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Abstract. Several modeling approaches can be used to guide management decisions. However, some

approaches are better fitted than others to address the problem of prediction under global change. Process-

based models, which are based on a theoretical understanding of relevant ecological processes, provide a

useful framework to incorporate specific responses to altered environmental conditions. As a result, these

models can offer significant advantages in predicting the effects of global change as compared to purely

statistical or rule-based models based on previously collected data. Process-based models also offer more

explicitly stated assumptions and easier interpretation than detailed simulation models. We provide

guidelines for identifying the appropriate type of model and level of complexity for management decisions.

Finally we outline some of those factors that make modeling for local and regional management under

global change a particular challenge: changes to relevant scales and processes, additional sources of

uncertainty, legacy effects, threshold dynamics, and socio-economic impacts.
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INTRODUCTION

Decisions about the management of a natural
resource necessarily make use of predictive
models that are based on some theory of future
conditions. In this era of rapid change in climate
and other physical processes, the models we use
to inform management in all areas of application
require careful consideration. In this contribu-
tion, we offer an overview of the relationships

among theory, models and ecological system
management. We focus on the problem of
management at local and regional scales given
global change, as opposed to the problem of
slowing this change. Global change will lead to
changes in abiotic and biotic conditions that will
affect population and community dynamics on
time scales and spatial scales that are challenging
for management. Therefore, global change cre-
ates a set of novel problems for both modelers
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and managers.
Although there are several approaches to

modeling natural systems, since the late 1980s
there has been some consensus amongst ecolo-
gists that management decisions are best guided
by models which are grounded in ecological
theory, and which strike a balance between too
much or too little detail describing the relevant
processes (e.g., DeAngelis 1988, Starfield 1997,
Jackson et al. 2000, Carpenter 2003, Nelson et al.
2008). We argue that such process-based models
(sometimes called mechanistic models) are the
most appropriate approach for the majority of
management questions, and indeed are essential
given global change. We outline four categories
of models that can be used to inform manage-
ment decisions, and highlight the relevance of
process-based models. We then provide guide-
lines for evaluating and constructing process-
based models to be used for guiding manage-
ment in the face of ubiquitous and rapid
anthropogenic change.

FROM THEORY TO MANAGEMENT: THE

PROCESS OF MODELLING NATURAL SYSTEMS

We define management as the process of
deciding on the desired future states of ecological
systems, and the selection and implementation of
actions predicted to achieve these states, given
constraints. When formulating a decision, a
manager typically has in mind some conceptual
framework that guides her decision. The concep-
tual framework guides expectations for the
future, and relates the proposed management
action to the desired future states of the system.
In almost every situation, a manager uses some
form of ecological theory regarding current and
future states of the system to project or model the
probable response of the system to management
actions.

The word ‘theory’ may seem grandiose and
inappropriate in the context of routine manage-
ment decisions. In ecology we often reserve the
word theory to refer to broad, unifying structures
such as island biogeography (MacArthur and
Wilson 1967) or neutral theory (Hubbell 2001).
Indeed, some managers may argue that they rely
on data, not theory, to guide decisions. However,
data in and of themselves are not predictive. At a
bare minimum the move from data to manage-

ment decision requires a theory of future
conditions in the natural system. For example,
the theory of island biogeography has been used
to guide the design of natural reserves (e.g.,
Williams et al. 2007), based on the projection that
future biodiversity would be related to the
number, size and connectivity of reserves. Some
theories underlying proposed management ac-
tions are less complete or not fully articulated,
such as: ‘‘with climate change, there will be
poleward movement of species ranges’’. Even the
statement ‘‘future conditions will be similar to
the conditions under which the data were
collected’’, refers to a statistical theory describing
the natural system.

Given a theory of natural processes, one can
construct a model to produce predictions for a
particular system. When constructing a model,
one is constantly trading off the degree of
precision, generality and realism (Levins 1966).
It is not possible to include all details of a system
and still have a useful predictive tool. For
example, a one-to-one scale map of a city may
include all details, but ceases to be useful as a
guide for finding the nearest hotel. As a result,
models are always false in some aspects of their
representation of a system, and there is no one
correct model that links a theory to a particular
system (Fig. 1).

Furthermore, different model formulations of a
given theory can lead to different management
conclusions. A striking example is the contribu-
tion of demographically structured population
models to the development of conservation
strategies for turtle populations suffering by-
catch pressure. Prior to 1987, most turtle conser-
vation efforts were directed at eggs on nesting
beaches. Stage-structured models that divided a
single turtle population into relevant life-history
stages such as eggs, juveniles and adults (Crouse
et al. 1987), predicted the same low population
growth as unstructured models that did not
include the development stage of individuals.
However, the stage-structured models also indi-
cated that population growth was relatively
insensitive to egg mortality, but quite sensitive
to the mortality of older and larger stages. The
new model structure and analysis provided key
insights for developing appropriate management
strategies which targeted survival enhancement
of adult sea turtles (i.e., turtle excluder devices to

v www.esajournals.org 2 February 2013 v Volume 4(2) v Article 20

CONCEPTS & THEORY CUDDINGTON ET AL.



reduce by-catch losses).

IDENTIFYING MODELS THAT ARE RELEVANT TO

MANAGEMENT DECISIONS

While there are merits and drawbacks of
different modelling approaches, some frame-
works may be better able to support manage-
ment decisions under conditions of global change
(Table 1). There are four classes of models
commonly used to guide management decisions:
expert opinion or rule-based models, statistical
extrapolation, process-based models and detailed
simulation models.

Traditionally, the most common approach to
management has involved expert opinion or
rules of thumb (Possingham 1996, Sutherland
2006). This approach is most appropriate where
there is a need for repeated response to manage-
ment problems that remain similar over time. It
works well within a hierarchical institution, and
facilitates integration of institutional constraints
and legacy information from a history of man-
agement applications. While the development of
a rule may take some time, expert opinion can be
accessed rapidly in most cases, and in some cases

is the only information available (O’Neill et al.
2008). However, the role of theory and the
assumptions behind expert opinion and rules of
thumb are rarely transparent, so there may be
little potential for evaluating the assumptions
that support models of this sort. Expert opinions
inevitably are divergent (e.g., Czembor et al.
2011), although there may be techniques for
building consensus among a group of experts
(e.g., Delphi technique, Rowe and Wright 1999).
It is also possible that the rules of thumb or
expert opinion do not include adequate concepts
of scale and uncertainty (e.g., Burgman 2005) that
are a requirement for appropriate management
under global change (see Box 1). However, when
the main requirement is that a decision be made
extremely quickly with very limited data, expert
opinion or rule-based models have a clear time
advantage over other types of models.

Another common approach to management
decisions is extrapolation based on observed
statistical relationships. A benefit as well as a
potential drawback of these models is that they
are based on data from past conditions of the
system. When these data have been previously
collected, rapid decisions based on statistical

Fig. 1. Schematic depiction of the relationships between ecological theory, models and management. Note that

more than one model can correspond to a given theory, multi-model comparison informs management decisions,

and management outcomes may feed back to theory.
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relationships may be possible. However, under
conditions of global change, models based on the
past behaviour of a system may not be suitable
for projection forward (Williams et al. 2007,
Lawler et al. 2010). For example, changes in
climate are predicted to change the geographic
range of many species (e.g., Elith and Leathwick
2009). Niche-based models such as MaxEnt
(Phillips et al. 2006) use species occurrence data,
and climatic conditions at those locations, to
create correlations that are used to extrapolate
the future range of species under climate change
(e.g., Rodder and Lotters 2010). These models,
however, do not explicitly include important
ecological processes such as demographic rela-
tionships or interspecific interactions that may
also limit geographic range. If these ecological
relationships are also sensitive to climatic condi-
tions, (e.g., perhaps the outcome of competition
is a nonlinear function of temperature), their
effects may not be incorporated in predictions
based on extrapolation from current conditions.
Because of this limitation, practitioners are
increasingly recommending hybrid models that
include both ecological mechanisms and correla-
tional components (e.g., Thuiller et al. 2008,
Cabral and Schurr 2010), where extrapolated
changes in climate are linked directly to process-
es known to shape species’ ranges such as abiotic
and demographic constraints, species interac-
tions and dispersal limitation (Davis et al. 1998,
Buckley 2008).

When making decisions about the future, we
must consider which approach is most robust to
changing conditions that may be outside the
scope of past conditions (Williams et al. 2007).
For solely data-driven or statistical models,
extrapolation beyond known data is particularly
problematic, and sometimes impossible. On the

other hand, the underlying assumptions of
extrapolation models are often quite transparent,
being based in statistical theory. In addition,
statistical models do allow the sophisticated
partitioning of uncertainty among fixed model
elements. However, the correlative rather than
causal nature of these models may limit our
ability to determine the sensitivity of model
predictions to alternative management strategies.

In contrast to expert opinion or rule-based
models, but like extrapolation models, process-
based models are built on explicit assumptions
about how a system works. This transparency of
assumptions is further enhanced by the mathe-
matical formulation of process models. Whereas
the assumptions of extrapolation models are
based on statistical theory, the assumptions of
process models are grounded in ecological
theory. Like extrapolation models, process-based
models also allow for the partitioning of uncer-
tainty in model predictions. As a result, manag-
ers may target any part of the ecological process
for evaluation of assumptions and updating of
parameter estimates. Because these models are
based on causal mechanisms rather than correla-
tion, our confidence in extrapolating beyond
known data is enhanced. Of course, there is
always uncertainty about how an ecological
process will interact with novel global change
conditions. This uncertainty about which model
is appropriate should always be acknowledged,
and can be incorporated into our predictions
using multi-model inference (e.g., averaging
predictions across alternative models). In fact,
comparing models with alternate process formu-
lations can inform management regarding the
range and probability of given outcomes (Fig. 1).
One less avoidable drawback of this approach is
that the development and comparison of process-

Table 1. Potential benefits of different modeling approaches in a changing world (see text for more explanation)

on a 1–3 scale where 3 is best.

Opinion or rule Extrapolation Process model Complex simulation Potential benefit

��� �� � � Allows rapid response
��� � �� �� Integrates institutional requirements
� ��� ��� � Transparent assumptions
� ��� ��� ��� Integrates and distributes uncertainty
��� �� � � Lower data requirements
� � �� ��� Explicit scaling
��� �� � � Ease of development
� � ��� �� Appropriate for projection
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based models requires more resources (informa-
tion, time and ability) than rule-based models
and extrapolation models.

Detailed simulations of specific systems are a
heterogeneous category of models that may
range from very detailed, but purely process-
based, descriptions to mixtures of rule-based,
statistical and process-based components. While

complex simulation models often include de-
scriptions of ecological systems that are based on
theory, the explicit mathematical formulation
that corresponds to the simulation rules may
not be provided, clouding transparency. In
addition, the use of statistical relationships may
be problematic for projection. Even when purely
process-based, these complex simulation models

Box 1

‘‘Are we lost in parameter space?’’ and other questions to ask when developing a
process-based model

The advantages of process-based models cannot be taken for granted. Some vigilance is
required to ensure that the model aligns with management needs in a changing world. We
suggest that the following questions should be addressed during model development.

Tactical or strategic? Management needs that are more immediate may require tactical models
that include details specific to one or a limited number of systems, locations and periods of time.
Long-range planning requires more strategic models that generalize across conditions
encountered at different times and places. With increasing uncertainty about future conditions,
the relative importance and utility of tactical models may appear to rise. However, managers
faced with increasing uncertainty also require a robust understanding of the process being
modeled, which is more likely to be derived from a more general model. There is often utility in
the combined use of separate tactical and strategic models, to simultaneously address different
management needs (Holling 1966).

Is the scale of the process in flux? Global change includes changes in climate, habitat connectivity
and nutrient dynamics at various spatial and temporal scales. If key scales of a process are likely
to be in flux over the period targeted for management, the model should allow an exploration of
how these changes affect outcomes. Changing the scale of a process can alter the relative
importance of key drivers, or disrupt the process altogether.

What are the other scales to consider? When modeling processes at the scale of interest (e.g., the
forest stand), the conditions at this scale may depend on linked processes at scales above
(landscape, region, continent) and below (local, microsite, seedbed). In some cases this linkage
can be safely incorporated into constant or trended parameter values (e.g., increasing CO2)
leading to a simpler and easier to interpret model formulation, but in other cases the dynamics
of the linkage must be included in the model.

Are drivers in flux? If global change is expected to alter the relative importance of key drivers,
it is especially important to consider alternative process models. A model-averaging approach
can be used to account for shifting drivers. It may be advisable to lower the bar for inclusion of
alternative models during the model averaging process when we suspect fundamental changes
in the focal ecological process over time.

Can we tune the frequency and magnitude of extreme events? Because the frequency and
magnitude of extreme events are in flux with global change, models must allow for an
exploration of how this variation affects dynamics.

Are we lost in parameter space? Complex simulation models can be process-based, but a highly
dimensional model will be difficult to analyze. As the number of estimated parameters
increases, the size of the parameter space (i.e., the number of possible combinations of
parameter values) increases, and the potential for an informative sensitivity analysis declines.
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include a larger number of parameters and
functions than is typical for process-based
models. Simulating a specific system in such
detail can facilitate the investigation of manage-
ment interventions at multiple spatio-temporal
scales, and makes full use of available informa-
tion. However, the complexity of a detailed
simulation model can obscure even the most
explicit assumptions. Further, some assumptions
may be violated inadvertently because of pro-
gramming structure.

These simulation models are also data inten-
sive. In most cases, limited resources will prevent
the parameterization of more than one detailed
model, limiting opportunities for multi-model
inference (Carpenter 2003). Such analysis is
essential to produce meaningful predictions.
Valle et al. (2009) found that alternate modeling
assumptions in the forest stand simulation model
SYMFOR can account for 66–97% of the variance
in predicted stand dynamics. While the authors
were able to complete this comparison of
differing models formulations for SYMFOR, they
note that it may be very difficult to do the same
for exceedingly complex models.

Given a simulation model based on many
interacting functions, searching or sampling the
large parameter and function space sufficiently to
support reliable insights may be an extraordi-
narily lengthy process. In the situation where
there are many resources (e.g., time, data,
money), and in the hands of an expert modeler
who can clarify assumptions for managers, this
can be an excellent approach for decision-making
at a particular location. Generalizing from these
results to another system, location or future
global change condition, however, is more
difficult than with similar process-based models
because of the data requirements, and the
analytical difficulties generic to complex simula-
tions.

MODELLING AND MANAGING FOR GLOBAL

CHANGE: CHALLENGES FOR PREDICTION

Of the four major classes of models we have
identified, process-based models offer some clear
advantages over other approaches for managing
ecological systems in a time of global change.
Process-based models provide transparent as-
sumptions, the ability to extrapolate beyond

known conditions, and the potential for easy
analysis of multiple management scenarios.
Greater use of these models, however, also
presents significant challenges for managers
and researchers alike. Here, we describe the
challenges of using process-based models, and
the emerging research needs required to model
the responses of ecological systems to global
change.

Appropriate scales and complexity
Successful modeling implies a series of com-

promises regarding the resolution, scale and
complexity of the included spatial, temporal
and ecological processes, where simplification is
achieved using our understanding of the system.
However, our intuitions about what spatial and
temporal scales are relevant, and what degree of
model complexity is appropriate, may be unre-
liable when modeling for global change predic-
tions.

In addition, some authors have argued that
one of the reasons for the gap between ecological
theory and management policy is that the spatial
and temporal scales of much experiment and
modeling are not matched with management
scales (Stevens et al. 2007). Just considering the
spatial axis, models constructed to guide local
decisions will require decisions about: the size of
the area described, the spatial features within
that area which will be included, the local,
regional and global spatial processes that affect
these features, and the connection to both
temporal and ecological processes.

Decisions about the relevant spatial and
temporal scales and ecological processes that
influence a response of interest (e.g., a population
growth) can be guided by theory. For example,
Rayfield et al. (2009) considered the connectivity
of habitat patches for American marten (Martes
americana) and its two primary prey species to
determine the optimal area and arrangement to
achieve management objectives. This kind of
process-based approach to reserve design also
allows for modification of the relevant mecha-
nisms of under future climate scenarios.

Global change may alter the relevant spatial or
temporal scales of our local management model.
Forest stand growth models are typically param-
eterized for specific species and regions (Porté and
Bartelink 2002). These models traditionally focus
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on change in forest stand characteristics (e.g.,
basal area), since foresters typically make deci-
sions (e.g., harvesting) at the stand level. It seems
clear that models of forest stand dynamics should
be related to the scale at which management
decisions are made. However, in light of climate
change, processes operating at scales different
from the scale of decision-making may be critical
to description and prediction (Sturtevant et al.
2007), forcing us to reconsider the scale and scope
of models required to answer management
questions. In the case of forest dynamics, global
atmospheric trends in carbon may be important
for making predictions about stand growth
(Purves and Pacala 2008). In some cases, meta-
models that integrate two or more spatial scales
and the corresponding processes (Papaik et al.
2010) may be a useful approach.

In addition to reconsidering the relevant
spatial or temporal scales for our predictions,
we may also need to reconsider which ecological
processes may be relevant. For example, initial
projections of future fish productivity and fishing
yields in a global warming scenario were
developed by scaling up the food web using
temperature-dependent primary productivity
(Sarmiento et al. 2004, Cheung et al. 2010).
Cheung et al. (2009, 2010) predicted northern
range shifts, and northern increases in fisheries
catch potentials. The focus on the effects of
temperature on a basal trophic level seems a
reasonable and process-based approach to pre-
dicting climate change impacts on fisheries.
However, it was soon discovered that other,
perhaps less obvious, climate change factors,
such as ocean acidification and decreased oxygen
levels, resulted in decreases in predicted fisheries
catch by 20–30% (Cheung et al. 2011). Moreover,
even this more sophisticated approach to global
change does not consider the direct effect of
temperature on secondary productivity, which
could also significantly reduce fish production
(Lopez-Urrutia et al. 2006, O’Connor et al. 2011).
Identifying which processes are relevant and
how they change with climate conditions is no
simple task.

Additional sources of uncertainty related
to global change

While process-based models may be superior
for extrapolation to novel conditions, it is clear

that global change will reduce our confidence in
these predictions, even when we are reasonably
certain that we have identified the appropriate
spatial and temporal scales and the relevant
ecological processes. Most practitioners are
aware that models based on observational data
have two sources of uncertainty in their predic-
tions: data measurement error, and process
approximation error. These uncertainties can be
differentiated using hierarchical models includ-
ing (Bayesian) state-space modeling approaches
(Clark 2007). One major impact of global change
on our ability to model ecological systems is the
requirement that we consider additional types of
uncertainty stemming from the fact that there are
no observational data available.

Additional sources of uncertainty arise when
the model of local ecological processes requires
inputs describing larger scale land use or climate
change. For example, there are many General
Circulation Models which have various algo-
rithms, parameterizations and scenarios of future
production of greenhouse gases that all contrib-
ute to differences in the predictions of climate.
When creating an ecological management model
it may be unclear which of these approaches are
the most appropriate (see Beaumont et al. 2008),
which is troubling since the predictions of these
models may vary widely for some aspects of
climate (e.g., precipitation). Climate predictions
may also focus on mean conditions when
extreme events or variance are most important
for the organisms under study. Moreover, circu-
lation models are generally created to make
predictions over large geographical regions and
will require downscaling to produce predictions
for local and regional scales (see discussion in
Littell et al. 2011).

Uncertainty in the rate and magnitude of
changing climate factors at the local or regional
scale is compounded by uncertainty in the
responses of ecological processes to these chang-
es. In many cases, it is not yet clear if a process
(e.g., predation) changes linearly with tempera-
ture, hyperbolically with precipitation, or wheth-
er the response depends on another factor
entirely. Some uncertainty is inherent in the
process, as in larval dispersal of coastal marine
species (Siegel et al. 2008), while other uncer-
tainty may represent a research gap in relating a
process to climate factors. For example, a simple
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conceptual model assumes that temperate and
polar regions will experience the greatest impact
from climate change because the expected
changes in temperature are greatest in these
regions. However, recent work on biogeographic
variation in thermotolerance indicates that trop-
ical insects have less tolerance for temperature
variability than those of temperate regions.
Therefore, the number of species extinctions
may be greater in tropical areas (Deutsch et al.
2008). The assumption that tropical and temper-
ate insects will respond in the same way to
climate change clearly leads to a different
conclusion than a model based on varying
responses. It is possible that new ecological
research can better characterize and perhaps
reduce this uncertainty in the ecological re-
sponse. But in the absence of such information,
management scenarios should consider the
range of possible uncertainties in ecological
responses.

Legacy effects
While global change may focus our modeling

effort forward towards uncertain future condi-
tions which alter ecological processes, we also
need to look backwards, since historical, tempo-
ral and spatial patterns of natural systems also
can influence our ability to predict the results of
future change. Past abiotic events, spatial config-
uration and species assemblages are known to
constrain subsequent ecological processes
(known as legacy effects; Peterson 2002, James
et al. 2007, Cuddington 2012).

While standard statistical techniques routinely
use past conditions to predict future states,
legacy effects can be particularly long-lasting,
far beyond durations that are typically used as a
frame of reference. Plow horizons in soils can last
hundreds of years (McLauchlan 2006), and such
changes in abiotic conditions can alter population
and community dynamics for long periods,
sometimes even more so than current land uses.
In addition, the history of populations also can
constrain genetic or culturally transmitted infor-
mation to a subset of its past breadth, so that, for
example, a population no longer contains the
genetic variability that would have enabled it to
respond to novel conditions. When attempting to
extrapolate forward into novel conditions, past
events, even past management activities, often

need to be considered.
Combinations of legacy effects and accelerated

change may have unprecedented impacts. Spe-
cies introductions are escalating with increasing
trade (Ewel et al. 1999), and some invasive
species produce long-lasting changes to the
ecosystem that persist after their removal (e.g.,
elevated nitrogen levels in the soil following
invasions by nitrogen-fixing plants; Liao et al.
2008). Such legacy effects are important contrib-
utors to the success of subsequent invaders and
native species and can cause problems for
restoration following invasion. Currently, legacy
effects have been modeled using statistical or
simulation approaches (e.g., Gimmi et al. 2012),
however, these types of relationships call for
process-based models that explicitly include
mechanisms which incorporate time-dependent
responses in the form of time lags or irreversible
changes in land use that constrain future
ecological responses.

Threshold dynamics
In some systems, nonlinear responses to

changes in environmental conditions or species
densities make the system more likely to abrupt-
ly cross a threshold from one ecosystem state to
another (i.e., alternative stable states, see Beisner
et al. 2003). Such threshold effects are a particular
challenge for both management and modeling,
even if we were working in the absence of global
change. Nonlinear responses can lead to a small
change in conditions resulting in a large change
the system, and in some cases a similar small
change in the reverse direction will not produce a
reversal of state (e.g., when clear lakes become
dominated by algae or when vegetated regions in
arid landscapes become barren). Lengthy data
series are required to confirm the presence of
such dynamics (e.g., Bestelmeyer et al. 2011), but
such data are unlikely to exist given the current
rates of rapid global change. Moreover, Suding
and Hobbs (2009) note that human impacts may
increase the range of systems where such
threshold dynamics are likely to occur.

Under rapid global change, communities and
ecosystems may also have new quasi-equilibrium
states (Polasky et al. 2011). For example, Hughes
et al. (2007) found that coral reassembly after
bleaching depended on whether herbivorous fish
where present in high density or were absent.
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Overfished areas had different, novel, communi-
ty states. Global change events clearly present
novel combinations of external drivers that in
turn can create novel system states from which it
is difficult to recover to more desirable states.
While rapid global change may preclude strong
evidence that a system can undergo threshold
dynamics, scenario imaging and multiple model
formulations can be used to explore the manage-
ment option space.

Socio-economic impacts
In light of global change, management strate-

gies that mitigate both economic and ecological
impact will have great value. Moreover, there has
been great success in the use of models that
integrate both economic and ecological factors to
evaluate management strategies (Epanchin-Niell
and Hastings 2010). Management decisions may
alter when financial, sociological and biological
factors are all included in the evaluation process.
For example, the removal of coastal vegetation
for development (i.e., mangrove swamps and salt
marshes), can expose the shoreline to greater
flood surge. At the same time, greater flooding
from storm surge is predicted with global climate
change due to rising sea levels and increased
storm intensity caused by rising water tempera-
tures (IPCC 2007, FitzGerald et al. 2008). The
protection and restoration of coastal wetlands
can be more cost effective than barrier construc-
tion as a means to reduce storm damage
(Halpern et al. 2007, Costanza et al. 2008,
although see Francis et al. 2011).

One framework for jointly modeling ecological
and socio-economic systems is that of ecosystem
services. Ecosystem service models that integrate
ecological and climatic processes with manage-
ment constraints will be most useful, although it
is anticipated that financial and sociological
factors will be subject to the same rapid change
and uncertainty which is associated with ecolog-
ical processes in a time of global change.

Moreover, the dynamics of the cost and
effectiveness of management strategies may
exhibit some of the same kinds of nonlinear
responses that we find in ecological systems.
Wintle et al. (2011) modelled optimal manage-
ment strategies for the South African fynbos. This
habitat boasts a high percentage of endemic plant
species, but climate change predictions suggest

that this region will be subject to more frequent
fire events, which could lead to the destruction of
plants before they reach reproductive maturity.
The authors find that the optimal management
strategy depends non-linearly on the available
budget. At low budget, fire management is the
most effective strategy because every dollar
results in a larger increase in population persis-
tence. At high budget, an initial investment in
habitat management is most important, followed
by fire management as diminishing returns are
realized from habitat protection. Process-based
models that describe both the cost and effective-
ness of proposed management strategies there-
fore have an important role to play in
determining optimal solutions.

CONCLUSIONS

Global change is altering the context of
management decisions (e.g., climatic, economic
and land-use conditions), and therefore altering
the ability of different predictive tools to inform
these decisions. Process-based models are partic-
ularly appropriate to guide management deci-
sions under conditions of ubiquitous and rapid
global change. Such process-based modeling
may guide management decisions, but global
change requires that we pay particular attention
to the appropriate spatial and temporal scales
describing a relevant ecological process, the types
of uncertainty involved, effects of past condi-
tions, the possibility of threshold dynamics, and
the importance of socio-economic feedbacks.
Unfortunately, knowledge of the relevant pro-
cesses that may determine a system’s response to
future conditions is extremely limited, and basic
models of these processes may be nonexistent.
These challenges necessitate a clear line of
communication between scientists and managers
in developing models for management, and a
willingness to alter strategies as models are
improved, with particular emphasis on the
underlying ecological theory, assumptions, and
appropriate level of complexity.
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