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ABSTRACT

Climate change is expected to affect forest land-

scape dynamics in many ways, but it is possible that

the most important direct impact of climate change

will be drought stress. We combined data from

weather stations and forest inventory plots (FIA)

across the upper Great Lakes region (USA) to study

the relationship between measures of drought

stress and mortality for four drought sensitivity

species groups using a weight-of-evidence ap-

proach. For all groups, the model that predicted

mortality as a function of mean drought length had

the greatest plausibility. Model tests confirmed that

the models for all groups except the most drought

tolerant had predictive value. We assumed that no

relationship exists between drought and mortality

for the drought-tolerant group. We used these

empirical models to develop a drought extension

for the forest landscape disturbance and succession

model LANDIS-II, and applied the model in Oconto

county, Wisconsin (USA) to assess the influence of

drought on forest dynamics relative to other factors

such as stand-replacing disturbance and site char-

acteristics. The simulations showed that drought

stress does affect species composition and total

biomass, but effects on age classes, spatial pattern,

and productivity were insignificant. We conclude

that (for the upper Midwest) (1) a drought-induced

tree mortality signal can be detected using FIA data,

(2) tree species respond primarily to the length of

drought events rather than their severity, (3) the

differences in drought tolerance of tree species can

be quantified, (4) future increases in drought can

potentially change forest composition, and (5)

drought is a potentially important factor to include

in forest dynamics simulations because it affects

forest composition and carbon storage.

Key words: drought stress; climate change; tree

mortality; forest landscape disturbance and suc-

cession model; LANDIS-II; forest biomass.

INTRODUCTION

Climate change is expected to affect forest

dynamics at landscape scales through effects on

growth rates of trees, the ability of new tree cohorts

to become established, and altered disturbance

regimes (Scheller and Mladenoff 2005). These chan-

ges will come in response to alterations in mean

and extremes of temperature, precipitation, and

cumulative solar irradiation (Allen and others
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2010). However, some authors suggest that the

most important direct impact of climate change will

likely be drought (for example, Allen and Breshears

1998). Frelich and Reich (2010, p. 372) make the

claim that ‘‘For the continued existence of a given

forest, all else being equal, trees must survive the

longest summer dry period that occurs at a multi-

decadal scale.’’ Frelich and Reich (2010) also sug-

gest that in some forested ecosystems, such as those

at the northern prairie-forest border of central

North America, the projected future climate (par-

ticularly drought) may dramatically alter forest

composition, perhaps resulting in the conversion of

forest to savanna. They offer several lines of evi-

dence based on well-known ecological processes

and their theoretic relationships to forest succes-

sion, drawing conclusions about the cumulative

impacts of multiple drivers of forest dynamics.

There are a number of published studies that

relate mortality rates of individual species (or forest

types) to droughts of various intensity and duration

in a way that could allow predictions of the land-

scape-scale effects of the droughts expected in the

future under altered climate. A majority of these

have been conducted in arid (for example, Allen

and Breshears 1998), temperate (for example,

Elliott and Swank1994; Pedersen 1998), or tropical

ecosystems (for example, Condit and others 1995).

McEwan and others (2011) associated drought

reconstructions with forest composition change in

the Midwest and concluded that drought-induced

tree mortality was an important driver. Fewer

studies have been done in the northern prairie-

forest ecotone of North America, although one

such study suggests that CO2 fertilization may

reduce drought sensitivity of established bur oak

trees enough to delay the loss of forests at the

prairie-forest ecotone in Minnesota, perhaps

indefinitely (Wyckoff and Bowers 2010).

Although these studies provide quantitative

estimates of drought-induced mortality rates, none

has been integrated into a forest landscape model

to study how change in drought regimes might

impact forest composition and successional

dynamics. Frelich and Reich (2010) propose a

process-based model of these dynamics, but it is

conceptual. A process-based simulation model that

integrates the multiple drivers of forest dynamics,

including drought, would provide a more robust

basis for drawing conclusions.

Landscape-level impacts on forest composition

and spatial pattern of altered disturbance regimes

and climate are often projected by landscape-scale

disturbance and succession models (LDSM) (for

example, Gustafson and others 2010; Scheller and

Mladenoff 2008). Drought effects are seldom

explicitly modeled other than by modifying mean

precipitation rates as they affect fire regimes and

forest succession and growth (but see McMahon

and others 2009). The effects of drought as a dis-

turbance that causes mortality of trees are com-

patible with most LDSMs, but have not yet been

widely implemented, presumably because of a

paucity of empirical studies.

The relationship between drought stress and tree

mortality can be studied empirically using the net-

work of weather stations and the network of the US

Forest Service Forest Inventory and Analysis (FIA)

plots. Although the FIA inventory reliably measures

mortality, it is usually difficult to determine the

ultimate cause of the mortality, given that drought

stress can result in death by a number of other

proximal causes. Consequently, the FIA dataset

includes mortality by all causes, resulting in a

drought-induced mortality signal that is degraded by

the noise of mortality by other ultimate causes.

However, because FIA data exist at high spatial

density and over a long time period (>50 years), the

large number of plot observations through time

should allow the drought signal to be detected.

Empirical relationships derived from such analyses

could be incorporated into an LDSM to improve

forecasts of the response of forests to climate change.

LANDIS-II (Scheller and others 2007) is a forest

LDSM that simulates forest growth processes of

establishment, growth, competition and the forest

regression processes of senescence and disturbances

such as fire, wind, insect outbreaks, and timber

harvesting at large spatial scales (>100,000 ha)

and long temporal scales (centuries). The model

tracks living and dead biomass within cohorts of

species, and has several parameters that represent

aboveground productivity and mortality. The

model provides a way to formalize multiple pro-

cesses that are known at the site or tree scale and

project them to the landscape scale to discover

potential dynamics of forest productivity, compo-

sition, and spatial pattern. LANDIS-II was designed

to allow easy addition of new disturbance processes

in the form of extensions (Scheller and others

2010). Such extensions simulate the mortality of

species’ age cohorts by simulating the ecological or

physical processes that cause cohort death. Mor-

tality caused by drought should be readily encap-

sulated in a new LANDIS-II extension.

Our objectives for this study were to (1) deter-

mine the relative plausibility of relationships

between measures of drought stress and tree mor-

tality for the major tree species in the upper Great

Lakes region, (2) generate predictive models of
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drought-induced mortality as a function of drought

measures, (3) develop a drought extension for

LANDIS-II, and (4) assess the landscape effects of

drought-induced mortality on forest composition

and spatial pattern in the region using LANDIS-II.

METHODS

Following Frelich and Reich (2010), we hypothe-

sized that tree mortality during a given time period

(for example, decade) is related to the severity and

duration of dry conditions that may occur during

the period. We generated seven candidate predic-

tion models of the relationship between measures

of drought and tree mortality (Table 1). Five of

these models reference drought events, which we

defined as a period in which the mean annual PDSI

was £ -0.5. The study area included all counties

in Minnesota, Wisconsin, and Michigan that at

least partially fall within the ecological Laurentian

Mixed Forest Province (#212, Cleland and others

2007). This area encompasses most of the pre-

dominantly forested parts of those states (Figure 1).

The climate is generally cold continental, with

mean annual precipitation ranging from 51 to

94 cm and mean annual temperature ranging from

2 to 8�C (Cleland and others 2007). The topo-

graphic relief is generally flat or gently rolling, and

the Great Lakes influence the climate near their

shores.

Predictor Variables

To quantify drought stress, we obtained a national

dataset of time bias corrected (for systematic, non-

climatic changes thatbias temperature trend),monthly,

divisional temperature-precipitation-drought index

values from the National Climate Data Center (http://

www1.ncdc.noaa.gov/pub/data/cirs/). The dataset

included the calculated monthly values for the Palmer

Drought Severity Index (PDSI) (Palmer 1965),

the Modified Palmer Drought Severity Index (Heddin-

ghause and Sabol 1991), and three estimates of the

Standardized Precipitation Index calculated using pre-

cipitation amounts during the prior 3, 12, or 24 months

(McKeeandothers1995).Wealsocalculatedameasure

of moisture deficit (precipitation minus potential

evapotranspiration (Gustafson and others 2003) from

temperature and precipitation records using the

Thornthwaite method (Thornthwaite 1948).

We used this dataset to estimate drought stress

for the time period between each FIA inventory

(varies by state) such that tree mortality observed

on an FIA plot occurred during the time period for

which drought stress measures were calculated.

The spatial units for the climate data were the

NCDC climate divisions within each state, which

more or less follow county boundaries (Figure 1).

There are up to 10 climate divisions in each state.

We identified the climate division in which most of

a county falls, and linked all FIA plots in the county

to that climate division.

Because topographic position and soil texture

affect how long precipitation remains available to

plants, we also considered a soil moisture predictor

variable based on physiographic class data (PHYS-

CLCD) collected on FIA plots (Woudenberg et al.

2010). We aggregated the FIA codes into three

classes ranging from 1 (xeric) to 3 (hydric).

Response Variable

Our ultimate objective was to incorporate drought

effects into the process-based LANDIS-II model,

simulating the loss of biomass from species cohorts

as a function of drought. Ideally, we would estimate

how drought affects tree growth (aboveground net

primary productivity), simulating mortality when

growth falls below a critical threshold. Unfortu-

nately, growth estimates are available for only a

small percentage of FIA plots. However, biomass

estimates of live and dead (since the previous

inventory) trees are calculated by FIA on most plots.

To quantify mortality rate, we calculated the bio-

mass lost to mortality for each species on each FIA

plot within the study area that was classified as

timberland for each inventory period (�13 years).

The annual proportion of biomass lost to mortality

(pm) was calculated using Eq. 7 of Sheil and others

(1995); pm = 1 - [1 - (N0 - N1)/N0]1/t, where, in

Table 1. Candidate Prediction Models Using
Drought Stress Predictor Variables to Predict Tree
Mortality Rate

Model no. Drought stress predictor variables

1 Mean annual drought index value

2 Most severe annual drought index value

3 Cumulative length of all drought events

(normalized per decade)

4 Mean severity of drought events

5 Mean length of drought events

6 Length of longest drought event (years)

7 Mean severity of drought events, mean

length of drought events (years)

The drought index value used was the Palmer drought severity index (PDSI), and
drought was defined as mean annual PDSI £ -0.5.
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our case, N0 is the biomass of live trees (of a given

species) in the previous inventory, N1 is the biomass

of live trees at the end of the inventory period, and t

is the number of years between inventories. This

equation corrects for time bias of periodic mortality

rates. The inventory dates used were as follows:

Minnesota (1977, 1990, 2003), Wisconsin (1983,

1996, 2009), and Michigan (1980, 1993, 2004).

Undisturbed plots from 1990s inventories on which

growth and mortality were modeled rather than

measured were omitted. Observations with less

than a total of six trees of a species were also

omitted. Observations in which more than 10% of

the trees were harvested since the previous inven-

tory were excluded from the analysis because it was

not known if those trees were alive or dead when

harvested. On plots with less than 10% cut trees,

the cut trees were not included in the live or dead

totals (that is, ignored). In an attempt to reduce data

noise of mortality caused by factors unrelated to

moisture stress, we omitted plots that were consis-

tently wet during the inventory cycle (that is, mean

PDSI >+1.5 and minimum PDSI >-0.5). Similarly,

we omitted plots where the relative density of trees

was greater than 0.6, assuming that much of the

mortality on such plots was caused by self-

thinning processes (Woodall and others 2005).

These constraints yielded 43,665 plots suitable for

the analysis.

Analysis

We computed Pearson correlation coefficients

between pm (all species combined) on FIA plots and

each of the six drought indices and the soil variable

and selected the drought index with the consis-

tently strongest correlation across states and FIA

inventory cycles (PDSI). The soil variable was

poorly correlated with mortality (Kendall’s tau =

0.007) and was counter intuitively lowest on xeric

soil; so, it was dropped from further consideration.

For each FIA inventory period and NCDC climate

division, we calculated (1) mean annual PDSI

value, (2) minimum annual PDSI value during the

period, (3) total number of years (normalized per

decade) in drought status, (4) average annual

severity (PDSI) of drought events, (5) average

length (y) of drought events, and (6) length of the

longest drought event. Because drought-induced

mortality in an inventory cycle may reflect drought

conditions just prior to the inventory period (Bigler

and others 2007; Clinton and others 1993), we

included the 2 years prior to the beginning of an

FIA inventory cycle when calculating drought

measures. These variables were included in the

candidate models evaluated (Table 1).

We built generalized linear mixed models to

predict pm using a 70% random subset of the FIA

dataset, reserving the remainder of the dataset for

Fig. 1. Map of the study

area showing the counties

falling at least partly

within the Laurentian

Mixed Forest Province

(#212). Shading indicates

forest cover. The heaviest

lines indicate ecological

Province and state

boundaries, the

intermediate lines indicate

NCDC climate division

boundaries, and the light

lines are county

boundaries
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model testing purposes. Based on the distribution of

pm, we used an exponential distribution with a log

link function via PROC GLIMMIX in SAS v9.3 (SAS

Institute Inc 2011) to estimate the seven candidate

models, choosing the best model using a weight-

of-evidence approach (Burnham and Anderson

2002). All variables in the candidate models were

considered fixed effects with a random intercept.

We initially attempted to model each species sepa-

rately, but sample sizes were too low for most spe-

cies to generate satisfactory estimates, given the

noisiness of the drought signal. We therefore

assigned each species to one of four categories of

drought sensitivity (Table 2) based on the literature

(for example, Burns and Honkala 1990), expert

opinion, and relationships seen in the model-

building subset of the dataset, and built models for

these four classes. Using the testing dataset, we

regressed observed against predicted pm values, and

used the SAS (SAS Institute Inc 2011) TEST state-

ment in Proc REG to test (a = 0.10) the joint hypoth-

eses that the intercept was equal to 0.0 and that the

slope was equal to 1.0 (Dent and Blackie 1979).

LANDIS-II Drought Extension

We developed a drought disturbance extension for

LANDIS-II (Scheller and others 2007) that simu-

lates loss of living biomass from cohorts by species as

a result of drought-induced mortality. The exten-

sion is designed to work with a succession extension

that simulates live aboveground biomass for each

tree species cohort (for example, Scheller and

Mladenoff 2004), allowing partial disturbance (that

is, mortality that transfers live biomass to the dead

biomass pool) of any given tree species cohort. At

each time step, a measure of drought is drawn from

a user-specified distribution. If the value of this

drought variable exceeds a user-defined minimum

threshold for drought effects to cause mortality,

the 95% confidence interval (CI) of the predicted

annual proportion of biomass lost is calculated for

each species based on regression coefficients (and

standard error) input by the user (see Figure 2 for

examples). When the drought variable exceeds a

user-defined maximum threshold, the drought

variable is set equal to the maximum threshold. This

feature is used to constrain the regression equation

from making predictions beyond the range of the

predictor variable to which the model was fit (that

is, extrapolation). For each active cell on the land-

scape, and for each species on the cell, a value of pm

is selected from the confidence interval using the

age of the oldest cohort (calculated as a percent of

the species longevity) as an index to specify a

location between the lower and upper bounds of

the CI. Thus, cells with the oldest cohorts nearer to

longevity age will have a pm value found in the

upper part of the CI, whereas cells with younger

oldest cohorts will have a pm value found in lower

portions. This is consistent with the observation that

cohorts older than 50% of longevity (approxi-

mately) are more weakened by drought and are

more susceptible to tree-killing agents such as

insects and disease (Ganey and Vojta 2011; Mark

Theisen, pers comm). Because the regression coef-

ficients were estimated using non-linear link func-

tions, back-transformation is completed after the pm

value is selected from the CI. The extension can

optionally remove the intercept term from the

predicted values of pm. Often, the intercept repre-

sents background mortality and it may be useful to

remove this background mortality to simulate only

drought-related mortality. The amount of biomass

removed by drought-related mortality is total spe-

cies biomass times pm, and biomass is removed from

cohorts (beginning with oldest cohort) until that

amount is reached. Because drought often kills

entire cohorts, in cases where the amount to be

removed is at least 90% of the biomass of the oldest

cohort, all of the biomass of the oldest cohort is removed.

Additionally, the probability of establishment (Pest)

Table 2. Species Assignments to the Four Drought Sensitivity Classes

Drought-sensitivity class Common name Scientific name

Intolerant Quaking aspen, big-toothed aspen,

paper birch, black ash

Populus tremuloides, P. grandidentata,

Betula papyrifera, Fraxinus nigra

Somewhat intolerant Eastern hemlock, White spruce,

Northern white cedar,

yellow birch, balsam fir

Tsuga canadensis, Picea glauca, Thuja occidentalis,

Betula alleghaniensis, Abies balsamea

Somewhat tolerant Red maple, sugar maple, black cherry,

white ash, basswood,

American larch, black spruce

Acer rubrum, A. saccharum, Prunus serotinus,

Fraxinus americana, Tilia americana,

Larix laricina, Picea mariana

Tolerant Red pine, white pine,

jack pine, red oak, white oak

Pinus rubra, P. strobus, P. banksiana,

Quercus rubra, Q. alba
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for the species is modified (for the current time step

only) to 0.0 if the species has seedlings relatively

sensitive to drought, and modified by half if seed-

lings are moderately sensitive to drought (Mark

Theisen, pers comm., Hanson and Weltzin 2000).

Pest is unchanged for species relatively insensitive to

drought. This simulates the loss of seedlings to

drought stress. All biomass removed from the

cohorts is moved to the dead biomass pool. A log file

is updated at each time step with details about the

amount of biomass removed from the cohorts, and a

map is generated that shows the spatial distribution

of biomass removed.

Simulations

We used the drought extension to heuristically

explore the effects of drought on forest composition

and spatial pattern on a 65,733 ha study area

centered on the Lakewood sub-district of the

Chequamegon-Nicolet National Forest, located in

northeastern Wisconsin, USA (Figure 3), near the

prairie-forest ecotone. Forested ecosystems in the

study area are strongly influenced by glacial land-

forms that create a sharp soil moisture gradient

from west (mesic and nutrient-rich) to east (xeric

and nutrient-poor). Initial conditions (cell size =

0.09 ha) were generated by Sturtevant and others

(2009), and included four ‘‘land types’’ reflecting

biophysical units with similar presettlement fire-

return (FR) intervals determined primarily by soil

conditions (Cleland and others 2004). Species

parameters followed those used in other studies in

the region (Table 3). We used land type-specific

species growth rate values [maximum above-

ground net primary productivity (MaxANPP),

A Drought intolerant

Averagedrought length (yrs)

0 2 4 6 8 10A
nn

ua
l p

ro
po

rt
io

n 
of

 b
io

m
as

s 
lo

st
 to

 m
or

ta
lit

y

0.00

0.05

0.10

0.15

0.20
B Somewhat intolerant 

Average drought length (yrs)

A
nn

ua
l p

ro
po

rt
io

n 
of

 b
io

m
as

s 
lo

st
 to

 m
or

ta
lit

y

0.00

0.05

0.10

0.15

0.20

C Somewhat tolerant 

Average drought length (yrs)

0 2 4 6 8 10

0 2 4 6 8 10A
nn

ua
l p

ro
po

rt
io

n 
of

 b
io

m
as

s 
lo

st
 to

 m
or

ta
lit

y

0.00

0.05

0.10

0.15

0.20

Fig. 2. Back-transformed prediction equations (Model 5) and 95% confidence intervals for the four drought tolerance

classes. The model for the drought tolerant class (not shown) failed the validation test, and it was assumed that drought

has no effect on mortality for that class. Average drought length values above 5.0 years (reference line) were assigned a

value of 5 in the simulations to minimize extrapolation beyond the data used to fit the models
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Appendix in Supplementary Materials] from

Scheller and Mladenoff (2005), selecting their

ecoregions that coincided with our land type clas-

ses. We used the Pest values of Sturtevant and

others (2009) because they were developed spe-

cifically for our study area (Appendix in Supple-

mentary Materials).

Parameters to describe the distribution of the

drought variable (average length of droughts) were

estimated from the NCDC dataset described above,

using data from 1900 to 2010. We conducted a two

factor simulation experiment with drought and

stand-replacing disturbance as main effects, with

each factor either present or absent. To allow

additional exploration of the importance of physi-

ography on drought effects, a third factor (land

type) was included by assigning each cell in the

output maps to one of two land types (Xeric = FR1

and FR2; Mesic = FR3 and FR4, Figure 3), and

evaluating land type as a fixed treatment effect. We

used version 6.0 (Scheller and others 2007) of

LANDIS-II and the Biomass Succession v3 (Scheller

and Mladenoff 2004) and Biomass Harvest (Gus-

tafson and others 2000) (to simulate harvest)

extensions, with harvesting simulated before

drought. Harvesting was simulated by removing all

cohorts of all species from 5% of stands each dec-

ade, half of those stands being mature aspen/birch

and the other half randomly selected. All extensions

used a 10-year time step and all simulations were

run for 300 years with three replicates.

Response variables were forest composition (%

of each species group) (Table 4), age class com-

position (% of each age class), total biomass on

the landscape, and mean cell ANPP. In addition,

we calculated the Aggregation Index (He and

others 2000) as a measure of fragmentation,

where higher values indicate that pixels of the

same class tend to be found adjacent to each

other, and lower values indicate that adjacent

pixels tend to be of a different class. We analyzed

the values of response variables at the end of the

simulations (year 300) with drought, disturbance,

and land type (xeric or mesic) as the main fixed

effects using generalized linear mixed models via

PROC GLIMMIX. We included the drought 9 land

type interaction to determine if physiography

modifies any drought effect. The Kolmogorov–

Smirnov test and visual examination of stem and

leaf plots (UNIVARIATE procedure) were used to

determine the distribution of each response vari-

able. We used a gamma distribution and log link

for all species composition response variables, an

exponential distribution and log link for the age

class variables and a normal distribution and

identity link for all others. We evaluated the rel-

ative influence of main effects using LSMEANS

and Tukey’s comparisons.

Fig. 3. Map of simulation

study area in Oconto

County, Wisconsin (USA)
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RESULTS

Candidate model 7 was dropped from further

consideration when it was discovered that collin-

earity between the two predictor variables caused

untenable predictions (that is, mortality decreased

as drought increased). For all four drought sensi-

tivity classes, the Akaike weights showed extremely

high plausibility for model 5 (Table 5). The model

Table 3. Selected LANDIS-II Species Parameter Values Used in the Simulations

Species Seedling

drought

sensitivity1

Longevity (y) Sexual

maturity (y)

Shade

tolerance2
Effective

seed

dispersal

distance (m)3

Maximum

seed

dispersal

distance (m)4

Aspen 2 90 15 1 500 5000

White ash 2 200 30 4 70 140

Black ash 3 150 20 2 100 200

Basswood 2 250 15 4 30 200

Black cherry 2 200 20 2 30 3000

Paper birch 2 100 20 2 200 5000

Cedar 3 350 30 3 45 60

Hemlock 3 450 60 5 30 100

Jack pine 2 120 10 1 30 100

Larch 2 175 35 1 50 200

Red pine 2 250 25 2 12 275

White pine 2 350 15 3 100 250

Red maple 2 150 10 3 100 200

Red oak 2 200 25 3 30 3000

Black spruce 2 200 30 3 80 200

White spruce 2 200 25 3 30 200

Balsam fir 2 150 25 4 30 160

Sugar maple 2 250 40 5 100 200

White oak 2 250 40 1 30 3000

Pin oak5 2 200 35 2 30 3000

Yellow birch 3 300 40 4 100 400

Drought regression parameters used were from Model 5 (Table 7).
1 Seedlings relatively insensitive to drought = 1, moderately sensitive = 2, sensitive = 3.
2 Index of ability to establish under shade. Least shade tolerant = 1, most shade tolerant = 5.
3 95% of propagules disperse within this distance.
4 100% of propagules disperse within this distance.
5 Pin oak was uncommon in our FIA dataset and was not used to build the drought models. It did occur on the Oconto county study site, and was assigned to the ‘‘tolerant’’
drought class.

Table 4. Species Group Definitions Used for LANDIS-II Output

Species group Common name(s) Scientific name(s)

Aspen-birch Quaking aspen, big-toothed

aspen, paper birch

Populus tremuloides, P. grandidentata,

Betula papyrifera

Northern hardwoods Sugar maple, yellow birch, red oak,

black cherry, white ash, basswood

Acer saccharum, Betula alleghaniensis,

Quercus rubra, Prunus serotinus,

Fraxinus americana, Tilia americana

Pines Jack pine, red pine, white pine Pinus banksiana, P. rubra, P. strobus

Oaks White oak, northern pin oak Quercus alba, Q. ellipsoidalis

Red maple Red maple Acer rubrum

Hemlock Eastern hemlock Tsuga canadensis

Spruce-fir White spruce, balsam fir Picea glauca, Abies balsamea

Larch American larch Larix laricina

Cedar Northern white cedar Thuja occidentalis

Wetland species Black spruce, black ash Picea mariana, Fraxinus nigra
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tests showed that all models except one passed the

statistical test of model predictive ability (Table 6).

The slope of the regression of observed against

predicted pm values for drought-tolerant species

was a value quite close to zero, and the test of the

joint hypothesis failed (a = 0.1).

When back-transformed, the prediction equa-

tions produced curves that show progressively less

mortality from drought-intolerant species to

somewhat drought-intolerant species (Figure 2).

The curve for the most drought-tolerant species

(not shown) was paradoxically intermediate

between the drought-intolerant and somewhat

drought-intolerant species, but that equation failed

the model test (Table 6). We concluded that

because GLIMMIX fit a spurious, insignificant curve

to the data for this species group, a drought-

induced mortality signal could not be reliably

detected and can safely be ignored for this species

group. Note that the intercept is noticeably higher

for the somewhat drought-intolerant group

(Figure 2B). This is likely caused by high back-

ground mortality of balsam fir, which constituted

nearly half of the plots used to fit this model.

Given these results, we parameterized the

drought extension using Model 5 (Table 7). The

empirical distribution of the drought variable

(average length of droughts) in the study area

Table 6. Model Test Results Showing the Regression of Predicted Mortality Rate Against Observed Rate

Drought-sensitivity class N Model 5

Intercept (se) Slope (se) Prob > F

Intolerant 5700 0.001 (0.002) 1.041 (0.176) 0.44

Somewhat intolerant 2678 -0.000 (0.008) 0.994 (0.395) 0.95

Somewhat tolerant 4170 -0.003 (0.003) 1.37 (0.509) 0.47

Tolerant 1689 0.005 (0.004) 0.081 (0.522) 0.07

N indicates the number of FIA plots used to test the models. P values indicate the probability that that the joint hypotheses that the intercept = 0.0 and the slope = 1.0 could not
be rejected, and bold values indicate that the model passed this test (a = 0.1).

Table 5. Akaike Weights (%) for Candidate Models (Table 1) of Each Species Group

Drought-sensitivity class N Model

1 2 3 4 5 6

Intolerant 13489 0.0 0.0 0.0 0.0 100.0 0.0

Somewhat intolerant 6249 0.0 0.15 0.0 0.0 99.85 0.0

Somewhat tolerant 9699 0.0 0.0 0.0 0.0 100.0 0.0

Tolerant 3892 0.0 0.0 0.0 0.0 100.0 0.0

Higher weight indicates greater plausibility for a model. Model #7 was dropped from consideration because of high collinearity between the two predictor variables. N indicates
the number of FIA plots used to fit the models.

Table 7. Univariate Predictive Models for Each Drought Sensitivity Class Based on a Measure of Drought
Between FIA Inventories

Drought-sensitivity class Model 5

Intcpt. (y) Std error (y) Slope (b) Std error (b) Predictor variable (x)

Intolerant -5.499 0.028 0.576 0.015 Mean drt length1

Somewhat intolerant -4.426 0.037 0.235 0.019 Mean drt length1

Somewhat tolerant -5.668 0.031 0.258 0.016 Mean drt length1

Tolerant2 N/A N/A N/A N/A N/A

Predicted annual proportion of biomass lost to mortality (pm) is calculated (back-transformed) using pm = EXP(y + bx).
1 Mean length (years) of drought events (mean annual PDSI £ -0.5).
2 No valid predictive for drought-tolerant species was found. Assumed there was no relationship.
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during the last century was approximately lognor-

mal with l = 0.3, r = 0.7. We set the minimum

threshold for the drought variable to 1.0. The lon-

gest mean drought length in our model-building

dataset was 4.0 years, so we set the maximum

threshold to 5.0 years (see Figure 2), allowing

extrapolation of the mortality function by only one

year. Droughts exceeding 5 years were rare over

the last century. We activated the removal of the

background mortality option. Drought mortality

was not simulated for the drought-tolerant species.

Simulation Results

The DROUGHT treatment was significant for four

of the species groups (Table 8). Aspen-birch was

more abundant under drought conditions, whereas

northern hardwoods were negatively impacted,

and the change in abundance caused by drought

appears to accelerate over time (Figure 4). The

drought-tolerant pines did marginally better and

the oaks (white and pin oak) significantly better

under drought conditions, although their abun-

dance was very low by the end of the simulations.

The somewhat drought-tolerant red maple also did

significantly better under drought conditions. The

DROUGHT treatment tended to reduce the oldest

age class and increase younger ones as expected,

but the tendency was not significant (Table 8).

DROUGHT did not significantly affect the aggre-

gation of age classes. DROUGHT significantly

reduced live biomass on the landscape, and slightly

increased mean aboveground productivity, but not

significantly so (Table 8; Figure 5).

DISTURBANCE generally had an intuitive effect

on species composition and age class, positively

affecting species favored by disturbance and

increasing the abundance of younger age classes at

the expense of the oldest age classes (Table 8).

DISTURBANCE also reduced aggregation and sig-

nificantly reduced biomass on the landscape and

ANPP.

The LAND TYPE treatment generally had a sig-

nificant and intuitive effect on northern hard-

woods, pine, and oaks. The other species were

more common on more droughty land types, but

they were also more common there at the start of

the simulations. The LAND TYPE treatment also

significantly impacted two age classes and the

aggregation measures, although there is no clear

mechanism to expect there to be such an effect.

This may also be an artifact of the initial conditions

because most of the differences are similar to those

seen at time step = 0. The mesic LAND TYPE

treatment produced significantly higher amounts of

biomass and ANPP than the xeric. The DROUGHT-

LAND TYPE interaction was significant for only %

aspen-birch, % oaks, % spruce-fir, AI-species, and

total biomass.

DISCUSSION

Assumptions

Several important assumptions were made for this

study. (1) We assumed that a drought-induced

mortality signal could be detected in the presence

of many other mortality factors by the large num-

ber of observations in the FIA dataset. The fact that

the same model was the most plausible for all

drought tolerance classes, and that the resulting

equations predicted greater mortality as putative

drought tolerance decreased, suggests that this

assumption was valid. (2) By pooling all FIA plots

across the region, we assumed that drought and

mortality relationships are similar across major

portions of each species’ range. We did not test this

assumption, but signal noise may have been greater

because of it. (3) In our LANDIS-II drought

extension, we assumed that the oldest trees are the

most susceptible to drought-induced mortality, and

therefore our model removes biomass starting with

the oldest cohort and working toward progressively

younger cohorts. This assumption was based pri-

marily on expert opinion and may not hold in

other ecosystems.

Insights

Our results produced several important insights. (1)

Average dryness (mean or min. PDSI) is not as

important as the characteristics of drought events

to predict tree mortality. This is seen in the lack of

plausibility for Models 1 and 2 (Table 5). (2)

Severity of drought (Model 4) is not as important as

length of drought (Model 5). We suspect that the

various drought length measures are perhaps

interchangeable as predictive variables because

many of them are highly correlated. (3) The rela-

tionship between length of drought and biomass

loss to mortality is non-linear, where mortality

increases at an ever faster rate as the length of a

drought increases. (4) Although the DROUGHT

treatment was significant, the magnitude of the

effect was relatively low. The largest effect was on

the abundance of northern hardwoods, where

DROUGHT reduced abundance by 7% over

300 years. The significant effect of DROUGHT on

total biomass was stable through simulated time

(Figure 5). The insignificant positive effect of

DROUGHT on ANPP (Table 8; Figure 5) is likely
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related to mortality in the oldest age class and

concurrent increases in more productive younger

age classes. Despite these modest effects, our study

suggests that where drought increases in the

future, forest composition and biomass may grad-

ually change because of relative differences in

drought tolerance among species. (5) The lack of

correlation between soil drainage class and

drought-induced tree mortality suggests that trees

tend to be adapted to the soils on which they occur.

However, we did not explore this in depth, and this

may warrant further study.

Simulation Results

In terms of species, DROUGHT negatively affected

northern hardwoods, which include some drought-

intolerant species (Table 2). However, it positively

affected the drought-intolerant aspen-birch, likely

because these species regenerate after being killed

by all but the most severe of droughts (Burns and

Honkala 1990; Worrall and others 2010) and col-

onize other sites opened up by drought mortality.

The drought-tolerant oaks and pines were either

unaffected or positively related to drought, and the

somewhat tolerant red maple was positively related

to drought, as expected. The somewhat drought-

intolerant hemlock was surprisingly not affected by

drought, but its abundance may have been too low

for an effect to be detected. DISTURBANCE affected

all species groups, positively affecting pioneer spe-

cies and negatively affecting disturbance-sensitive

species. The exception may be the pines, but the

three species of pines in this class each had a dif-

ferent shade tolerance. The LAND TYPE treatment

had the expected effect on northern hardwoods,

pines, and oaks. The other species groups were

more abundant on xeric land types than expected

at the end of 300 years; but, compared to the initial

conditions map, only aspen-birch and pines

increased in abundance there. The drought by land

type interaction was significant for several species

groups, suggesting that land type indeed may play

an exacerbating or ameliorating role in the

response of species to drought by affecting the

competitive interactions among species.

DROUGHT and DISTURBANCE tended to

decrease aggregation (that is, lower AI values).

Aggregation was lower on xeric land types, but it

was also lower in the initial conditions map.

Drought mortality was simulated independently on

each cell (spatially random), so it is not surprising

that it tended to disaggregate the landscape. DIS-

TURBANCE decreased landscape biomass and

ANPP by killing live, productive biomass. Total
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Fig. 4. Effect of DROUGHT on the relative abundance of

northern hardwoods and aspen-birch through simulated

time, on mesic soil and with harvesting. Lines represent

the mean of three replicates, and standard deviations

were generally less than the width of the symbols
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biomass and ANPP were higher on mesic soils,

reflecting the higher growth rates of most species

on these soils.

Our simulations were not designed to test the

Frelich and Reich (2010) hypothesis that forests in

the region may convert to savanna under future

climate. We did not include important processes

such as fire. However, our results provide support

for the idea that drought is an important process to

include in forest landscape models because drought

sensitivity significantly varies by species and

therefore affects forest composition. We also did

not include the capability to vary drought effects

spatially in our drought extension (for example,

across climate divisions or landforms), but such a

capability can easily be added.

Comparison to Other Studies

There are several studies in other ecosystems that

document tree mortality rates that presumably

were drought induced, but there seem to be few

data from temperate mixed forests to compare to

our results. Mortality rates of southeastern oak

species after a severe drought in Georgia were only

modestly higher than those our models predicted

for white and northern red oak (Elliott and Swank

1994). Koepke and others (2010) also found that

drought effects vary by species in northern Arizona.

Similar to our findings, Guarin and Taylor (2005)

found that extended drought length (2–5 years)

was necessary to trigger tree mortality in Yosemite

National Park (California, USA). Contrary to our

findings, Hogg and others (2008) found that

drought-induced aspen mortality in western Can-

ada was primarily related to drought severity.

Pedersen (1998) also found drought severity to be

the most important factor related to drought-

induced mortality in oak forests of the southern

Midwest. Fensham and others (2012) related forest

biomass mortality to drought in mulga forests of

eastern Australia and not only found mean rainfall

to be the most important predictor, but also found

the effect of soils to be minor.

Remaining Uncertainties

Predicting drought-induced mortality is inherently

difficult (Breshears and others 2009). Trees rarely

die directly of moisture deprivation, but drought

stress makes them susceptible to death by other

agents (Manion 1981; Raffa and others 2008; Ganey

and Vojta 2011). Genetic factors also play a role

(Cobb and others 1994). Consequently, there is a

great deal of stochasticity in drought-induced

mortality. Furthermore, our study examined

drought at the scale of FIA inventory cycles

(� 13 years) and was unable to link mortality to

drought events that may have occurred much earlier

(Pedersen 1998). Similarly, the years we studied did

not include exceptionally severe or prolonged

droughts, so our models may not perform well under

such conditions. Our models presumably detected

the drought-induced mortality signal from the noise

of all the other factors that kill trees, but it is unrea-

sonable to expect that model predictions will perform

well for individual forest stands during individual

drought events because they predict mean

responses. However, for the purpose of stochastically

modeling drought mortality over large areas and

long time periods, the models should have good

utility. Our results are directly applicable to the for-

ests of Province 212 in the upper Midwest. They may

also be applicable in similar Provinces (for example,

#211 in the northeast US), but this should be tested.

Certainly, our methods can readily be extended to

other regions. Our results suggest that predictions of

the effects of changing climate can be improved by

accounting for the effects of drought stress.

Although our analysis indicated that each

drought tolerance class has a unique susceptibility

to drought as evidenced by unique regression

coefficients, the uncertainty in those parameter

estimates is high. Furthermore, we cannot rule out

the possibility that all species respond in the same

way, although this seems unlikely given what we

know about the ecology of these species. The tests

of each regression model are also somewhat

uncertain because of high variability. We believe

that most of this uncertainty is caused by the fact

that mortality from many causes is included in the

FIA data. Nevertheless, the relative susceptibility to

drought of these species is consistent with that from

other sources [for example, silvics manual (Burns

and Honkala 1990)]. It should be noted that the

drought extension of LANDIS-II allows the use of

regression equations based on theoretic consider-

ations. For example, the curves in Figure 2 could

easily be replaced with generic curves that produce

a different transition from a high mortality effect

(for example, Figure 2A) to a low mortality effect

(Figure 2C).

Our study suggests several questions needing

further study. (1) How (and when) does soil

drainage class modify the probability of mortality

from drought? (2) Do the relationships we found in

the upper Midwest hold elsewhere? (3) Will this

approach work in other biomes? (4) Can the

noisiness of the drought signal in FIA data be

reduced further?
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CONCLUSIONS

From our study, we can conclude that (for the

upper Midwest) (1) a drought-induced tree mor-

tality signal can be detected using FIA data, (2) tree

species respond primarily to the length of drought

events rather than their severity, (3) the differences

in drought tolerance of tree species can be quanti-

fied, (4) where climate change results in more

drought in the future, forest composition has the

potential to gradually change because of these dif-

ferences in drought tolerance among species, and

(5) drought is a potentially important factor to

include in forest dynamics simulations because it

affects species’ composition and, potentially, forest

spatial pattern. (6) This study represents an

important first step to add drought-induced mor-

tality to forest landscape models. Because LANDIS-

II extensions are open source, refinements can

readily be made as our understanding improves.
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