from field studies that employed
ither traditional chronosequence or direct measurements of
WD dynamics (Weedon et al., 2009). Differences in decay class

ransitions observed between softwoods and hardwoods may  cor-
espond to the distribution of toxic phenolic compounds formed
n heartwood (Scheffer and Cowling, 1966). The presence of these
ecay-resistant extractives may  ultimately result in different decay
esistance for softwood and hardwood species. Although not nec-
ssarily specified as a parameter in the cumulative link model
nvestigated here, this finding could relate to a more apparent
ag time in decay class transition for softwood species. Specify-
ng forest type as a random effect was a similar approach used by
ell et al. (2009) who used species as a random effect in a meta-
nalysis approach to estimate DWD  decay. For the M and M + NM
ata, forest type groups located at northern climes (e.g., spruce-
r and aspen-birch) generally displayed a lower number of decay
lass transitions per five years across all decay classes than those
ccurring in more southern climes (e.g., loblolly-shortleaf pine and
ak-pine). Results for the M data show an apparent trend that forest
ype, reflective of the general species composition of a site, influ-
nces DC transitions above climate and DWD  piece observations
lone. Although the manner in which a forest type is classified by
he FIA program contains some subjectivity, results can begin to
nswer current questions surrounding the ecological sustainability
f forest-derived bioenergy and can improve life cycle assessments
f forest products.
The models developed herein could subsequently be used to
nvestigate the temporal dynamics of DWD  mass loss, and hence

 reduction. Two such metrics that are important from a bioen-
rgy perspective are the half-life (time to 50% initial biomass loss)
odelling 251 (2013) 22– 31

and residence time of DWD  (time to 90% biomass loss; e.g., Hérault
et al., 2010). As a case study, consider the DWD  examples presented
in Table 4 using the M model (Eq. (3)). Using these conditions, a
25.4 cm nondecayed balsam fir (A. balsamea [L.] Mill.) log found in
a spruce-fir forest would likely transition one DC over a five-year
span if one considers the most probable transition (i.e., the mode).
In contrast, a loblolly pine (P. taeda L.) log of the same size but found
in a loblolly pine forest would likely transition two  classes. Upon
estimating the conic-paraboloid volume of the two logs (Fraver
et al., 2007) and taking into account species-specific bulk density,
initial (e.g., nondecayed) biomass would be 52.9 and 73.2 kg for the
balsam fir and loblolly pine logs, respectively. After applying decay
class reduction factors (Harmon et al., 2011b), remaining biomass
calculated after the five-year span was 46.1 and 51.2 kg for these
same logs. This equates to the balsam fir log, a species likely to be
found in much cooler climates across the study area, losing 13%
of its biomass over five years. In contrast the loblolly pine tree (a
species whose natural range is found in warm climates across east-
ern US forests) would lose 30% of its biomass over five years. This
example illustrates an analytical approach that could be applied
using the tools developed through this work to estimate DWD  C
flux across eastern US forests by relating these models to forest
type, climatic conditions, and DWD  piece attributes.

Given that ecologically plausible estimates of DWD  transitions
across forests in the eastern US are proposed here, results from this
study could inform efforts to project future forest DWD  C stocks.
In particular, this analysis offers quantitative tools that can inform
bioenergy policy decisions and DWD  dynamics. Developed mod-
els, coupled with traditional forest productivity simulation tools,
could be used to determine accurate estimates of present and future
forest C stocks.

5. Conclusions

Cumulative link models that quantify the ordinal response
of DWD  moving into subsequent DCs offer substantial advan-
tages over traditional approaches that rely on difficult to obtain
time since death and mean residence time variables. By using
the model coupled with climate and DWD  piece size attributes,
the five-year probability of a DWD  piece moving into subsequent
decay classes can be estimated for forest types across the eastern
US. Methodologies presented herein can inform DWD  dynam-
ics research and improve predictions of future DWD  biomass
and C stocks, as well as determining impacts of bioenergy pol-
icy throughout contrasting forest types. Models from matched
and non-matched DWD  pieces may  provide a set of bounds for
DWD  decay class transition rates. Specifically, future work that
quantifies deadwood longevity, as measured by DWD  biomass
or C reduction through time, and relating this longevity to
attributes collected as part of deadwood inventories, will be cru-
cial for further refining these models and our ability to predict
DWD dynamics.
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