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Abstract

Increased temperatures and more extreme weather patterns associated with global climate change can interact with

other factors that regulate animal populations, but many climate change studies do not incorporate other threats to

wildlife in their analyses. We used 20 years of nest-monitoring data from study sites across a gradient of habitat frag-

mentation in Missouri, USA, to investigate the relative influence of weather variables (temperature and precipitation)

and landscape factors (forest cover and edge density) on the number of young produced per nest attempt (i.e., pro-

ductivity) for three species of songbirds. We detected a strong forest cover 9 temperature interaction for the Acadian

Flycatcher (Empidonax virescens) on productivity. Greater forest cover resulted in greater productivity because of

reduced brood parasitism and increased nest survival, whereas greater temperatures reduced productivity in highly

forested landscapes because of increased nest predation but had no effect in less forested landscapes. The Indigo Bun-

ting (Passerina cyanea) exhibited a similar pattern, albeit with a marginal forest cover 9 temperature interaction. By

contrast, productivity of the Northern Cardinal (Cardinalis cardinalis) was not influenced by landscape effects or tem-

perature. Our results highlight a potential difficulty of managing wildlife in response to global change such as habitat

fragmentation and climate warming, as the habitat associated with the greatest productivity for flycatchers was also

that most negatively influenced by high temperatures. The influence of high temperatures on nest predation (and

therefore, nest predators) underscores the need to acknowledge the potential complexity of species’ responses to cli-

mate change by incorporating a more thorough consideration of community ecology in the development of models of

climate impacts on wildlife.
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Introduction

Increased temperatures and weather variability associ-

ated with global climate change can have profound

effects on plants and animals. The distribution, abun-

dance, and phenology of numerous species have been

affected (Parmesan & Yohe, 2003; Root et al., 2003), and

extinction risks are predicted to rise through the next

century in response to climate change (Maclean &

Wilson, 2011). The task of mitigating the potential

effects of climate change on species and their habitats is

particularly daunting because addressing the funda-

mental challenges of climate change (i.e., regulation of

greenhouse gases) largely falls outside the purview of

land managers. Nevertheless, climate change does not

act upon populations in isolation, but instead can exhi-

bit synergetic interactions with other factors known to

limit populations (Opdam & Wascher, 2004; Rowe,

2007; Brook et al., 2008; Mantyka-Pringle et al., 2012).

Knowledge of how climate change interacts with threats

that managers may control is a necessary prerequisite to

developing conservation plans. Despite this, nearly half

of published studies on climate change fail to consider

other threats to long-term population stability of wildlife

in their analyses (Felton et al., 2009).

Habitat loss and fragmentation have had pervasive

effects on wildlife (Lindenmayer & Fischer, 2006) and

may exacerbate the effect of climate change on popula-

tions. Habitat fragmentation can interrupt northward

range expansions that occur in response to warming tem-

peratures (Opdam & Wascher, 2004), and may isolate

habitat specialists in patches that undergo transitions to

suboptimal temperature and rainfall patterns (Stefanescu

et al., 2011). More generally, the effects of climate change

on wildlife can be spatially explicit, as variance in local

conditions leads to variation in the interaction between

climate and habitat features (e.g., Wolf et al., 2010;

Fern�andez-Chac�on et al., 2011). In many cases, however,

land-use patterns influence populations far more
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substantially than climate (Rowe, 2007; Hof et al., 2011),

so understanding the relative influence of (and potential

interaction between) habitat loss and fragmentation and

climate is a critical component of developing successful

conservation strategies (Willis & Bhagwat, 2009).

Breeding songbirds present an ideal study system in

which to investigate potential interactions between habi-

tat fragmentation and climatic variables. Landscape fac-

tors have been shown to affect midwestern songbirds as

described by the fragmentation hypothesis (Thompson

et al., 2002). Many species of songbirds have lower nest

survival and higher rates of brood parasitism from

Brown-headed Cowbirds (Molothrus ater) in highly frag-

mented habitats (e.g., Robinson et al., 1995), and in areas

with increased edge densities (e.g., Peak, 2007), which

may result in sink populations (Donovan et al., 1995,

1997). However, songbird reproduction may also be

influenced by climatic variables such as rainfall and tem-

perature. Winter and breeding season rainfall patterns

have been shown to influence clutch size and hatching

rates (Rotenberry & Wiens, 1991), the number of young

per nest attempt (Rodr�ıguez & Bustamante, 2003), the

number of young produced per female per breeding sea-

son (Chase et al., 2005), and nest survival rates (Woolfen-

den & Fitzpatrick, 1984; Collister & Wilson, 2007).

Similarly, warm ambient temperatures (e.g., 24–36 °C)
can reduce egg viability (Cooper et al., 2005; Olsen et al.,

2008), and small differences in mean breeding season

temperatures (e.g., ~4 °C; Chase et al., 2005) can influence

the number of young produced per successful nest (here-

after fledging brood size). Furthermore, increased tem-

peratures may decrease nest survival by increasing

activity of frequent nest predators such as snakes (Morri-

son & Bolger, 2002), although this is not always the case

(e.g., Dyrcz & Halupka, 2009; Wesołowski & Maziarz,

2009).

We assessed the effect of climate and landscape fea-

tures on breeding productivity measures for three song-

bird species in the midwestern United States using nest

data spanning 20 years across a gradient of habitat

fragmentation. We evaluated hypotheses that rainfall,

temperature, landscape forest cover, and edge density

had additive and/or synergetic effects on the number of

young produced per nest attempt (hereafter productivity)

through their influence on nest survival and fledging

brood size. On the basis of our review of the literature,

we predicted that an increase in temperature would be

associated with reduced nest survival because of

increased predator activity, and reduced fledging brood

size because of increased egg or nestling mortality. We

also predicted that rainfall would increase nest survival

by reducing predator activity but reduce fledging brood

size through nestling mortality associated with heavy

rainfall. Furthermore, on the basis of reported effect sizes,

we predicted that temperature and precipitation effects

on nest survival and overall productivity would be mod-

est compared with the negative effects of reduced land-

scape forest cover and increased edge density, two

measures that relate to the substantial effects of forest

fragmentation on midwestern songbirds (Robinson et al.,

1995; Thompson et al., 2002).

Materials and methods

Data collection

We compiled nest-monitoring data from 11 studies that

occurred throughout Missouri, USA, during 1991–2011. Studies

occurred in a variety of wooded habitats, including old fields

within forested areas, mid- and late-successional oak-hickory

forests, bottomland hardwood forests, cottonwood plantations,

savannahs, oak woodlands, and riparian floodplain forests. The

location and duration of each study varied (Fig. 1), but all stud-

ies were associated with the same research group and followed

similar field protocols. Nests were found by systematic search

or from behavioral cues (Martin & Geupel, 1993) and were typi-

cally monitored every 1–4 days until the nest fledged or failed.

Nests with unknown or questionable fates (i.e., >4 days

between the penultimate and final nest check and no evidence

of fledglings or signs of predation noted) as well as those that

failed because of researcher activities were right censored to

minimize the potential for bias in our survival estimates (Mano-

lis et al., 2000).

Fig. 1 Nest locations in a study of landscape and weather factors

affecting nest survival, fledging brood size, and overall produc-

tivity of songbirds in Missouri, USA, 1991–2011. Background

shading indicates the percent forest cover in a 10 km radius, with

darker shading indicating higher forest cover (range: <1–97%).

Numbers refer to years of study.
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We limited our analysis to two migrant species and one resi-

dent species that were each well represented across a broad

range of habitat fragmentation. The migratory Indigo Bunting

(Passerina cyanea, hereafter bunting) builds nests in saplings

and shrubs within old fields, along forest edges, and in dense

understory vegetation in forests. The migratory Acadian

Flycatcher (Empidonax virescens, hereafter flycatcher) is a forest

interior species that typically nests in the subcanopy, often in

small understory trees. The Northern Cardinal (Cardinalis cardi-

nalis, hereafter cardinal) is a resident species and habitat gener-

alist that nests in shrubs and trees at a variety of heights in old

fields and wooded habitats. All three species are predicted to

remain at relatively high densities in Missouri on the basis of

several future climate/habitat scenarios (Matthews et al., 2011).

Our dataset included 2003 bunting nests, 1475 flycatcher nests,

and 551 cardinal nests that were active for � 1 nest check interval

(i.e., nests never observed with eggs or young were excluded

from analysis). Geographic coordinates for nests were recorded

with handheld GPS units at the time of the study (n = 2558) or

from nest (n = 1408) or territory (n = 63) maps that were digi-

tized in a GIS. A preliminary analysis suggested that forested

land cover surrounding our nests changed <3% between the ear-

liest (1992) and latest (2006) available land cover databases, so we

used the 2001 National Land Cover Database (NLCD; http://

www.mrlc.gov/) to calculate landscape forest cover and edge

density for all nests to avoid compatibility issues between differ-

ent NLCD releases. We generated a raster in which we reclassi-

fied pixels as forest or nonforest and used the focal statistics tool

to calculate percent forest in a 10 km radius around each nest;

we chose this radius because it best explains variation in nest

predation for forest songbirds in the United States (Lloyd et al.,

2005). We then used Fragstats v3.3 (McGarigal et al., 2002) with

the raster to calculate edge density (defined as the interface

between forest and nonforest) at a local scale (500 m radius) to

reflect the hypothesis that nest predators preferentially use edges

(Dijak & Thompson, 2000; Blouin-Demers & Weatherhead, 2001).

We obtained daily precipitation and daily high-temperature data

from 32 weather stations (mean distance from each nest to near-

est temperature station: 18.1 � 0.1 km; to nearest precipitation

station: 13.2 � 0.1 km; n = 4029) from the Midwestern Regional

Climate Center (http://mcc.sws.uiuc.edu). For the nest survival

analysis we calculated mean precipitation and mean daily high-

temperature values for each nest interval (see below for

explanation of nest intervals). For the fledging brood size

analysis, we calculated mean daily high- and maximum daily

high-temperature values across the entire nest cycle and mean

and maximum precipitation values across the nestling stage for

each successful nest using actual or estimated nest initiation,

hatch, and fledge dates derived from nest-monitoring data (see

Table 1 for justification of the selection of weather variables).

Analysis

Our overall statistical approach was to construct a set of a priori

candidate models explaining nest survival and a separate set

explaining fledging brood size and then combine predictions

from both model sets using a bootstrapping approach to

estimate effects of the climatic and fragmentation covariates on

productivity. This approach allowed us to assess whether there

was a differential effect of climate and habitat on two important

components of productivity, and also allowed us to assess

hypotheses specific to each component based on our review of

the literature. We evaluated support for nest survival and fledg-

ing brood size candidate models within an information theo-

retic framework (Burnham & Anderson, 2002). We evaluated

support for models with Akaike’s Information Criteriaon (AIC),

the difference between the top model and other candidate mod-

els (DAIC), and Akaike weights (wi), which represent relative

support for each model in the candidate set and sum to one. We

model-averaged predictions, which accounts for model-selec-

tion uncertainty by weighting predictions across the entire set

of candidate models. Furthermore, model averaging and inter-

preting predictions are more appropriate than model-averaging

parameter estimates when some parameters occur as additive

and interactive terms in various models (Burnham & Anderson,

2002).

We modeled nest survival by the logistic exposure method,

which considers the fate of a nest for each nest-monitoring

interval and uses a modified logistic link function to account for

exposure, measured as the number of days in each interval

(Shaffer, 2004). Repeated observation intervals on each nest do

not represent pseudoreplication in survival models because the

precision of parameter estimates depends on the number of

mortality events rather than the number of intervals (Allison,

2010). We evaluated 7 models representing hypotheses of cli-

matic and fragmentation effects on nest predation (Table 1), all

of which included a term for nest stage (laying, incubation,

nestling) because it strongly influences nest survival rates for

flycatchers and buntings (Cox et al., 2012a). All models

included a random effect for study site (as defined by the origi-

nal researchers with the exception of one study in which nine

study sites were merged into two sites because of shared bor-

ders) to acknowledge potential correlated fates of nests within

sites. There was no serious multicollinearity (all tolerance val-

ues >0.4; Allison, 1999) among the explanatory variables. The

logistic exposure method estimates daily nest survival, which

we converted into period survival (i.e., probability of survival

from the first day an egg is laid until young fledge the nest) by

raising daily survival to the power n where n equaled the mean

number of days in a nest cycle for each species at our study

sites (buntings: 25, cardinals: 25.5, flycatchers: 30), with period

survival confidence intervals calculated using the delta method

(Armstrong et al., 2002; Powell, 2007).

For models predicting fledging brood size, we used the num-

ber of young present in a successful nest on the penultimate

monitoring visit as the response variable, and only included

nests for which exact counts were recorded. We fit our response

variable as a function of our covariates using generalized linear

models with a normal distribution, an approach that is most

robust to deviations from an assumed distribution when ana-

lyzing egg or nestling count data (McDonald & White, 2010).

We evaluated 9 models representing hypotheses from the litera-

ture regarding fragmentation and climatic effects on fledging

brood size (Table 1). All models included a random effect for

study site, a term for ordinal date to control for the fact that

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 1064–1074
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Table 1 A priori candidate models describing fragmentation and weather effects on nest survival and fledging brood size for three

species of songbirds in Missouri, USA, 1991–2011

Model Variables Description Citations

Nest survival models

Null* Nest stage Null model accounts for documented

variation in predation rates by nest stage

1

Fragmentation Forest cover 9 edge density Landscape features influence nest survival,

but edge effects are not linear across a

gradient of fragmentation

2, 3, 4

Fragmentation +
temperature

(Forest cover 9 edge density) +
mean daily high temperature +
ordinal date†

Landscape effects, but warm temperatures

may influence some predators’ behaviors

5

Fragmentation 9

temperature

(Forest cover 9 edge density 9

mean daily high temperature) +
ordinal date†

Warm temperatures may change some

predators’ behaviors, but important

predators differ with respect to landscape and edge

5, 6

Weather Precipitation + mean daily high

temperature + ordinal date†
Weather influences nest survival 5, 7

Global (additive) (Forest cover 9 edge density) +
mean daily high temperature +
precipitation + ordinal date†

Global additive nest survival model

Global (interactive) (Forest cover 9 edge density 9

mean daily high temperature) +
precipitation + ordinal date†

Global nest survival model with

landscape/temperature interaction

Fledging brood size models

Null* Ordinal date + parasitism status Null model accounts for documented seasonal declines

in songbird clutch size and reduced productivity

because of cowbird brood parasitism

8, 9

Forest cover Forest cover Parasitism and predation (and thus partial predation)

occur more frequently in less forested landscapes, but

edge effects may not influence cowbird abundances

or parasitism rates

2, 4, 10, 11

Fragmentation Forest cover 9 edge density Rates of parasitism may also be influenced by edge effects 12, 13, 14

Mean temperature Mean maximum temperature

during nest cycle

High mean temperatures may induce

nestling mortality or reduce hatching

success, isolated from brood parasitism

15, 16, 17

Max temperature Max daily high temperature

during nest cycle

Extreme temperature events may induce egg or nestling

mortality, isolated from brood parasitism

17, 18, 19

Mean precipitation Mean precipitation during

nestling stage

Rainfall during the nest cycle may influence

nestling survivorship, isolated

from brood parasitism

19, 20, 21

Max precipitation Max precipitation during

nestling stage

Extreme rainfall events may induce

nestling mortality, isolated from brood parasitism

19, 22, 23

Global (mean

weather values)

Forest cover + mean daily

high temperature

during nest cycle + mean

rainfall during nest cycle

Global model (mean temperature and precipitation)

Global (extreme

weather values)

Forest cover + max daily high

during nest cycle +
mean rainfall during nest cycle

Global model (extreme temperature and

precipitation events)

Citations: 1Cox et al. (2012a); 2Robinson et al. (1995); 3Peak (2007); 4Donovan et al. (1997); 5Morrison & Bolger (2002); 6Cox et al.

(2012b); 7Woolfenden & Fitzpatrick (1984); 8Rowe et al. (1994); 9Donovan et al. (1995); 10Chapa-Vargas & Robinson (2006); 11Ford

et al. (2001); 12Lloyd et al. (2005); 13Hoover et al. (2006); 14Morse & Robinson (1999); 15Chase et al. (2005); 16Rotenberry & Wiens

(1991); 17Low & P€art (2009); 18Gre~no et al. (2008); 19Dawson & Bortolotti (2000); 20Mattsson & Cooper (2009); 21Siikam€aki (1996);
22Kirkpatrick et al. (2009); 23Burton (2006).

*Terms in the null model are included in all models in its candidate set.

†Ordinal date is included to separate temperature and seasonal effects.
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many passerines exhibit reduced clutch sizes across the breed-

ing season (Rowe et al., 1994), and a term for brood parasitism

status because of its substantial negative impact on nest

productivity (Burhans et al., 2000; Hoover, 2003).

Productivity per nest attempt. We combined model-based

predictions of nest survival and fledging brood size to calculate

productivity (i.e., number of young per successful nest times

the probability of successfully fledging young) as a function of

fragmentation and climatic covariates using a parametric boot-

strapping approach to incorporate the error associated with

both sets of predictions (Efron & Tibshirani, 1993). First, we

generated model-averaged predictions and unconditional stan-

dard errors for nest survival and fledging brood size across the

range of observed values for the fragmentation and climatic co-

variates. Because nest parasitism rate covaries with landscape

forest cover (Thompson et al., 2000) and was a covariate in the

fledging brood size model, we covaried parasitism rate with

forest cover when we generated the fledging brood size predic-

tions using parasitism rates derived from a simple logistic

regression that modeled parasitism as a function of forest cover

with a random effect for study site. We then randomly selected

predicted values for nest survival and fledging brood size from

a normal distribution of possible values defined by the pre-

dicted mean and standard errors and calculated productivity

per nest attempt as nest survival 9 fledging brood size. We

repeated the random selection 10 000 times and treated the

resulting mean value of productivity per nest attempt as a point

estimate of productivity and 2.5% and 97.5% percentile values

as confidence intervals. This bootstrap approach incorporated

uncertainty in the estimates that went into our predictions of

productivity per nest attempt, which is reflected in their confi-

dence limits. All analyses were performed using SAS v9.2 (SAS

Institute, Cary, NC, USA).

Results

During 1991–2011, the mean temperature in Missouri

during the songbird breeding season (i.e., May–August)

was 22.7 � 0.2 °C (range: 20.8–24.0 °C) and the mean

precipitation was 45.2 � 1.8 cm (range: 32.8–61.1 cm;

Fig. 2). Of 4029 nests, 2318 (58%) failed and 812 of 3809

(21%) nests for which contents were known were para-

sitized by cowbirds. The global model with a fragmenta-

tion 9 temperature interaction was the most supported

nest survival model for buntings and flycatchers,

whereas the null model was the most supported nest

survival model for cardinals (Table 2). Daily survival

rates increased substantially for buntings with increased

forest cover at low and high levels of edge density,

whereas the positive association between nest survival

and forest cover for flycatchers was only present at

higher levels of edge density (Table 3). Precipitation was

associated with an insubstantial decline in nest survival

for flycatchers and buntings across most observed pre-

cipitation values, whereas cardinal nest survival was

invariant with respect to precipitation (Fig. 3).

Abnormally high precipitation levels were associated

with substantially lower nest survival for buntings and

flycatchers, which is concordant with field observations

indicating that heavy rain events flooded and/or

knocked down nests. However, such events were rare

and the resulting confidence intervals were wide. Tem-

perature was included in the top four models for bun-

tings and flycatchers; most of the model weight

(buntings: 53%, flycatchers: 94%) included temperature

as a component of a 3-way interaction with forest cover

and edge density. Increased temperature was associated

with reduced nest survival for buntings and flycatchers

at high levels of forest cover, but was invariant at low

levels of forest cover. For example, period nest survival

for buntings marginally declined from 0.41 (95% CI: 0.25

–0.58) to 0.31 (95% CI: 0.21–0.42) from the lowest (14.4 °C)
to the highest (38.8 °C) recorded daily high temperatures

for nests in a landscape with 92% forest cover (the 95th

percentile of observed forest cover for buntings) but

remained essentially unchanged [0.10 (95% CI: 0.04–0.23)
to 0.13 (95% CI: 0.08–0.23)] for nests in a landscape with

19% forest cover (the 5th percentile). The effect was sub-

stantially larger for flycatchers, with period nest survival

declining from 0.84 (95% CI: 0.70–0.93) to 0.10 (95% CI:

0.04–0.24) across the same temperature range in a land-

scape with 94% forest cover and marginally declining

from 0.41 (95% CI: 0.17–0.69) to 0.26 (95% CI: 0.14–0.44)
for nests in a landscape with 23% forest cover.

We ran several post hoc analyses to clarify the interpre-

tation of our nest survival results. First, to provide statis-

tical support for the apparent dissimilarity in the three

species’ responses to temperature and landscape effects,

we grouped the data for all three species and reran the

global model, once with species as an additive effect and

once as an interaction with the original interaction term

(i.e., species 9 forest cover 9 edge density 9 mean

daily high temperature). There was strong support for

the species interaction (AIC = 13 661.0) compared with

the additive model (AIC = 13 696.4; DAIC = 35.4); indi-

cating the effects of forest cover 9 edge density 9 mean

Fig. 2 Mean songbird breeding season (1 May–31 August), pre-

cipitation (top line), and temperature (bottom line) in Missouri

during 1991–2011. Dashed lines indicate mean values.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 1064–1074
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daily high temperature varied by species. Second, to

determine whether the observed interaction between

temperature and landscape was driven primarily by

warm years rather than warm days as we modeled it, we

reran the global model for flycatchers and buntings

with a fixed effect for mean summer temperature (May 1

–August 31). There was little support for the addition of

mean summer temperature for flycatchers (DAIC = 1.74)

and buntings (DAIC = 2.00) as a DAIC value of 2 indi-

cates no increase in the model likelihood with the

addition of a single parameter. Therefore, we concluded

that the temperature effect was not a result of a few

warm years and predominately reflected seasonal varia-

tion in temperature. Finally, to determine whether the

precipitation and forest cover 9 edge density 9 temper-

ature effects were driven by patterns of nest predation

rather than nest survival (which also includes nest mor-

tality from other factors such as adult mortality, storms,

and nest abandonment), we ran the original set of mod-

els with a subset of the data for flycatchers and buntings

that excluded nests which failed from causes other than

predation. We did not perform this analysis for cardinals

because all but one nest in the original dataset failed

from nest predation. The two models that included

temperature as a component of a 3-way interaction with

forest cover and edge density were still top-ranked for

flycatchers (96% of overall model weight) and held sub-

stantially more support for buntings than in the original

analysis (90% of overall model weight; Table S1). In con-

trast with our original results, the global model (with a

term for precipitation) for both species was less sup-

ported than the same model without a precipitation term

(Table S1) and the effect size of precipitation was muted

(Fig. S1), which suggests that precipitation was directly

responsible for nest mortality rather than indirectly

reducing nest survival through its influence on preda-

tion rates.

Parasitism status had a pronounced influence on

fledging brood size; flycatchers, buntings, and cardinals

fledged 36% (1.57 vs. 2.46 young, n = 421 nests), 33%

(1.87 vs. 2.80 young, n = 803 nests), and 20% (2.00 vs.

2.51 young, n = 193 nests) fewer young, respectively, in

parasitized vs. unparasitized nests, regardless of

whether the cowbird egg(s) hatched and successfully

fledged. Parasitism rates were higher in landscapes with

lower forest cover regardless of edge density (Table 3).

The forest cover model was the top-ranked fledging

brood size model for all three species (Table 2), which

Table 2 Model-selection results from a priori candidate models describing fragmentation and weather effects on nest survival and

the number of young fledged per successful nest for three species of songbirds in Missouri, 1991–2011

Acadian Flycatcher Indigo Bunting Northern Cardinal

K* AIC† DAIC‡ wi
§ AIC DAIC wi AIC DAIC wi

Nest survival models n = 22 964¶ n = 19 688 n = 5935

Global (interactive) 13 5134.26 0.00 0.63 6704.93 0.00 0.42 1823.86 8.34 0.01

Fragmentation 9 temperature 12 5135.71 1.45 0.31 6707.64 2.71 0.11 1821.87 6.35 0.02

Weather 7 5139.71 5.45 0.04 6736.81 31.88 0.00 1820.55 5.03 0.04

Global (additive) 10 5141.72 7.46 0.01 6706.83 1.90 0.16 1821.01 5.49 0.03

Fragmentation + temperature 9 5143.13 8.87 0.01 6708.97 4.04 0.05 1819.03 3.51 0.09

Fragmentation 7 5165.85 31.59 0.00 6705.88 0.95 0.26 1816.47 0.95 0.31

Null 4 5162.68 28.42 0.00 6734.27 29.34 0.00 1815.52 0.00 0.50

Fledging brood size models n = 416 nests n = 664 nests n = 168 nests

Forest cover 6 817.17 0.00 0.36 1626.76 0.00 0.57 443.78 0.00 0.33

Fragmentation 8 818.54 1.37 0.19 1629.89 3.13 0.12 446.47 2.69 0.09

Null 5 819.10 1.93 0.14 1630.91 4.15 0.07 444.53 0.75 0.22

Max daily high temperature 6 820.44 3.27 0.07 1631.63 4.87 0.05 446.53 2.75 0.08

Mean precipitation 6 820.70 3.53 0.06 1632.02 5.26 0.04 446.48 2.70 0.09

Mean daily high 6 821.05 3.88 0.05 1631.48 4.72 0.05 446.36 2.58 0.09

Max precipitation 6 821.08 3.91 0.05 1632.29 5.53 0.04 446.51 2.73 0.08

Global (max values) 10 821.68 4.51 0.04 1632.61 5.85 0.03 450.46 6.68 0.01

Global (mean values) 10 821.73 4.56 0.04 1632.61 5.85 0.03 450.45 6.67 0.01

*The number of parameters. Models with interaction terms include all constitutive elements as per Brambor et al. (2006). Nest sur-

vival and productivity models include 1 and 2 parameters for the random effect of study site, respectively.

†Akaike’s Information Criterion.

‡The difference between the AIC score of the current and top-ranked model.

§Weight of evidence supporting the model.

¶Effective sample size calculated as described by Rotella et al. (2004).
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indicated that fledging brood size was also lower in less

forested landscapes independent of parasitism. All spe-

cies fledged substantially more young in highly forested

landscapes, regardless of edge density, largely because

of low parasitism rates (Table 3). Neither mean nor max-

imum daily high temperature across the nest cycle or

mean or maximum precipitation across the nestling

stage was associated with a change in fledging brood

size (� 1.5% change in estimated productivity between

the lowest and highest 5% observed values for each

variable).

Overall productivity per nest attempt was substan-

tially influenced by forest cover and to a lesser extent

edge density for flycatchers and buntings, although the

edge effect was only apparent in the least forested land-

scapes for flycatchers (Fig. 4). Because of the lack of

climatic effects on fledging brood size (Table 2), produc-

tivity per nest attempt closely followed the patterns of

nest survival, with flycatchers exhibiting substantially

reduced productivity in highly forested landscapes as

temperature increased and marginally reduced produc-

tivity in the least forested landscapes (Fig. 4). Buntings

exhibited a similar pattern, but the effect of forest cover

was modest (Fig. 4). The patterns for both species were

driven by nest predation (Fig. S2).

Discussion

Our analysis of data from 11 studies over 20 years sug-

gests that climatic variables can have species- and land-

scape-specific impacts on avian productivity. Nest

survival was positively associated with increased forest

cover and negatively associated with edge density for

flycatchers and buntings and fledging brood size

increased with increased forest cover for both species.

As such, overall productivity was greater in highly

forested landscapes for both species, substantially so

for buntings, which is consistent with the fragmentation

hypothesis for breeding songbirds in eastern North

America (Robinson et al., 1995; Thompson et al.,

2002). However, increasing temperatures substantially

reduced overall productivity in highly forested

landscapes for flycatchers (through a reduction in nest

survival; climatic variables did not influence fledging

brood size) to the extent that at the highest observed tem-

peratures, predicted productivity was similar to produc-

tivity in the least forested landscapes. By contrast, lower

bunting productivity was only marginally associated

with higher temperatures in highly forested landscapes,

and cardinal productivity was not substantially influ-

enced by any of the fragmentation or weather factors we

considered.

Table 3 Model-based predictions of brood parasitism rates (CL) and fledging brood size (SE) at low and high levels of landscape

forest cover and period nest survival (CL) at 5% and 95% percentile levels of edge density at low and high levels of forest cover for

three species of songbird in Missouri, 1991–2011

Species Forest cover (%/10 km) Edge density (m ha�1) Parasitism rate Fledging brood size Period nest survival

Acadian Flycatcher 10 0 0.32 (0.16–0.54) 2.03 (0.17) 0.40 (0.26–0.56)

74 0.39 (0.24–0.57) 2.06 (0.12) 0.28 (0.18–0.39)

90 0 0.01 (0.00–0.03) 2.52 (0.08) 0.41 (0.33–0.50)

74 0.03 (0.01-0.12) 2.51 (0.10) 0.41 (0.27–0.59)

Indigo Bunting 10 0 0.57 (0.41–0.71) 2.21 (0.12) 0.15 (0.09–0.24)

100 0.69 (0.56–0.80) 2.07 (0.12) 0.09 (0.04–0.14)

90 0 0.21 (0.12–0.33) 2.71 (0.07) 0.37 (0.30–0.44)

100 0.10 (0.04–0.20) 2.83 (0.08) 0.25 (0.17–0.37)

Northern Cardinal 10 13 0.31 (0.13–0.56) 2.24 (0.14) 0.22 (0.11–0.37)

105 0.35 (0.14–0.62) 2.19 (0.15) 0.30 (0.17–0.49)

90 13 0.02 (0.00–0.10) 2.49 (0.16) 0.30 (0.17–0.48)

105 0.10 (0.01–0.53) 2.55 (0.25) 0.12 (0.01–0.62)

Fig. 3 Model-averaged predictions of period nest survival

(�95% CI) for Acadian Flycatchers and Indigo Buntings as a func-

tion of precipitation with all other variables held constant at their

mean value in Missouri, USA, 1991–2011. Estimates to the left of

the axis break are for the 0–95th percentiles of precipitation val-

ues, and those to the right of the axis break are for observed

extreme rain events.
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As with most passerine birds (Martin, 1992), preda-

tion was the primary source of nest failure in our

system (0.8% of nest failures were directly attributed to

weather; W.A. Cox & F.R. Thompson, unpublished

results), and our post hoc analysis suggests that the

reduction in flycatcher nest survival associated with

higher temperatures is likely driven by nest predation.

Given the diverse suite of nest predators present in

our system (Thompson & Burhans, 2003; Cox et al.,

2012a), it is possible that increased temperatures

reduced nest survival by altering the activity patterns

of a number of predator species or groups. Snakes are

frequent predators in our system (Cox et al., 2012a),

they generally increase movement in response to

warmer ambient temperatures (Peterson et al., 1993),

and their movement patterns have been correlated

with songbird nest survival in other systems (Sperry

et al., 2008). As such, snake activity patterns may con-

tribute to decreased nest survival as temperatures

increase. In addition, endotherms exhibit increased

metabolic rates (and thus, daily energy intake require-

ments) when temperatures rise above thermoneutral

maxima (e.g., Hayworth & Weathers, 1984; Weathers

et al., 2001). This could contribute to increased preda-

tion on songbird nests directly by increasing predator

activity or indirectly by increasing songbird nest visita-

tion rates (via increased food demands for adults and

nestlings), which can increase the risk of predation

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Model-based productivity per nest attempt (95% CI) as a function of landscape forest cover at 5th, median, and 95th percentile

values of edge density (left column), and temperature at 5th, median, and 95th percentile values of forest cover (right column) for three

songbird species in Missouri, USA, 1991–2011. Brood parasitism rates are held at their estimated rate for each level of landscape forest

cover (both columns), and mean edge density is held at observed values within �5% of each level of forest cover (right column). All

other variables were held constant at their means for model predictions. Vertical dashed lines represent 5th and 95th percentiles of

observed values of forest cover and temperature.
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(Martin et al., 2000). However, although maximum neu-

tral temperatures for some avian predator species are

well below the highest temperatures we observed (e.g.,

Hayworth & Weathers, 1984; Weathers et al., 2001),

many species have thermoneutral zones fully within

the range of temperatures we observed, making it

unclear how substantial an influence temperature

could be on endothermic nest predators. It is perhaps

more likely that temperature exhibits an indirect effect

on nest predators, many of which [e.g., black rat snake

(Elaphe obsoleta), Broad-winged Hawk (Buteo platypte-

rus), Barred Owl (Strix varia)] are generalists that con-

sume small mammals, amphibians, reptiles, and other

prey in addition to songbird eggs and young. High

temperatures may influence the abundance or behavior

of alternate prey, leaving songbird nests at greater risk

of predation.

Regardless of the mechanism driving the patterns we

observed, it remains unclear why the three species

exhibited differing responses. It may relate to the differ-

ing breeding habitat of the three species (flycatchers are

forest interior species, whereas buntings and cardinals

occur in old fields, along forest edges, and occasionally

in the forest interior), but given that buntings and fly-

catchers suffer nest losses largely from the same suite of

predators (Cox et al., 2012a), it is not clear why higher

temperatures would result in markedly more substantial

declines in nest survival for flycatchers vs. buntings or

cardinals. Given that cardinals exhibit greater flexibility

in nest-site selection than flycatchers in response to nest

failure and to ambient predation risk (Kearns & Rode-

wald, 2012), it may be that some of the differences

between species we observed are a consequence of varia-

tion in each species’ ability to adapt to changes in preda-

tor activity.

It is also unclear why temperature substantially influ-

enced nest survival in the most forested landscapes for

flycatchers but had little impact in less forested land-

scapes, as the most frequent nest predators in our system

[raptors, snakes, nonraptorial birds (Cox et al., 2012a)]

are frequent predators at most levels of forest cover (Cox

et al., 2012b). The black rat snake is the primary snake

predator in our system and has been shown to prefer

edges and forest clearings for the thermoregulatory

opportunities such habitat provides (Blouin-Demers &

Weatherhead, 2001). It may be that snakes in highly for-

ested landscapes where edge densities are typically low-

est (Faaborg et al., 1995) cannot rely on forest openings

to thermoregulate, which would more tightly couple an

increase in activity with higher mean temperatures. In

addition, cowbirds, which are frequent nest predators

only in fragmented landscapes (Cox et al., 2012b), have

relatively high thermoneutral maxima (35–40 °C;
Lustick, 1970) and often do not actually consume nest

contents (W.A. Cox, unpublished results). As such, we

would not expect cowbird predation to increase as a con-

sequence of increased energetic requirements associated

with increased temperatures. It is also possible that pro-

ductivity was already so low in the least forested land-

scapes that it was not responsive to further negative

effects.

Regardless, this study and others (e.g., Wolf et al.,

2010; Fern�andez-Chac�on et al., 2011) exemplify the

potential for spatially explicit effects of climate change

and reinforce the need to consider climate change

within the context of other factors that influence wild-

life. Managers mitigate the effects of habitat

fragmentation by attempting to provide patches that

are large enough to support most or all of the regional

pool of area-sensitive species, with populations in

smaller, less productive patches supported by immi-

gration from large patches that can produce excess

young (Pulliam, 1988; Tittler et al., 2006). Our results

suggest that managers should consider how warming

temperatures and other factors associated with climate

change interact with landscape features to influence

demography in source and sink populations. For exam-

ple, at our longest running study site in the highly for-

ested Missouri Ozarks (Fig. 1, site 13), 30% of

observations in our flycatcher nest survival analysis

(spanning from 22 May to 10 August) had tempera-

tures >32 °C. In 2012, 64% of the days across the same

span had temperatures >32 °C. As summers such as

that in 2012 become more common, the value of the

Ozarks as source habitat for flycatchers may diminish.

It remains unclear whether the associations we

observed between climatic variables and songbird pro-

ductivity will continue as the climate changes. Nest

predator species are likely to respond differently to cli-

mate change, and future temperatures and precipitation

values that fall consistently outside our observed values

will almost assuredly influence forest ecosystems in

novel and unpredictable ways. For example, precipita-

tion had a relatively small effect on nest survival across

the range of rainfall values we typically observed, but

our data and other studies (e.g., Skagen & Yackel

Adams, 2012) suggest that precipitation may become a

more important source of nest failure as extreme rain

and wind events become more common, as is predicted

for the midwestern United States (Karl et al., 2009). It is

also unclear how other important demographic parame-

ters (e.g., juvenile survival, frequency of renesting, and

double brooding) are influenced by climatic variables;

such information is needed if we are to accurately

model demographic responses to climate change.

Finally, a better understanding of the effects of tempera-

ture on behavioral and/or numerical responses of fre-

quent nest predators is required if we are to move

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 1064–1074

1072 W. A. COX et al.



toward a mechanistic explanation of species-specific

links (or lack thereof) between temperature and produc-

tivity. Regardless of the mechanisms responsible for

the patterns we observed, it is clear that the direct

effects of weather on nestling production were minor in

comparison with the effect of high temperatures on the

interactions between flycatchers and their nest predators.

We believe this underscores a weakness of current

approaches to assessing the response of wildlife to future

climate change; many do not incorporate important bio-

tic interactions even though doing so can be an essential

component of fitting predictive models (Van Der Putten

et al., 2010; Zarnetske et al., 2012). Moving beyond a con-

sideration of the direct effects of climate warming typi-

cally considered in bioclimatic envelope modeling and

acknowledging species’ interactions with a more thor-

ough consideration of community ecology will be impor-

tant in the development of future models of climate

impacts on wildlife.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Model selection results from a priori candidate models describing fragmentation (forest cover and edge density) and
weather (temperature and precipitation) effects on a subset of nests which excludes those that failed for any reason other than pre-
dation (e.g., storms, abandonment, adult mortality). Northern Cardinals were not included in this analysis because only one nest
failed from causes other than predation, so the results would be essentially identical to those presented in Table 2.
Figure S1. Model-averaged predictions of period nest survival (�95% CI) for Acadian Flycatchers and Indigo Buntings as a function
of precipitation for a subset of nests which excludes those that failed for reasons other than predation (e.g., storms, abandonment,
adult mortality). All other variables were held constant at their mean value. Estimates to the left of the axis break are for the 0–95th
percentiles of precipitation values, and those to the right of the axis break are for observed extreme rain events.
Figure S2. Model-based productivity per nest attempt (95% CI) as a function of temperature at 5th, median, and 95th values of for-
est cover for (a) Acadian Flycatchers and (b) Indigo Buntings for a subset of nests which excludes those that failed for reasons other
than predation (e.g., storms, abandonment, adult mortality). Brood parasitism rates are held at their estimated rate for each level of
landscape forest cover and mean edge density is held at observed values within �5% of each level of forest cover. All other vari-
ables were held constant at their means for model predictions. Vertical dashed lines represent 5th and 95th percentiles of observed
values of temperature.
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