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Abstract Discrete trees and small groups of trees in
nonforest settings are considered an essential resource
around the world and are collectively referred to as
trees outside forests (ToF). ToF provide important
functions across the landscape, such as protecting soil
and water resources, providing wildlife habitat, and
improving farmstead energy efficiency and aesthetics.
Despite the significance of ToF, forest and other nat-
ural resource inventory programs and geospatial land
cover datasets that are available at a national scale do
not include comprehensive information regarding ToF
in the United States. Additional ground-based data
collection and acquisition of specialized imagery to
inventory these resources are expensive alternatives.
As a potential solution, we identified two remote
sensing-based approaches that use free high-
resolution aerial imagery from the National Agricul-
ture Imagery Program (NAIP) to map all tree cover in
an agriculturally dominant landscape. We compared
the results obtained using an unsupervised per-pixel
classifier (independent component analysis—[ICA])
and an object-based image analysis (OBIA) procedure
in Steele County, Minnesota, USA. Three types of
accuracy assessments were used to evaluate how each
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method performed in terms of: (1) producing a county-
level estimate of total tree-covered area, (2) correctly
locating tree cover on the ground, and (3) how tree
cover patch metrics computed from the classified out-
puts compared to those delineated by a human photo
interpreter. Both approaches were found to be viable
for mapping tree cover over a broad spatial extent and
could serve to supplement ground-based inventory
data. The ICA approach produced an estimate of total
tree cover more similar to the photo-interpreted result,
but the output from the OBIA method was more
realistic in terms of describing the actual observed
spatial pattern of tree cover.

Keywords Trees outside forests - Forest inventory -
Tree cover - Aerial photography - Object-based image
analysis - Independent component analysis

Introduction

Trees outside forests (ToF) are considered an important
land use feature in a global context and have now been
included as an attribute of interest in the United Nations’
Global Forest Resource Assessment. By definition, ToF
are “trees on land not defined as forest and other wooded
land” (FAO 2001); examples include trees that occur on
agricultural and grazed lands, along waterbodies and
roads, and in residential and urban settings (Rawat
2003). In large portions of the central United States
where agriculture dominates the landscape, tree cover
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exists primarily as ToF. Although scarce in terms of
overall coverage, ToF provide a variety of ecological
benefits, including protecting soil and water resources,
providing wildlife habitat, and improving farmstead
energy efficiency and aesthetics (Rietveld and Irwin
1996) and providing biomass for carbon sequestration
(Schoeneberger 2005; Kort and Turnock 1999).

While the importance of ToF is recognized, a con-
tinual inventory and monitoring program for the re-
source does not exist in the United States. National
Forest Inventories (NFIs) typically rely on minimum
size and density requirements to define forests and
thus do not collect information on ToF. For example,
the Forest Inventory and Analysis (FIA) program of
the US Department of Agriculture Forest Service
defines forest to be land with a minimum of 10 % tree
cover (or equivalent stocking) and is at least 1 acre in
size (USDA Forest Service 2010). Furthermore, the
area must be at least 120 ft, or 36.6 m, in width, thus
excluding narrow tree plantings and many naturally
occurring tree corridors along streams. A study by
Perry et al. (2009) found that the estimate of total
tree-covered area would exceed the estimate of forest-
land by at least 25 % in the Great Plains region if tree
resources such as ToF were included in the FIA
inventory.

We do note, however, that information has been
collected periodically on ToF in the United States for
limited geographic areas (Hartong and Moessner
(1956) in Iowa; Hansen (1985) in Kansas; and Lister
et al. (2009) in the Great Plains). While each of these
studies relied on aerial photography and/or ground-
based sampling specifically targeted at ToF, several
efforts have been made to use satellite imagery to
comprehensively map land cover across the contermi-
nous US (e.g., the National Land Cover Dataset
(NLCD 2006) (Xian et al. 2009)). In these cases, the
sensors used are too coarse to discern small groups or
narrow tree plantings and do not provide consistent
estimates of total tree cover (Perry et al. 2009; Liknes
et al. 2010). In contrast, digital aerial imagery is typ-
ically collected at a very high spatial resolution (e.g.,
<I m) and is sufficient to capture small patches of
trees and even individual tree crowns. The resolution,
however, presents a challenge since a higher spatial
resolution leads to increased spectral variation of land-
scape features, which makes it more difficult to statis-
tically separate classes using traditional pixel-based
classification methods and thus reduces classification

@ Springer

accuracy; this is known as the ‘H-resolution problem’
(Woodcock and Strahler 1987 and Marceau et al. 1990
in Hay et al. 1996). As such, the challenge warrants
the development of new methodologies for working
with this type of imagery. Two more recent options are
object-based image analysis (OBIA) and independent
component analysis (ICA).

Image segmentation and classification are the two
main components of OBIA approaches. Segmentation
is the process used to divide the imagery into homo-
geneous image segments, or objects, which become
the processing units that are subsequently classified
rather than the individual pixels (Benz et al. 2004).
The image segments are groups of similar, adjacent
pixels formed to represent the landscape features of
interest (e.g., agricultural fields, houses, and roads).
User-defined settings of shape, color, compactness,
and scale parameter determine what that resulting
image objects will look like. The scale parameter is a
unitless number that sets the degree of heterogeneity
within the image objects, so a larger-scale parameter
will result in larger, more heterogeneous image objects
(Laliberte et al. 2007; Benz et al. 2004). The OBIA
method is different from classic pixel-based proce-
dures that rely solely on the pixel spectral values
represented by digital numbers (DNs) to classify each
pixel individually. OBIA procedures offer several fun-
damental advantages over per-pixel approaches: (1) im-
age objects can be created at various scales (e.g., from a
single tree crown to groups of trees) (de Jong and van
der Meer 2004; Hay 2003), (2) the use of image objects
alleviates the salt-and-pepper effect often encountered in
pixel-based classifications (Yu et al. 2006), and (3)
numerous attributes can be obtained from image objects,
including statistics such as mean and standard deviation
using the DNs (Chubey et al. 2006). In addition, classi-
fication results based on image objects have been found
to be more accurate than those from pixel-based proce-
dures (Blaschke and Strobl 2001; Benz et al. 2004; Yu et
al. 2006; Platt and Rapoza 2008; Myint et al. 2011).

While the OBIA approach has been found to pro-
duce more accurate classification results, standard
OBIA-specific accuracy assessment procedures are
lacking (Dragut and Blaschke 2006) and this remains
a “hot” research topic within OBIA (Blaschke 2010).
Persello and Bruzzone (2010) suggest an accuracy
assessment approach “that is based on the analysis of
two families of indices: (1) the traditional thematic
accuracy indices and (2) a set of novel geometric
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indices that model different geometric properties of
the objects recognized in the map.” However, this
does not appear to be widely implemented at this time.
The common practice found in the literature is the
continued use of accuracy assessment methods that
were developed for per-pixel methods, including error,
or confusion, matrices and the use of descriptive sta-
tistics, such as user’s and producers accuracies (e.g.,
Congalton 1991). In addition, many OBIA studies use
stratified random (or proportional) sampling to select
points, plots, or objects from which to create the refer-
ence data set (e.g., Myeong et al. 2001; Laliberte et al.
2007; Johansen et al. 2007; Zhou et al. 2009; Myint et
al. 2011; Pefia-Barragan et al. 2011).

Although OBIA techniques such as ‘Extraction and
Classification of Homogeneous Objects’ (ECHO) have
been in existence for more than 30 years (Kettig and
Landgrebe 1976), their use in extracting information
from high-resolution imagery has increased markedly
during the last decade; this is coincident with the in-
crease in availability of such imagery from both satellite
and aerial platforms (see Blaschke (2010) for a thorough
discussion of historical and more recent OBIA re-
search). There are numerous studies where OBIA pro-
cedures were used to produce output classifications
related to natural resources. A review of the literature
reveals that high-resolution imagery and OBIA have
been used in conjunction as an approach for mapping
woody plant features in agricultural and other rural
landscapes around the globe. For example, Tansey et
al. (2009) used OBIA to accurately identify hedgerows
with a 2-m minimum width from aerial imagery in
Berkshire, UK. Aksoy et al. (2010) carried out a study
in Germany, the Czech Republic, and Cyprus in which
an object-based methodology was used to automate the
process of identifying linear wooded strips in agricul-
tural areas. Other related studies include juniper cover
estimation from NAIP imagery in Idaho, USA (Davies
et al. 2010) and Wiseman et al. (2009) where large
shelterbelts were mapped over an area covering approx-
imately 25,900 ha using very high-resolution (62.5 cm)
aerial imagery in Manitoba, Canada. The authors con-
cluded that an object-based method was very efficient
for broad-scale inventorying of shelterbelts. However,
these studies were confined to small geographic areas
while more recent examples that use OBIA techniques
occur over much larger areas, such as 289,755 ha in
North Dakota, USA (Liknes et al. 2010) and 177,000 ha
in California, USA (Pefia-Barragan et al. 2011). The

recent use of OBIA techniques offers a promising solu-
tion to the challenge of mapping fine-scale tree features
from digital aerial imagery over a large spatial extent in
the central United States.

Unlike OBIA, ICA, which is a pixel-based clas-
sification approach, is a less conventional tech-
nique that reduces the dimensionality of the input
data. It was developed as a type of blind source separa-
tion (Common 1994; Hyvérinen and Oja 2000) whereby
input signals could be separated into source signals
without any knowledge of the original inputs. Recently,
ICA has been used for unsupervised classification (Shah
et al. 2007b) and pan sharpening (Chen et al. 2011), and
it has been implemented in ERDAS IMAGINE® (Shah
et al. 2007a), a popular image processing software
package.

ICA is often compared and contrasted with the more
well-known principal component analysis (PCA). One
major difference is the order of statistics used; that is,
ICA makes no assumption that original source compo-
nents follow a Gaussian distribution and uses skewness
and kurtosis to determine the independence of input
sources. The two data reduction methods are often com-
pared; for example, Wang and Chang (2006) found that
ICA-based dimensionality reduction outperformed
PCA-based methodology when used with AVIRIS and
HYDICE hyperspectral image data, and ICA has been
used for land cover classification in the State of Iowa
(e.g., ftp://ftp.igsb.uiowa.edu/gis_library/counties/lyon/
HRLC 2007 60/HRLC 2007 60.html#7).

Given the need for more comprehensive information
regarding ToF, the objective of this study was to inves-
tigate the aforementioned approaches as potential solu-
tions for broad-scale mapping of all tree cover (ToF
and forest) in agricultural landscapes from very high-
resolution aerial imagery. The results offer a means for
supplementing NFIs by providing information on the
extent of ToF with a particular focus on methods that
are efficient and at least partially automatable so that the
mapping process could become a recurring part of an
NFI and therefore serve to monitor trends in ToF.

Materials and methods
Study area

Steele County, located in southern Minnesota, USA,
was selected as the study area (Fig. 1). The county is
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Fig. 1 Location of Steele
County in southern
Minnesota, USA

|| B

nearly 111,000 ha in size and the landscape is similar
to that found throughout the central United States. The
dominant landscape feature is row-crop agriculture,
and other cover types include trees, farmsteads, urban
development and roads, rivers, and lakes. The city of
Owatonna is the county seat and about two-thirds of
the county’s population resides there. The non-urban
portion of the county is comprised of 934 farms
according to the 2007 Census of Agriculture (USDA
National Agricultural Statistics Service 2009).

High-resolution imagery

Digital aerial imagery from the US Department of Agri-
culture’s Farm Service Agency National Agriculture
Imagery Program (NAIP) was obtained for this study.
NAIP imagery is collected during the growing season
(leaf-on) primarily for agricultural compliance monitor-
ing and has been captured on a routine basis since 2003.
The return interval varies by state, and datasets from
2003 (1 m), 2004 (2 m), 2005 (2 m), 2006 (2 m), 2008
(1 m), 2009 (1 m), and 2010 (1 m) exist for the state of
Minnesota. Data from 2008 were used because of the
availability of the near-infrared (NIR) spectral band in
addition to the normally acquired red, green, and blue
bands. Images were obtained in uncompressed TIFF
format and had been divided into a series of 49 tiles
with 300 m of overlap between adjacent images. The
tiles have a variety of image acquisition dates from
throughout the growing season (June, July, or August).

Input data layers for the OBIA and ICA approaches
were obtained or derived from the NAIP imagery and
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included the red, green, blue, and NIR spectral bands,
the normalized difference vegetation index (NDVI),
and a green texture band. NDVI is derived using the
NIR and red bands from the imagery where the differ-
ence between the two is divided by the sum of the two
bands. The index is commonly used for identifying
vegetation and can be used for other purposes such as
identifying stressed versus healthy vegetation (Tucker
and Choudhury 1987). However, its use in this study
was simply to add other useful information for detect-
ing tree cover. While NDVI is useful for identifying
vegetation in general, trees needed to be discriminated
from other surrounding vegetation, so the use of tex-
ture layers was incorporated. Texture is a way to
measure the visual roughness versus smoothness of
features in an image (Haralick et al. 1973; Lillesand
et al. 2008) and is important for distinguishing tree
cover from other vegetation, such as grassy lawns
(Zhang 2001 in Tansey et al. 2009; Myeong et al.
2001).

OBIA approach

The workflow for the OBIA approach is shown in
Fig. 2. The segmentation and classification routines
were carried out using eCognition Developer software
v. 8.0.1 (Definiens 2010). A trial-and-error approach
and visual inspection of the results was employed
in order to determine which user-defined settings
produced the most meaningful image objects in order
to meet our study objectives. To begin, the ‘multireso-
lution segmentation’ algorithm was used to segment
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imagery
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image objects
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!

6. Post-processing
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Fig. 2 Object-based image analysis workflow for classifying
NAIP imagery into tree and no-tree classes. ArcGIS® and
ERDAS IMAGINE® software were used in Step 1 to pre-
process the imagery. Steps 2 through 5 run sequentially in
eCognition software and processing multiple images was auto-
mated using a programming script. Steps 6and 7 were carried
out using a python™ script

each image tile into fine-scale image objects
(called “Level 1”) with the following settings:
scale parameter = 15, shape = 0.2, and compact-
ness = 0.9 (Fig. 3). A second level (“Level 2”) of
larger image objects was then created using a scale pa-
rameter of 20 and the Level 1 image objects as building
blocks, and all subsequent processing occurred on the
Level 2 image objects. This was done in order to reduce
the very large number of Level 1 objects for more effi-
cient successive processing. More emphasis was given to

Fig. 3 Example of Level 1 image objects created in eCognition
from NAIP imagery in Steele County, MN

color (0.8) rather than shape (0.2) during the segmen-
tation processes and only the four spectral bands were
utilized to create the Level 1 and Level 2 image objects.
Compactness was set high (0.9) so more circular-shaped
image objects were created in an attempt to better rep-
resent the shape of tree crowns. The NDVTI and texture
information were utilized in subsequent steps for sepa-
rating tree from no-tree image objects. The segmenta-
tion/classification routine was developed for one image
tile and then applied to the remaining 48 images using a
programming script to automate the processing.

The primary goal during segmentation was to main-
tain image objects that were purely tree canopy,
whether it was a single tree crown or continuous
canopy. This was accomplished using a series of
thresholds and an increasing scale parameter to itera-
tively merge the no-tree objects into larger and larger
objects (e.g., farm fields) by capitalizing on the NDVI
and texture information. The tree image objects were
also aggregated using the ‘multiresolution segmenta-
tion region grow’ algorithm to make larger, more
continuous canopy objects and reduce the total num-
ber of image objects. Typically, there would be more
than 200,000 Level 1 image objects reduced to about
2,000 per image tile using this process (Fig. 4a). There
are many image object attributes (spectral, spatial, and
textural) that can be incorporated during the segmen-
tation and classification processes. In this study, the
processes relied primarily on the following attributes
(using the mean value for the image object) to
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Fig. 4 aand b Final level of
image objects (a) and clas-
sification of final level of
image objects created in
eCognition from NAIP im-
agery in Steele County, MN;
‘tree’ objects are represented
in green color (b)

distinguish tree cover from the no-tree image objects:
brightness (combined value of the red, green, and NIR
input bands), texture of the green band and NDVI, and
values of each of the four spectral bands.

During the classification phase, image objects were
assigned to one of two classes: tree or no-tree (Fig. 4b).
Classification rules were developed using mostly the
features listed in the previous paragraph. Thresholds
were developed using observed feature information for
no-tree objects compared to that of tree objects. We used
lower mean values of the visible bands (red, green, blue)
and brightness, and higher mean NDVI, NIR, and green
texture values to distinguish tree cover from the sur-
rounding areas. Classification results for each image tile
were exported in raster format. ArcGIS® Desktop
v.9.3.1 software (ESRI Inc. 2009) was used to mosaic
the 49 raster outputs together and then clip the compiled
output to the county boundary and convert it to vector
format. Lastly, the estimate of total tree-covered area for
the county was obtained by calculating the area of the
‘tree’ class from the final output.

ICA approach

For the second mapping approach, a workflow (Fig. 5)
was implemented in which an NDVI image band was
created from the NAIP imagery as well as a green
texture band in step 1. Median filters have been used
for noise reduction with high resolution imagery (e.g.,
Mora et al. 2010), so a 5x5 median filter was also
applied in step 1 to all input bands; these filtered bands
were used as inputs into the ICA data reduction step
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(step 2). At this point, the ICA output bands were
inspected (step 2b) to determine if useful information
was contained. Although it was rare, there were cases
where ICA components contained no information and
appeared as a blank image to the interpreter. These
particular bands were removed from further process-
ing. Next, the ICA bands were clustered using ISO-
DATA in step 3 into 20 classes and a Maximum
Likelihood Classifier was used to assign the clusters
into a class. An interpreter then examined the 20
classes in conjunction with the original NAIP imagery
and selected those classes that best represented tree
cover (step 4b). Once the class labels (i.e., tree and no-
tree) were assigned, a minimum mapping unit (MMU)
of 20 pixels, or 20 m?, was applied in step 5. This
particular MMU was chosen because it represented a
conservative minimum size for a single tree crown.
Similar to the OBIA approach, the post-processing
procedures in step 5 included mosaicing the classified
output tiles together, clipping the compiled output to
the county boundary, and converting the final raster to
vector format using the same software. Again, the total
area of tree cover was obtained from the county-level
classified output. While steps 2b and 4b required
human intervention, all other steps are fully automat-
ed, and batch processing was used for all 49 image
tiles in the study area.

Accuracy assessment

Three different accuracy assessments were conducted in
this study: nonsite-specific, site-specific, and a targeted
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Fig. 5 Unsupervised pixel-based classification workflow for
classifying NAIP imagery into tree and no-tree classes. Manual
steps (2b and 4b) are indicated in tan, while all other steps are
fully automated and can be batch processed for many images

assessment. Because the fundamental goal of the study
was to obtain county-level estimates of tree-covered area
and then compare those estimates to the sample-based
FIA estimate of forest land area, we began with a
nonsite-specific, area-based accuracy assessment. Area-
based assessments are typically used to determine map
accuracy by first aggregating units (pixels or image
objects) to a larger area (Lunetta and Lyon 2004). While
area-based assessments have inherent drawbacks (e.g.,
Congalton 1991), the approach met the evaluation ob-
jective of the study. The area-based assessment consisted
of a cluster sample framework and heads-up digitizing to
estimate the total area of tree cover across the county.
Cluster sampling allowed us to sample/delineate tree
cover within smaller units, or blocks, placed throughout
the county rather than digitizing all tree cover, which
would be very time-intensive and expensive.

In order to supplement the area-based assessment
with spatially explicit information about map accura-
cy, we conducted site-specific and targeted assess-
ments of the OBIA and ICA classification results as
well. The site-specific accuracy assessment was

employed to evaluate the locational accuracy of the
two thematic classes (tree and no-tree) compared to
the reference data. This type of assessment is impor-
tant because it considers the location of each class, not
only the total area (Jensen 1996). Within the targeted
assessment, a variety of landscape pattern metrics
were compared across three different landscape types
within the Steele County study area: agricultural, ri-
parian, and urban. Because the spatial pattern of tree
cover in the landscapes relates to ecosystem processes,
it was appropriate to examine the consistency of met-
rics derived from the ICA and OBIA outputs that were
used to describe the spatial arrangement of tree cover.

Area-based accuracy assessment

The area-based accuracy assessment was designed to
determine how well the OBIA and ICA methods per-
formed with regard to correctly estimating the propor-
tion of tree cover in the county. Specifically, a cluster
sample was employed for the study area that used
equal-sized grids (1 km?) with centers separated by a
distance of 3 km, which resulted in a total of 108 grids
(Fig. 6). For each grid square, a trained photo inter-
preter used heads-up digitizing methodology to delin-
eate tree cover. An estimate of the proportion of tree
cover in the county was then calculated by

1
PZZ;IH

where n is the total number of grid squares in the
sample and p; is the proportion of tree cover for the
ith grid square (adapted from Thompson 2002).

The standard error is given by

w703

Where N is the number of square kilometers in the
study area and s°, the sample standard deviation is
given by

1 n
:n—llz:l:(pi_

The county-level proportion estimate of tree cov-
er is easily converted to an areal unit by multi-
plying the estimate by the total area of the
county.
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Fig. 6 Cluster sample
design of 1x1 km blocks at
3 km intervals for the area-
based assessment and loca-
tion of targeted landscape
assessment types (agricul-
tural, riparian, and urban)

[] 1-km? cluster sample

Agricultural

Riparian

Urban

Targeted Assessment Areas
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Site-specific accuracy assessment

Site-specific accuracy assessments were used to di-
rectly compare the classified outputs derived from
the ICA and OBIA approaches to the reference
data, and the accuracy of each approach was repre-
sented in an error matrix. This type of accuracy
assessment is more complete than a nonsite-specific
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assessment because it accounts for the locational
accuracy of the classified output and not only the
total area.

Collecting unbiased reference data to which the
classified output is compared is an important step in
site-specific accuracy assessments. To accomplish
this, we used stratified random sampling to select 50
samples from each stratum (i.e., the tree and no-tree
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classes) to ensure that both were adequately repre-
sented in the accuracy assessment (Congalton
1991). Using the high-resolution NAIP imagery
as the reference data source, a trained photo inter-
preter labeled each sample as ‘tree’ or ‘no-tree’
and these were compared to the output classifica-
tion derived from the ICA and OBIA approaches.
The agreement/disagreement results were summa-
rized in error matrices and descriptive statistics
including producer’s accuracy (measure of omis-
sion error), user’s accuracy (measure of commis-
sion error), and overall accuracy were calculated to
describe the accuracy of each thematic class pro-
duced by both classification methods.

Targeted assessment

Tree cover in the three different types of land-
scapes was delineated into patches using heads-up
digitizing to facilitate a more detailed comparison
of the classification results between the OBIA and
ICA methods. Grid squares (3x3 km) were placed
in a riparian area, an agricultural area with wind-
breaks, and in an urban setting (Fig. 6). For each of
these areas, selected landscape metrics were calculated
using the Patch Analyst Extension in ArcMap™ and are
listed in Table 2. The targeted assessment further
characterized how each approach performed in
characterizing tree cover in different landscape types
and addresses the questions: (1) is each classification
approach equally applicable in all landscapes? And, (2)
how do the approaches perform in terms of producing
spatially accurate information in the various landscapes?

Area, number of patches, average patch size,
median patch size, and patch density metrics are
standard measures in landscape-level analyses that
describe the amount and spatial arrangement of tree

cover. For example, a large number of patches,
a small average patch size, and a high patch
density indicate that tree cover in a landscape is
fragmented, occurring as many small, separate
patches. Mean perimeter/area ratio is a measure
used to describe the average patch shape in the
landscape. The mean is calculated by summing
the perimeter/area ratio of each patch and divid-
ing by the total number of patches. A higher
mean perimeter/area ratio indicates that, on aver-
age, the patches are more complex and irregular
in shape. While perimeter/area ratio is a common
and simple way to indicate shape, it is influenced
by the size of the patch. Mean patch fractal
dimension, however, allows patches to be weight-
ed by size to help correct this problem; a value
close to 1 indicates that patches have simple
boundaries regardless of size whereas a value
near 2 means that the patch shapes are more
complex across various patch sizes (McGarigal
and Marks 1995).

Results
Tree-covered area

Total tree-covered area results from the three methods
are presented in Table 1. The area of tree cover found
using the ICA approach was very similar (9 % differ-
ence) to the estimate obtained from the heads-up dig-
itizing in the cluster sample while the result from the
OBIA approach was substantially higher (53 % differ-
ence). In comparison, the 2010 FIA estimate of forest
land for the study area is much smaller (72 % differ-
ence from the cluster sample) than all other estimates
of total tree cover.

Table 1 Estimates of tree-covered area in Steele County, MN using three methods

PI OBIA ICA FIA estimate
Area of tree cover (hectares) 5,650 9,760 5,180 2,670
Proportion tree cover 0.051 0.088 0.047 0.017
Standard error 0.0038 -2 -2 0.57

Tree cover was delineated by a human photo interpreter (PI) using heads-up digitizing, semi-automated object-based image analysis
(OBIA), and unsupervised pixel-based classification (ICA) approaches. Forest Inventory and Analysis (FIA) estimates of forest land

were used as a comparison

#The OBIA and ICA methods are census approaches while the PT and FIA methods are sample based
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Table 2 Comparison of landscape metrics from a targeted assessment of tree cover in agricultural, riparian, and urban landscapes (each
3x3 km) in Steele County, MN, using three methods

Metric Agricultural Riparian Urban

PI OBIA ICA Pl OBIA ICA Pl OBIA ICA
Tree-covered area (ha) 20.5 27.4 14.6 100.7 129.1 77.8 237.5 301.2 176.8
Number of patches 93 49 919 105 81 1,880 3,967 169 12,535
Average patch size (ha) 0.22 0.56 0.02 0.96 1.59 0.04 0.06 1.78 0.01
Median patch size (ha) 0.05 0.25 0.005 0.03 0.29 0.004 0.01 0.45 0.004
Standard deviation of patch size (ha) 0.43 0.67 0.07 5.82 8.22 0.90 0.51 3.98 0.09
Patch density (patches/km?) 10 5 102 12 9 209 441 19 1,393
Mean perimeter/area ratio 2,695 2,149 10,622 3,116 2,576 11,740 4,611 2,526 12,628
Mean patch fractal dimension 1.53 1.57 1.96 1.55 1.61 1.98 1.63 1.56 1.99

Tree cover was delineated by a human photo interpreter (PI) using heads-up digitizing, semi-automated object-based image analysis

(OBIA), and unsupervised pixel-based classification (ICA) approaches

Site-specific accuracy assessment

The results of the site-specific accuracy assessments
indicate that both classification approaches produced
reliable maps of tree cover versus no-tree cover. The
overall accuracy of each map was high, 88% and 95%
for the ICA and OBIA outputs, respectively. The pro-
ducer’s and user’s accuracies for the classification out-
put derived from the OBIA approach were above
90 % for both classes. The accuracy assessment
results for the ICA approach were more varied.
While the user’s accuracy for the ‘tree’ class was
100 %, the producer’s accuracy was only 76 %. For
the ‘no-tree’ class, user’s accuracy was 81 % and the
producer’s accuracy was 100 %.

Tree cover patch metrics

The three approaches performed differently in provid-
ing estimates of tree cover patch metrics (Table 2). The
ICA approach resulted in a smaller tree-covered area
relative to the heads-up digitized approach while the
OBIA method resulted in more tree-covered area for
all three landscapes. The ICA method also tended to
produce many smaller patches of tree cover in all
landscapes compared to the other two approaches.
This is illustrated by the substantially higher numbers
of patches, smaller average and median patch sizes,
and higher patch densities calculated from the ICA
output map. Regarding patch shape, the ICA approach
produced patches with more complex perimeters, as
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indicated by mean patch fractal dimension values
close to 2, in all the target landscape types.

In the agricultural and riparian landscapes, the metric
results derived from the OBIA output were consistently
more similar to the PI results than those obtained from
the ICA output. Mean perimeter/area ratio and mean
patch fractal dimension metric results from the PI and
OBIA methods are comparable, indicating that the two
approaches tended to produce similarly shaped patches
of tree cover. In contrast, the ICA approach created
patches with much more complex shapes, e.g., often
small and blocky in shape with a high number of edges
per patch. Figures 7a through d show an example from
the riparian target area (Fig. 7a) comparing the output
from heads-up digitizing (Fig. 7b), and the OBIA
(Fig. 7c) and ICA (Fig. 7d) approaches.

The metric results for the urban landscape varied
widely among the three methods. In contrast to the
ICA approach, the OBIA method produced far fewer
and larger patches: 169 compared to more than 12,000,
with an average size of 1.78 ha versus 0.01 ha. The
only OBIA metrics that were somewhat similar to
the PI results were tree-covered area and mean patch
fractal dimension. The PI and ICA methods, however,

Fig. 7 a—d Example of the riparian landscape type and compar- >
isons of delineation of tree cover using three methods in Steele
County, MN. Unclassified NAIP image (a), tree cover assessed
by a human photo interpreter using heads-up digitizing (b),
semi-automated object-based image analysis (OBIA) (c¢) and
unsupervised pixel-based classification (ICA) (d) approaches
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produced many smaller patches that were more similar
in average size compared to patches created by the
OBIA approach. Again, the ICA approach produced
the most complex-shaped patches of tree cover.

Discussion

Tree cover in nonforest settings is a sparse yet impor-
tant resource. The lack of current inventory and mon-
itoring programs of ToF is a concern; however,
obtaining accurate information about its extent and
location is challenging. Additional ground-based data
collection as part of an NFI is relatively expensive and
does not provide detailed spatial information that can
be used in other research and applications, such as
determining ecosystem function. Commonly used
and widely available land cover datasets are acquired at
spatial resolutions that are too coarse to detect small
patches and narrow bands of tree cover and specialized
higher resolution imagery can be costly. In order to find a
potential solution to these issues, two remote sensing-
based approaches, OBIA and ICA, were examined for
mapping all tree cover in an agricultural landscape using
freely available, very high-resolution (1 m) aerial imagery.

When determining the total area of tree cover for
Steele County, Minnesota, the ICA approach produced
an estimate similar to that found from heads-up digi-
tizing in the cluster sample (5,180 ha versus 5,650 ha
respectively). The OBIA estimate, on the other hand,
was much higher (9,760 ha), and all tree cover esti-
mates are substantially higher than the FIA estimate of
forest land (2,670 ha). The findings reinforce what
other authors have reported, that the definition of
forest land excludes a significant portion of tree cover
in agricultural landscapes from NFIs. In this case, the
total area of tree cover in Steele County is potentially
three times as much as the forest land area estimate
would indicate if we consider the PI estimate to be the
most accurate reference or standard. Examination of
the OBIA and ICA outputs indicate that both methods
struggle with shadows and grassy vegetation along
roadways and in ditches, and sometimes erroneously
label these areas as tree cover. The speckled appear-
ance of the ICA output is due to the occurrence of
many tiny, disjunct patches and is evidenced by the
results shown in Table 2 (e.g., large numbers of
patches with very small average patch sizes) and
Fig. 7d. The OBIA approach alleviated this problem
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by aggregating pixels into larger image objects and
prevented the formation of such extraneous tiny patches.
However, this contributed to the overestimation of tree-
covered area when image objects were misclassified.
For example, inspection of the OBIA output revealed
that some farm fields and wetland areas were misclassi-
fied and resulted in additional large patches of tree
cover. Additional research and development of the pro-
cedures will help correct the shortcomings.

While the accuracy of the OBIA and ICA methods
can be improved, they do provide an advantage over
the cluster sample with regard to providing more spa-
tial detail. The arrangement of tree cover and its prox-
imity to other landscape features provides information
about ecosystem function. For example, tree cover
arranged in winding, narrow strips adjacent to streams
serve as riparian buffers. Trees planted in rectangular or
L-shaped blocks around buildings offer protection from
the weather and increase energy efficiency in those
structures while linear strips of trees along field edges
provide shelter from the wind and help prevent soil
erosion. If a spatial database of tree cover was con-
structed using the OBIA or ICA approaches, ecosys-
tem function information could be extracted, and that
is not an option readily achievable using data from a
PI cluster sample.

The targeted assessment provides additional infor-
mation about the ability of each method to characterize
the spatial arrangement of tree cover compared to
patches delineated by a human photo interpreter. In
this case, it is easy to see that the pixel-based approach
(ICA) leads to an extremely high estimate of the
number of patches and correspondingly low average
patch size. The OBIA approach is much better at
mimicking how a human interpreter groups trees into
patches, thus producing a result that most closely
resembles that from the PI approach. While many
authors focus on the processing efficiency of OBIA
methods, the generally better appearance of output
maps, and export options (e.g., Benz et al. 2004), this
study points to another potential advantage over pixel-
based approaches: the ability to produce better patch-
based metrics for describing spatial pattern. However,
when conducting ecological studies that use landscape
metrics, it is important to remember that the spatial
resolution of the imagery used in the metric calcula-
tions will affect the results. The principal investigator
of the study should carefully select metrics and imag-
ery that are appropriate for their research objectives.
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Examination of the results in the urban target area
clearly indicates that this type of landscape is extreme-
ly complex and it is difficult to accurately delineate
tree cover using either of the remote sensing-based
approaches. The OBIA method had a tendency to
group together individual tree crowns that were in
close proximity to each other while a human interpret-
er was able to delineate each crown separately. In
contrast, the ICA approach produced output that was
very speckled in appearance and often misclassified
shadows around buildings and tree crown edges as tree
cover. The highly variable results of the metrics from
the three approaches led us to conclude that a new,
separate classification model needs to be developed
for urban landscapes and that future work will focus
strictly on rural settings. Furthermore, the similarity of
the results between the PI and OBIA approaches in the
agricultural and riparian target areas is reassuring since
these are the landscape types in which we are ulti-
mately interested in for natural resource inventory and
monitoring purposes. However, it is very likely that the
OBIA approach will need to be modified in terms of
adjusting the user-defined settings in the eCognition
software when using other imagery and/or when mov-
ing to a much different geographic area in order to create
meaningful image objects.

The need was highlighted for methodologies that
can be accurately and efficiently applied to mapping
tree cover in areas where the resource is not invento-
ried with satisfactory results. The workflows devel-
oped for both the OBIA and ICA approaches are at
least partially automatable, using either programming
scripts or built-in batch processing capability of the
software used, and do not require the use of expensive
imagery. As such, either method represents a viable
approach to mapping tree cover over a broad spatial
extent and could serve to supplement NFIs. The utility
was demonstrated on a county with more than
100,000 ha of land area and the results were compared
using three different accuracy assessment approaches.
Remote sensing-based approaches, such as OBIA or
ICA, represent a step forward from traditional
sample-based PI methods because of the additional
spatial information they provide. In addition, NAIP
imagery is available on a periodic schedule so it
would be possible to monitor these tree resources
over time. Because the OBIA approach produced
classification results that were more accurate in terms
of spatial location and also provided more reasonable

information about the spatial pattern of tree cover, it is
the better choice.
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