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Defoliation by insect herbivores can be a persistent disturbance affecting ecosystem functioning. We devel-
oped an approach to map canopy defoliation due to gypsy moth based on site differences in Landsat vegeta-
tion index values between non-defoliation and defoliation dates. Using field data from two study areas in the
U.S. central Appalachians and five different years (2000, 2001, 2006, 2007, and 2008), we fit a sigmoidal
model predicting defoliation as a function of the difference in the vegetation index. We found that the nor-
malized difference infrared index (NDII, [Band 4—Band 5]/[Band 4+ Band 5]) and the moisture stress

Keywords:
De}g‘;iaﬁon index (Band 5/Band 4) worked better than visible-near infrared indices such as NDVI for mapping defolia-
Landsat tion. We report a global 2-term fixed-effects model using all years that was at least as good as a mixed-

NDII effects model that varied the model coefficients by year. The final model was: proportion of foliage

Gypsy moth retained =1/(1+ exp(3.057 — 31.483 % [NDllpase year — NDllgisturbance year] ). Cross-validation by dropping each

Change detection year of data and subsequently refitting the remaining data generated an RMS error estimate of 14.9% defoliation,
amean absolute error of 10.8% and a cross-validation R? of 0.805. The results show that a robust, general model of
percent defoliation can be developed to make continuous rather than categorical maps of defoliation across years
and study sites based on field data collected using different sampling methods.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Temperate forests throughout the world experience periodic in-
festations by herbivorous insects. The damage to forests can be ex-
tensive. Dale et al. (2001) concluded that insects and pathogens are
the most expensive disturbance agents in North America, affecting
20 M ha in the U.S. per year. Among insects and pathogens, defolia-
tors are herbivores that consume leaves but do not necessarily kill
trees. Defoliation by herbivores accounts for 5-10 M ha of distur-
bance per year in the U.S., of which 0.5-1 M ha on average and over
5 M ha in peak years are attributable to the gypsy moth (Lymantria
dispar L.; Man, 2010). Defoliation events may not result in wide-
spread mortality, but herbivory does reduce tree growth (Katovich
& Hanson, 2001; Muzika & Liebhold, 1999; Naidoo & Lechowicz,
2001) and can Kkill trees after successive years of defoliation (Conway
et al,, 1999; Fajvan & Wood, 1996). In addition, several studies have
shown significant effects on forest nutrient cycling following defoli-
ation events, for example increases in nitrogen export from forested
watersheds (Eshleman et al.,, 1998; Swank et al., 1981; Townsend et
al.,, 2004). In eastern North America, the chief defoliating insects are
the exotic gypsy moth and native forest tent caterpillar, spruce
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budworm and jack pine budworm. Of these species, larvae of the
gypsy moth (caterpillars) defoliate the largest area, and because it
is a non-native species whose range is expanding, the gypsy moth
is of considerable research and management interest. In this paper,
we focus on defoliation of Appalachian oak forests by the gypsy
moth, but demonstrate an application of our approach to defoliation
by the forest tent caterpillar of Minnesota aspen forests.

Starting with Landsat, satellite-based remote sensing has long
been used to detect defoliation by herbivores, including the gypsy
moth on deciduous broadleaf forests (Ciesla et al., 1989; Hurley et
al., 2004; Joria & Ahearn, 1991; Muchoney and Haack, 1994;
Williams et al., 1985), several defoliators of aspen forests (Hall et
al., 2003; Moskal & Franklin, 2004), and the jack pine budworm
(Radeloff et al., 1999), pine sawfly (Eklundh et al., 2009), and spruce
budworm (Franklin et al., 2008) in evergreen conifers. Numerous ap-
proaches have been demonstrated, including classification (Muchoney
& Haack, 1994; Spruce et al., 2011), unmixing (Radeloff et al., 1999),
image algebra (Hurley et al., 2004; Muchoney & Haack, 1994; Royle &
Lathrop, 1997), vegetation indices (de Beurs & Townsend, 2008),
thresholds (Eklundh et al., 2009; Spruce et al., 2011) and change vector
analysis (Townsend et al., 2004). Landsat data have been used most
widely, but studies have shown the capacity of a wide range of sen-
sors, including SPOT (Ciesla et al., 1989; Joria & Ahearn, 1991) and
MODIS (de Beurs & Townsend, 2008; Eklundh et al., 2009; Spruce
et al., 2011). In our review of the literature, almost all efforts to
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map defoliation have yielded maps that are either binary (i.e., defo-
liated or not, e.g., Spruce et al., 2011) or with a small number of gen-
eral categories (e.g., moderate, heavy defoliation). Alternative to
satellite remote sensing, aerial disturbance detection sketch maps
generated by the US Forest service (FHTET Geoportal, http://
svinetfc8.fs.fed.us/aerialsurvey/, accessed 27 January 2011) are use-
ful for broad-scale monitoring, but are often inconsistent in detail
and spatial coverage (Johnson & Ross, 2008; Maclean &
MacKinnon, 1996) as discussed in detail by de Beurs and
Townsend (2008). These efforts show the potential of satellite and
aerial methods for detecting insect-induced defoliation, though none
of the products previous to this project provide percent estimates
of forest defoliation. In this paper, we demonstrate a method to
map defoliation as a continuous measure of proportion defoliated.

Mapping of defoliation has employed a wide range of vegetation
indices, including measures that exploit the red/near infrared (NIR)
contrast such as NDVI and WDRVI (Eklundh et al., 2009; Hurley et
al., 2004; Jepsen et al., 2009), the tasseled cap indices (Townsend et
al.,, 2004), and indices that are responsive to vegetation moisture stress
based on the contrast between NIR and shortwave infrared (SWIR)
reflectance (Fraser & Latifovic, 2005; Vogelmann & Rock, 1989). In
this paper, we evaluate some common indices for their ability to
distinguish the intensity of gypsy moth defoliation.

Mapping of defoliation can be more challenging than mapping
mortality due to wood-boring beetles such as the mountain pine bee-
tle because defoliation is an ephemeral process. Trees can re-foliate,
often during the same season, as in broadleaf hardwoods, or over
the course of the following year, as with conifers. A few studies
have taken advantage of this to distinguish defoliation from other dis-
turbances by looking at trends in vegetation indices over a single
season (de Beurs & Townsend, 2008; Hurley et al., 2004), but from
a practical standpoint, this approach cannot be routinely applied
in temperate regions because of cloud-cover at crucial times of in-
sect activity. As an alternative approach, studies have used
anniversary-date change detection to map defoliation; reflectance
measurements from disturbed and undisturbed years are employed
to discriminate transient changes in forest canopies. We chose this
approach, as it offers the maximum flexibility for detecting repeat
defoliations in areas where summer cloud cover is an issue. Although
the ideal timing for image acquisition is just past the completion
of defoliation (e.g. at pupation for caterpillars), we also examine
how variation in the timing of image acquisition affects mapping
of defoliation intensity for the observed years within the 2000-2008
timeframe.

2. Methods
2.1. Study area

We examined two outbreaks of gypsy moth defoliation in two
predominantly-oak forested study areas (collectively 50,000 ha) locat-
ed in the central Appalachian ecoregion (USA) (Fig. 1). We collected
data during a 2000-2001 outbreak in the Green Ridge (GR) area that
covers parts of western Maryland, south central Pennsylvania and the
eastern panhandle of West Virginia; comparable data were collected
during a 2006-2008 outbreak in the Savage River (SR) area in far
western Maryland. Although the two study areas are less than 100 km
apart, they differ considerably in climate, with Green Ridge being in
the comparatively warmer Ridge and Valley physiographic prov-
ince (means: monthly temperature — 1.0 to 23.6 °C, annual precip-
itation 1023 mm) and Savage River in the cooler, wetter Appalachian
Plateau (means: monthly temperature —3.2 to 20.9 °C, annual pre-
cipitation 1216 mm) (Townsend et al., 2004). The growing season
initiates 2-3 weeks sooner in GR than SR. Forests of both study
areas are dominated by oaks. The study areas have experienced sev-
eral waves of gypsy moth defoliation, including 1983-1984, 1987,
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Fig. 1. Study area in western Maryland and adjacent Pennsylvania and West Virginia.
Boxes indicate areas shown in Figs. 2 and 5. Study areas are each 28 km wide.

1990-1991 and 2000-2001 in GR and 1986-1987, 1990-1991, and
2006-2008 in SR. As a test of the generality of our method, we also
applied our results to a 40,000-ha aspen-dominated study area in
northern Minnesota that was affected by the forest tent caterpillar
in 2001.

2.2. Field data

53 field plots were located within the gypsy moth study areas.
Field plots consisted of two crossing 60x 60 m transects defining
five subplots (the intersection and each end of the X) at which tree
composition was characterized using the variable plot-size method
(metric basal area factor 2 prism) described by Townsend (2001).
This plot design is optimized to ensure that the area on the ground
captures at least one full Landsat 30 m pixel. Plot data included mea-
surements of tree height, diameter at breast height (DBH) and basal
area. From the tree data, we calculated total dry foliar biomass
using the allometric equations in Jenkins et al. (2003).

Defoliation by the gypsy moth was characterized in two ways. In
2000, 2001, 2006, and 2007, we measured weekly frass-fall (excre-
ment deposition) at each plot during the defoliation event using 4
or 5 litter traps with collection areas ranging from 1.32 to 2.63 m2.
Dried frass samples were converted to mass of foliage consumed
(kg-ha~1) based on a food use efficiency of 0.14 (W. Mattson, pers.
comm.) and then to proportion defoliated by dividing foliage con-
sumed by total foliar biomass. In 2006-2008, two technicians visually
estimated defoliation weekly for 9-15 trees per plot in ten percent in-
crements, from which we calculated seasonal maximum percent de-
foliation for each plot (weighting the estimate for each tree by its
DBH). Both frass and visual estimates were available in 2006-2007
and were highly correlated (data not shown, Pearson's r correlation
>0.9 for all years with both data sets); in the analyses presented
here we used the measure of percent defoliation based on visual esti-
mates because it was a more direct estimate of foliar removal than the
frass data.

Our field sampling in Green Ridge resulted in data from 15 plots
in 2000 and 12 different plots in 2001. 18 plots were also sampled
in Green Ridge in 2008, although in the absence of significant gypsy
moth defoliation, these plots were not used in the image analysis.
In Savage River, we sampled the same 20 plots in 2006, 2007 and
2008. In 2007, the peak defoliation year, we sampled 6 additional
plots (Table 1). The final analysis used 84 of the 93 samples, with 2
plots removed due to selective logging, 3 due to clouds or shadows,
and four (from 2000) because of a secondary defoliation by phas-
mids (“walking sticks”) that occurred in August and September of
1999, skewing base-year foliar estimates for these plots.
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Table 1
Image data used in the study.
Base Defoliation
Year Study site Date Sensor Path Date Sensor Path Description
2000 Green Ridge 8/4/1999 ETM + 16 8/22/2000 ETM + 16 11 plots
2001 Green Ridge 8/4/1999 ETM + 16 8/25/2001 ETM + 16 12 plots
2006 Savage River 7/7/2001 ™ 17 8/6/2006 ™ 17 20 plots
2007 Savage River 7/7/2001 ™ 17 8/25/2007 ™ 17 24 plots
2008 Savage River 7/7/2001 ™ 17 7/19/2008 ™ 16 17 plots
Model extension
2002 Green Ridge 8/4/1999 ETM + 16 8/4/2002 ETM + 16 Non-defoliation year
2008 Green Ridge 7/30/2006 ™ 16 8/20/2008 ™ 16 Non-defoliation year
2001 NE Minnesota 6/9/1997 ™ 26 6/12/2001 ETM + 26 Different defoliator

2.3. Remotely sensed imagery and vegetation indices

Image change detection was used to map proportional defolia-
tion using one image from a non-defoliation year and an image from
the defoliation year (Table 1). Image timing played a role in image
selection, but because of persistent cloudiness in the Appalachian
Mountains, we were generally limited to one relatively cloud-free
post-June summer image per year. In our study areas, peak gypsy
moth defoliation can vary from year to year due to inter-annual dif-
ferences in weather, but usually occurs by late June or early July.
Trees may begin to re-foliate 3-5 weeks following peak defoliation,
with maximum re-foliation occurring by mid-August, depending on
climate. Re-foliation is generally a fraction of total foliar biomass
from an undisturbed year, and heavily defoliated stands may not
re-foliate at all (see Fig. 3 in de Beurs & Townsend, 2008).

Although it has been suggested that the combination of pre-
defoliation, peak defoliation, and post-defoliation images in the same
year are most desirable for mapping gypsy moth defoliation (Hurley
et al., 2004), this is not practical in montane forests where clouds can
be frequent. Moreover, same-year pre-defoliation imagery is of limited
value because the life cycle of the gypsy moth parallels spring green-up,
with maximum defoliation occurring shortly after peak leaf expansion.
We were concerned that post-defoliation re-foliation during a year
would affect our analysis, and were fortunate that two post-defoliation
images were available for the analysis of defoliation in 2001: 7/24/
2001, just after peak defoliation, and 8/25/2001, when presumably any
re-foliation would have occurred. We used the 25 August image for
modeling because it was cloud-free, whereas the 24 July image was
obscured by small cumulus clouds.

To develop a generalizable, repeatable method for mapping
defoliation of broadleaf deciduous trees, we examined defoliation
in five different years in two physiographically distinct study areas with
different Landsat footprints. This approach required a repeatable meth-
od for image pre-processing and the use of easily-calculated image
variables. We employed Landsat images downloaded from the USGS
Global Visualization Viewer (www.glovis.gov). All images were pro-
cessed identically: they were converted to top-of-atmosphere reflec-
tance using coefficients provided in the image header data, then
atmospherically corrected to percent reflectance following the LEDAPS
atmospheric correction processing stream (Masek et al., 2006). LEDAPS
employs the 6S radiative transfer code (Kotchenova et al., 2006) in
conjunction with several atmospheric products to estimate Lam-
bertian surface reflectance for each image pixel. Masek et al. (2006)
report error rates of 0.5% absolute reflectance or 5% measured reflec-
tance. We employed the C-factor topographic normalization tech-
nique of Teillet et al. (1982) to reduce the effects of differential
illumination due to topography. Numerous alternative methods for
atmospheric correction and topographic normalization are available
for pre-processing multi-spectral imagery. Although it was outside
the scope of our work to compare different techniques, we postulate

that our approach will be applicable using other methods if they are
applied uniformly and consistently to all images.

We tested ten different easily-computed Landsat vegetation indi-
ces for their capacity to detect defoliation (Table 2). These included
indices that our previous work had shown to be effective for charac-
terizing defoliation, including several indices that use the sensitivity
of shortwave infrared (SWIR) reflectance to leaf water content and
near infrared (NIR) reflectance to green vegetation biomass and
hence, jointly, to vegetation stress. Undisturbed forests are expected
to exhibit higher values of Normalized Difference Infrared Index
(NDII) (Table 1, sometimes also referred to as the Normalized Differ-
ence Water Index (NDWI) or Normalized Difference Moisture Index
(NDMI)) and lower values of MSI compared to defoliated forests due
to the decline in water content from the loss of leaf area (de Beurs &
Townsend, 2008). We also tested traditional indices such as NDVI
and SVI because of their wide use for characterizing vegetation, as
well as several others that other work by our group suggested may
be sensitive to forest change (Wolter & Townsend, 2011; Wolter et
al., 2008).

We did not employ several indices that we have previously used
to characterize the relationship between forest disturbance and
water quality in our study area, including the Tasseled Cap (Wetness
and Greenness indices, Crist & Kauth, 1986; used in Townsend et al.,
2004), the forest disturbance index of Healy et al. (2005, used in
Eshleman et al., 2009 and Deel et al., accepted for publication) and
a variety of modified vegetation indices such as the enhanced vege-
tation index (EVI, Huete et al., 2002). Many of these indices are
strongly correlated with indices we used (e.g., see Jin & Sader, 2005),
or require within-scene calibration to that limits the generality of the

Table 2
Landsat vegetation indices tested in the study.

Acronym Name and equation for Landsat TM and ETM+ Reference®

Al Autumn Index, TM3/TM1 Wolter and Townsend
(2011)**

MIR Middle Infrared Index, TM5/TM7 Elvidge and Lyon
(1985)

MSI Moisture Stress Index, TM5/TM4 Rock et al. (1986)

NDII5 Normalized Difference Infrared Index (Band 5), Hardisky et al. (1983)

(TM4 —TM5) /(TM4 + TM5)

NDII7 Normalized Difference Infrared Index (Band 7), Hunt and Rock (1989)
(TM4—TM7)/(TM4 +TM7)

NDVI Normalized Difference Vegetation Index Tucker (1979)
(TM4 —TM3)/(TM4 + TM3)

RA Reflectance Absorption Index, Arzani and King (1997)
TM4/(TM3 + TM5)

SVI Simple NIR/RED Ratio, TM4/TM3 Jordan (1969)

SVR5 Shortwave to Visible Ratio (Band 5), Wolter et al. (2008)
3+TM5/(TM1 +TM2 +TM3)

SVR7 Shortwave to Visible Ratio (Band 7), Wolter et al. (2008)

3«TM7/(TM1 4 TM2 +TM3)

2 Many of these indices may have multiple appropriate citations.
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index (such as the Healy et al. index). We make one radiometric modi-
fication to our data based on the observation that vegetation indices for
closed-canopy undisturbed forests saturate at a uniform maximum VI.
As such, we aligned our VI images by the eightieth percentile value of
the distribution for forests in the whole VI image.

2.4. Statistical analyses

All statistical analyses employ proportion of foliage remaining (1
minus proportion defoliated) as the dependent variable, expressed
as a range from 0 (completely defoliated) to 1 (no defoliation). We
fit a negative logistic (sigmoidal) curve to predict the proportion of
foliage remaining as a function of the change in a vegetation index
between and a non-disturbance (base) year and the disturbance
year, following:

Foliage remaining(proportion) = 15 exp[—(t::—s- d% AVI)] (1)

where the parameter b represents the asymptote (maximum foliage
retained), c and d are parameters determining the shape of the sig-
moidal curve, and AVl is the difference between years in the selected
vegetation index (VI) for the plot, i.e.:

AVI = VI(base year)—VI(defoliation year) (2)

For all of the indices we tested except MSI, healthy green vegeta-
tion has a higher VI than damaged vegetation, so the expectation is
that AVI increases as defoliation increases. Values of AVI close to
zero or negative indicate stands with minimal disturbance between
years. MSI, the ratio of Landsat band 5 to band 4, increases with de-
creasing vegetation vigor, so the form of the relationship is reversed.
Our model (Eq. (1)) does not include an intercept, which would rep-
resent a lower bound to our estimate of the proportion of foliage
retained. The lower bound is assumed to be zero, indicating com-
plete defoliation. We did, however, model the upper asymptote, b,
as all plots in our study exhibited some level of foliar damage due
to herbivory.

Because we used data from five different years and two different
study areas, we developed two forms of models, a global model, in
which image VI is assumed to vary as a function of defoliation, inde-
pendent of the year sampled. To address the possibility that the
models differed between years, we also fit a mixed-effects model,
in which a random effect (year) was fit for parameters c¢ and d.
Note that our prime interest was to develop the global model with-
out random year effects, because it would be more generalizable to
years not having field measurements. Defoliation and disturbance
represent one component of change in the imagery, but some areas
also experience increasing greenness. Although we did not directly
sample forest regrowth, we calculated a measure of forest regrowth
for 24 of our samples in Savage River that exhibited decreasing de-
foliation from 2006 or 2007 to later years. Regrowth is calculated
as 1+ [defoliation in earlier year — defoliation in the later year]|
and effectively extends the range of measurements. We fit an alter-
native sigmoidal model to the defoliation plus regrowth data using
Eq. (1).

We tested the 10 vegetation indices (Table 2) for their potential
to characterize defoliation using the simplest form of Eq. (1), with
b=1 (asymptote of all foliage retained) and no random effects. The
vegetation index exhibiting the best performance using the Akaike
Information Criterion (AIC) and Schwartz's Bayes Information Crite-
rion (BIC, see Burnham & Anderson, 2002) was then used for further
model development, statistical testing and mapping. The traditional
coefficient of determination (R?) is not appropriate for non-linear
models. As such, we report a generalized form of the coefficient of
determination (Nagelkerke's pseudo-R?) based on the likelihood

function (Cox & Snell, 1989; Nagelkerke, 1991). However, AIC and
BIC are generally considered better measures than R? for model selec-
tion because they penalize models with increasing complexity (i.e.,
more parameters). For evaluation of the models themselves, we report
the mean absolute error of prediction (MAE) and root mean square
error of prediction (RMSE). These measures are most useful for this
work, as they provide measures of the level of expected error in
units of proportion of the foliage remaining/consumed.

Preliminary efforts, including the results reported by de Beurs and
Townsend (2008), indicated that vegetation indices using the near
infrared (NIR) and shortwave infrared (SWIR) bands on Landsat were
most sensitive to defoliation, so our expectation was that either NDII
or MSI would be the preferred vegetation index. NDII has the benefit
of being normalized, making numerical interpretation of differences
between years relatively straightforward. In contrast, AMSI can
potentially provide a wider dynamic range than NDIIL Both indices
reduce the effects of topography in imagery, although because it is
normalized, NDII may be less sensitive to the effects of differences
in illumination than MSI.

2.5. Model evaluation

We evaluated all predictive models using cross-validation by year.
To do this, we dropped all data from each year successively and re-
built the model using the remaining four years. We then applied the
resulting model to the data from the dropped year and calculated
cross-validation (CV) fit statistics, reported as CV-MAE, CV-RMSE
and CV-R?. As a secondary measure of cross-validation, we also report
the model fit for each iterative model. Drastic changes in model per-
formance for a particular dropped year, by either model improvement
or decline, indicates that a particular year does not fit the overall
trends in the relationship between defoliation and AVI

Further testing of the predictive models involved map comparison
and image substitution. We visually compared our maps of defolia-
tion from each year to US Forest Service aerial sketch map data of
gypsy moth defoliation. This provides no absolute validation of our
results, as the sketch map data are discontinuous in spatial extent
and, as reported elsewhere, are widely varying in overall quality (de
Beurs & Townsend, 2008). However, they do provide a general quali-
tative measure of concurrence between our maps and an indepen-
dent data source. We also applied our final model to images from
years of known minimal defoliation (2002 in both areas, and 2008
in Green Ridge, based on sketch map data) to ensure that the model
did not erroneously map defoliation where none occurred.

We were also interested in evaluating the importance of image
date during the growing season for mapping defoliation. Because of
the cloudiness of the Appalachian Mountain region, we were limited
in the availability of relatively cloud-free images for this study, mean-
ing that we employed images that were not optimally tied to peak
defoliation. However, for 2001 and 2008, alternate images were avail-
able (Table 1). We applied the final model to the alternate images and
compared these with the maps developed using the model data.

Finally, we hypothesized that in addition to being generalizable
to gypsy moth defoliation in Appalachian forests, our model is suffi-
ciently general to enable its application to defoliation by other her-
bivores of closed-canopy broadleaf deciduous forests. We therefore
applied the model to a defoliation event by the forest tent caterpil-
lar of aspen-dominated forests in the Arrowhead region of north-
eastern Minnesota. Such an approach facilitates the retrospective
analysis of past forest disturbances for which field data are lacking,
and represents the development of an index measure of defoliation
(rather than a direct estimate), since calibration data are not avail-
able. For this analysis, we employed Landsat images for a defoliation
year (2001) and a non-disturbance year (1997, see Table 1). The
Minnesota Landsat images were processed identically to the Appa-
lachian images.
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3. Results

Indices that employed NIR and SWIR bands provided the best
estimation of defoliation using the two-term fixed-effects (“global”)
model (Table 3). NDII5 and the closely related MSI produced nearly
identical results, exhibiting a strong sigmoidal relationship between
foliage retained and the change index (Fig. 3). The ability to detect
defoliation using SWIR and NIR is clearly illustrated in pre- and post-
defoliation Landsat images for the study area (Fig. 2). The cross-
validation RMS error to predict foliage removal/retention as a func-
tion of ANDII5 was 14.9% with a cross-validation R? of 0.802. Average
error on cross-validation was less than 11%. Indices employing visi-
ble wavelengths or exclusively SWIR bands performed less well,
although the reflectance-absorption index (RA), which uses the
sum of Landsat's red and 1.55-1.75 pm SWIR5 bands in the denomi-
nator, also performed well. NDII7, which uses the 2.08-2.35 pm
SWIR7 channel, did not perform as well as NDII5, probably due to
the lower signal in the SWIR7. NDVI performed less well than all of
the SWIR/NIR-based indices (Fig. 3), with a much more scattered dis-
persion of points and several likely outliers. All years fall on the pre-
diction line, with no apparent systematic bias by year.

For the remainder of the analyses we report ANDII5 exclusively.
We tested whether our assumption of a “global” 2-term fixed-effects
model (Table 4) based on a sigmoidal fit using all years of data was rea-
sonable. We found that a mixed effects model using year as a random
effect (Fgs4)=148.9, p<0.001) did not provide a statistically signifi-
cant improvement over the global model. Although the mixed model
was significant, the 95 percent confidence intervals for the random
effects all bounded zero, indicating that they did not improve the
model over a global fixed effects for parameters ¢ and d. This inter-
pretation is confirmed by the AIC for the two models, which was
lower for the global model (—94.7 vs. —92.2), and generalized coef-
ficient of determination, which was about the same for both models
(0.844 vs. 0.842). The RMS error for the global model was slightly
worse than for the mixed model (13.5% vs. 12.9%). The lower AIC
and equivalent values of Nagelkerke's R? for the global model result
from a lower model complexity (fewer parameters) compared to
the mixed-effects model. Note that BIC was lower for the mixed effects
model (—94.5) than the global model (—87.4), which does indicate
that the mixed model is able to account for some of the variability in
model fit across years.

Finally, we tested for the necessity of an upper asymptote for
percent vegetation retained in the global model, by adding a third
fixed parameter, b, which would represent a maximum amount of
foliage retained, or conversely the minimum amount of defoliation
measured. We performed this analysis because all plots - regardless
of the presence of the gypsy moth - exhibited some measurable
herbivory every year; there were no field plots with 100% foliage
retained (Fig. 3). The results of this analysis also confirmed that
the 2-parameter fixed effects model was sufficient. Model AIC was
lower for the 2-parameter model (—94.7 vs. —92.8), RMS error

Table 3
Comparison of 2-term fixed-effects models for all indices. Index names listed in Table 2.
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Fig. 2. False color images of the Savage River area for 7 July 2001 (top, not defoliated)
and 25 August 2007 (bottom, defoliated). Band combination is Landsat channels 5, 4,
and 3 in RGB. Study area is 28 km wide.

was nearly identical (13.5% vs. 13.6%) and Nagelkerke's R? was the
same (0.844). The estimated asymptote, b, for the 3-parameter
model was 0.977 (or 97.7% foliage retained) with 95% confidence
intervals of 0.873 and 1.081, indicating that a modeled asymptote
does not differ measurably from the assumed asymptote of one in
the model presented in Table 4. As such, all further results focus exclu-
sively on the two-term global model to predict defoliation/retention
using ANDII5.

We report the inflection point for the sigmoidal curves (Fig. 3) in
Table 3. The inflection point indicates the value of ANDII5 at which
point the model effectively separates the most defoliated and least
defoliated observations. For ANDII5, this value is 0.068, so that an
approximate decrease of 0.07 in NDII5 captures major defoliation.
NDII values range —1 to +1, but are effectively much smaller
than this (4 0.28 to +0.52), so that a 0.07 change in NDII5 represents
about 30% of the effective range of the index. We conclude that NDII5
is quite sensitive to differences in foliage present between defoliation

Index Model diagnostics Cross-validation results

AIC BIC MAE RMSE Inflection N-RSQ CV-MAE CV-RMSE CV-RSQ
NDII5 —94.7 —874 0.097 0.135 0.068 0.844 0.106 0.145 0.821
MSI —885 —81.2 0.102 0.140 0.320 0.832 0.111 0.151 0.804
RA —81.6 —743 0.108 0.146 —0.056 0.817 0.117 0.157 0.788
NDII7 —68.6 —614 0.112 0.158 0.067 0.787 0.120 0.169 0.756
NDVI —53.1 —45.8 0.122 0.173 0.035 0.744 0.129 0.178 0.728
SVI —23 5.0 0.182 0.235 4.732 0.531 0.205 0.262 0414
MIR —-19 54 0.182 0.235 0328 0.528 0.189 0.243 0.495
SVR 29.9 37.2 0218 0.284 0.673 0.311 0.229 0.304 0.211
Al 56.8 64.1 0.282 0.333 —0.276 0.051 0.296 0.353 —0.065
SVR7 59.5 66.8 0.290 0.339 —0.458 0.020 0.313 0372 —0.179
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Fig. 3. Model results for vegetation indices to predict gypsy moth defoliation by year and study site (circles=Green Ridge, squares = Savage River). Lines indicate best-fit

2-parameter sigmoidal model as reported in Table 3.

and non-defoliation years. It is also noteworthy that all sites with
ANDII5 <0 are clearly not defoliated based on the field data (Fig. 3).

Using RMS error as a metric, the overall model performed best for
2001 (8.2%) and worst for 2007 (17.0%) (Table 5). Although we report
CV-R? values, these are not the best measures of model performance.
For instance, 2008 has a low CV-R?, but its RMS error is also low
(12.8%). This is because this was the last year of the Savage River de-
foliation, and overall foliage consumption was much lower in 2008
than the other years. The cross-validation results mirror the model
results (Fig. 4), indicating a high level of stability in the model even
when data from each year is removed. The models developed without
each year (Cross-Validation 2 in Table 5) perform uniformly well,
providing support for our assertion that the global model we devel-
oped is applicable across years, even those without field data for
calibration.

We applied the model reported in Table 4 to the sets of images
listed in Table 1. The maps of defoliation show distinct patterns asso-
ciated with the 2000-2001 (Green Ridge, Fig. 5A-B) and 2006-2008
(Savage River, Fig. 5E-G) defoliation events. The defoliation events
in 2000-2001 were scattered, with patches of intense defoliation.
In 2001, the naturally-occurring fungal pathogen Entomophaga
maimaiga reduced gypsy moth populations as the larvae matured to

their largest and most voracious feeding stages. In Savage River, the de-
foliation event was widespread and locally intense in 2006, then ex-
ploded in 2007 (Fig. 5E-G, see also Fig. 2), before receding again in
2008 when the Entomaphaga again reduced the gypsy moth population.
Note that areas sprayed for the suppression of gypsy moth in Savage
River are clearly evident in Fig. 5E-G as a block in the center right
where almost no defoliation is mapped.

We also applied the global model to images of Green Ridge for
two years in which very little (2002) or no defoliation (2008) was
reported by the Maryland Department of Agriculture (Fig. 5C-D).
For 2002, the resulting map (Fig. 5C) shows a few small patches of
defoliation, while the map derived for 2008 shows no defoliation.
Sketch maps for those years also indicate no gypsy moth activity.
Based on these visual comparisons, our model appears to capture

Table 5
Cross-validation results by year.

Year Global model®
MAE RMSE RSQ MAE RMSE RSQ MAE RMSE RSQ

2000 0.073 0.111 0871 0.079 0.116 0.859 0.100 0.138 0.840
2001 0.069 0.082 0.898 0.070 0.083 0.896 0.102 0.142 0.828
2006 0.108 0.132 0876 0.123 0.146 0.848 0.094 0.134 0.835
2007 0.110 0.170 0.769 0