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Abstract: Engineers and hydrologists use the curve number method to estimate runoff from rainfall for different land use and soil conditions;
however, large uncertainties occur for estimates from forested watersheds. This investigation evaluates the accuracy and consistency of the
method using rainfall-runoff series from 10 small forested-mountainous watersheds in the eastern United States, eight annual maximum series
from New Hampshire, West Virginia, and North Carolina, and two partial duration series from Georgia. These series are the basis to compare
tabulated curve numbers with values estimated using five methods. For nine of 10 watersheds, tabulated curve numbers do not accurately
estimate runoff. One source of the large uncertainty is a consistent decrease in storm-event curve numbers with increasing rainfall. A cali-
brated constant curve number is suitable for only two of 10 watersheds; the others require a variable watershed curve number associated with
different magnitude rainfalls or probabilities of occurrence. Paired watersheds provide consistent curve numbers, indicating that regional
values for forested-mountainous watersheds (locally calibrated and adjusted for storm frequency) may be feasible. DOI: 10.1061/(ASCE)HE
.1943-5584.0000436. © 2012 American Society of Civil Engineers.
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Introduction

The Natural Resources Conservation Service (NRCS) curve number
procedure is widely used to estimate runoff resulting from rainfall
events. The curve number explicitly lumps the effects of land use
and cover, soil type, and hydrologic condition into a single coeffi-
cient (NRCS 2001). The method uses a simplified representation of
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event water storage within the watershed including: (a) the water-
shed retains the initial rainfall before runoff begins; (b) a curve num-
ber represents the maximum potential retention; and (c) the ratio of
runoff to rainfall is linearly related to the ratio of the event abstrac-
tion (rainfall less runoff) to the maximum potential retention.

The NRCS [formerly the Soil Conservation Service (SCS)] de-
veloped the curve number method in 1954 to design flood control
projects on agricultural watersheds (Rallison and Miller 1982) and
subsequently to estimate runoff from urban areas (SCS 1975).
Although useful for estimating runoff from agricultural and urban
watersheds and moderately useful for rangelands, the curve number
method often results in inaccurate estimates of runoff from many
forested watersheds (Hawkins 1984, 1993; Ponce and Hawkins
1996; Schneider and McCuen 2005; McCutcheon et al. 2006).

The investigation reported in this paper is motivated by the need to
understand the limitations of the curve number method in the forested-
mountainous watersheds of the eastern United States. Numerous stud-
ies establish ad hoc representation of the perennial stream flows in these
forests (Hibbert and Cunningham 1967; Douglass and Hoover 1988;
Bailey et al. 2003; USDA 2004; Kochenderfer 2006; McCutcheon
et al. 2006). Yet, the accuracy of the curve number method for estimat-
ing forested watershed runoff has not been determined (McCutcheon
et al. 2006). This study focuses on the utility of the curve number
method for 10 watersheds with the goals of evaluating: (a) the relative
accuracy of various procedures for determining watershed curve num-
bers from rainfall-runoff measurements; and (b) the applicability of the
method in estimating runoff from forested watersheds.

Literature Review

The SCS developed the curve number method to apply equitably
the 1954 Watershed Protection and Flood Prevention Act, PL-566
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(16 U.S.C 1001 et seq.). The SCS had begun development of a
rainfall-runoff relationship that did not depend upon streamflow
monitoring within the watershed (Mockus 1949; Andrews 1954),
and this work served as the initial basis for the generalized SCS
runoff equation using a curve number index.

The SCS derived curve numbers from approximately 199 exper-
imental watersheds at 23 locations nationwide, using measure-
ments of annual maximum rainfall and runoff collected between
1928 and 1954 and thousands of infiltrometer tests. The watersheds
ranged in size from 0.0971 ha to 18,600 ha (0.24 acres to
46,080 acres) and had a single soil group and cover complex in
most cases. Unfortunately, most of the information compiled for
the initial development of the curve number method has not been
preserved (NRCS 2001; Woodward et al. 2002; Hawkins et al.
2009).

The curve number method uses a short-term event water budget
for a watershed to estimate the storm runoff Q = P* — F where
P* = P — [, = effective rainfall; F = the retention of water on
the watershed during the event; P = rainfall; and 7, = the watershed
initial abstraction. This approach is appropriate for an event of suf-
ficiently limited duration, during which other components of the
water budget (e.g., evapotranspiration) are negligible (Yuan et al.
2001; Hawkins et al. 2009). The curve-number-based estimate of
runoff is the typical response to an annual maximum rainfall of a
given probability of occurrence (Ponce 1996).

The ratio of runoff to rainfall used to derive the runoff equation
is Q/P* = F/§ with § as the maximum potential retention of water
or as a curve number CN = 100/(1 + S/«)), where o = 254 mm
(10 in.) (Ponce and Hawkins 1996). The SCS conceived of the
maximum potential retention S as a constant for each watershed
(Hawkins et al. 2009) as long as the land cover, use, and hydrologic
condition do not change. However, maximum potential retention S
varies between storms because of soil moisture variation and other
watershed and rainfall factors (Rallison and Cronshey 1979;
Hjelmfelt 1980, 1983, 1991; Hjelmfelt et al. 1982; Rallison and
Miller 1982; Mack 1995; Ponce 1996; Ponce and Hawkins
1996; NRCS 2001; Yuan et al. 2001; Hawkins et al. 2009).
Hawkins (1993) noted that maximum potential retention S or the
curve number CN varied as event rainfall increased. As Titmarsh
et al. (1995) and McCutcheon et al. (2006) noted, some watersheds
require a variable curve number that is different for different design
probabilities.

Despite large uncertainties, the SCS originally estimated the in-
itial abstraction /, as a constant 20% of the maximum potential
retention S. Later defined as A = I,/S, the NRCS (2001) deter-
mined the initial abstraction ratio A with a smaller subset of the
rainfall-runoff measurements available in 1954. This subset of daily
rainfall and runoff was reportedly measured on watersheds smaller
than 4 ha (10 acres). Half of these events led to initial abstraction
ratios A of 0.095 to 0.38, the full range is 0.013 to 2.20. Victor
Mockus, a pioneer of the curve number method (Ponce 1996), ac-
cepted that other ratios are possible if supported by additional data.
Subsequent studies in the United States and other countries docu-
ment initial abstraction ratios X between 0.00 and 0.38 (Ponce and
Hawkins 1996), with 0.05 the most likely (Woodward et al. 2002).

Tabulated curve numbers are medians (NRCS 2001), which
were readily determined graphically from observed rainfall and
runoff in 1954. Alternatively, the NRCS (2001) uses the geometric
mean to determine a watershed curve number if the values calcu-
lated from rainfall and runoff measured for each event are log-
normally distributed (Yuan 1933). Yet, no one seems to have
established the log-normality of curve number distributions. Thus,
the major strength of the geometric mean is quantification of un-
certainty with the standard deviation and confidence intervals.

Bonta (1997) used the arithmetic mean curve number but did
not justify this choice with evidence that watershed curve numbers
are normally distributed. Besides these central tendencies for curve
numbers, Hawkins (1993) used a nonlinear least squares fit to
determine curve numbers from a series of rainfall and runoff
and introduced an asymptotic curve number for some watershed
responses.

Many questioned the physical basis of the method soon after
Victor Mockus originally conceptualized the curve number equa-
tion in 1954 (Ponce 1996; Garen and Moore 2005). Subsequent
studies (e.g., Hjelmfelt 1980, 1991; Ponce and Hawkins 1996;
King et al. 1999; Jacobs et al. 2003; Garen and Moore 2005; Michel
et al. 2005; McCutcheon et al. 2006) examined the accuracy of the
curve number method and identify specific weaknesses and limi-
tations that are not widely recognized and that are rarely noted in
textbooks. A chief limitation is the failure to account for the tem-
poral variation in rainfall and runoff (Ponce and Hawkins 1996;
King et al. 1999). Lacking an accounting for rainfall variation,
the method fails to represent runoff rates, paths, and source areas
upon which erosion and water quality simulations depend.

Methods

This study uses rainfall and streamflow measurements on 10 small,
forested-mountainous watersheds in the Appalachian Mountains to
evaluate curve number estimates of runoff in the eastern United
States. The U.S. Forest Service and University of Georgia sub-
tracted baseflow from streamflow measurements to derive water-
sheds series of runoff (McCutcheon et al. 2006). Fig. 1 shows the
locations of the watersheds, and Table 1 summarizes watershed
characteristics. The ten watersheds range in size from 12.26 to
144.1 ha (30.29 to 356.1 acres) and in elevation from 488 to
1,591 m (1,601 to 5,221 ft).

Eight U.S. Forest Service experimental watersheds are used, in-
cluding four within the Coweeta Hydrologic Laboratory in North
Carolina (Coweeta 2, 28, 36, and 37), two within the Fernow
Experimental Forest in West Virginia (Fernow 3 and 4), and
two within the Hubbard Brook Experimental Forest in New
Hampshire (Hubbard Brook 3 and 5). The U.S. Forest Service
originally instrumented these watersheds starting in 1934, 1951,
and 1958, respectively, to study how forest management affects
the hydrologic cycle and water resources in the Appalachian
Highlands (USDA 2004).

N
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Fig. 1. Watersheds used to evaluate the curve number method for
forested-mountainous watersheds of the Appalachian Highlands in
the eastern United States

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER 2012 / 1189

J. Hydrol. Eng. 2012.17:1188-1198.



Table 1. Ten Small Forested Watersheds in the Mountains of the Eastern United States

Period of Hydrologic Elevation Channel Mean Mean rainfall
Watershed record (years) Area (ha) soil group Dominant aspect range (m) length (m) slope (%) (mmyr~1)
Coweeta 2 68 12.3 B South-southeast 709-1,004 392 60.2 1812
Coweeta 28 29 144.1 B East 964-1,551 3,923 522 2340
Coweeta 36 59 46.6 B East-southeast 1,021-1,542 1,327 65.3 2015
Coweeta 37 37 108.0 B East-northeast 1,033-1,591 1,257 70.6 2015
Fernow 3 53 343 C South 730-860 714 20.6 1450
Fernow 4 53 38.7 C East-southeast 740-865 683 20.6 1450
Hubbard Brook 3 48 42.4 A: 39.9% Southwest 527-732 961 214 1370
B: 39.9%
C: 20.2%
Hubbard Brook 5 43 21.9 A: 48.8% Southeast 488-762 1,265 27.5 1370
B: 48.8%
C: 2.4%
Etowah 2 <2 28.0 B: 49.4% East-southeast 451-524 541 10.1 1448*
C: 50.6%
Etowah 3 <2 31.0 B: 51.7% Southeast 518-710 600 12.6 1448
C: 48.3%

Note: Adapted from McCutcheon (2006).
Source: http://pubs.usgs.gov/wri/wri934076/stations/02389000.html.

This study also used rainfall and runoff measured on two small,
forested watersheds in the mountainous Etowah River basin of
northern Georgia. Although the other eight watersheds have suffi-
cient records to define series of annual maximum rainfall and runoff,
partial duration series of 21 months for Etowah 2 and 3 are all that
are available to provide a sufficient number of events for analysis.

The Coweeta Hydrologic Laboratory is located in the Blue
Ridge Physiographic Province of the southern Appalachian
Mountains near Otto, North Carolina. Of the 17 instrumented
watersheds at Coweeta, this study evaluated four that encompass
the range in elevation, vegetation, soil depth, rainfall, and other cli-
matic factors and hence, hydrologic response found in the Coweeta
Hydrologic Laboratory (Swank and Crossley 1988). Soils are in-
ceptisols and ultisols (Typic Hapludults and Humic Hapludults),
with depths averaging 7 m (23 ft) at low-to-mid elevations
(Coweeta 2 and 28) and <2 m (<6 ft) at higher elevations
(Coweeta 36 and 37). Forest cover includes mixed oak, cove hard-
wood, oak-pine, and northern hardwood communities (Day et al.
1988). Coweeta 2 and 36 are reference watersheds that were uncut
since 1927. Coweeta 28 is a multiple-use demonstration treatment
of commercial harvest with clearcutting and thinning until 1964
but uncut since then. Measurement continued during the regrowth
period until 1972 (Swank and Crossley 1988). Coweeta 37 was
clearcut in 1963, allowed to regrow, and monitored until 1973.

The Fernow Experimental Forest lies in the Allegheny
Mountain section of the unglaciated Allegheny Plateau. Almost all
Fernow soils (including the sandstone, shale, and limestone soils)
are well-drained medium textured loams and silt loams character-
ized by stoniness. Average soil depth to bedrock typically ranges
from 91 to 152 cm (36 to 60 in.), and humus depth averaged
approximately 6 cm (2 in.). The trees covering Fernow are in
the central hardwood forest floristic province (Reinhart et al.
1963; Kochenderfer 2006). Of the 10 experimental watersheds,
Fernow 4 is a reference on which loggers last harvested the trees
circa 1905 to 1910. The U.S. Forest Service cut the trees on Fernow
3 by the diameter-limit method and clear-cutting at various times
between 1958 and 1972 (McCutcheon et al. 2006).

The Hubbard Brook Experimental Forest, located in the White
Mountain National Forest, was subject to extensive glaciation dur-
ing the last ice age. This investigation used measurements from two
of nine instrumented watersheds. Hubbard Brook 3 is a relatively
undisturbed reference watershed, whereas a whole-tree harvest

occurred on Hubbard Brook 5 between October 1983 and May
1984. Soils are predominantly well-drained spodosols derived from
glacial till with a sandy loam texture. The average of the highly
variable soil depth, including unweathered till, is 2 m (6 ft) from
surface to bedrock. Average humus depth at Hubbard Brook is
6.9 cm (2.7 in.). The second-growth forest is even-aged and con-
sists of 80 to 90% northern hardwoods, the remainder is spruce-fir
(USDA 2004; McCutcheon et al. 2006).

The Etowah River basin in northern Georgia is located in
the Blue Ridge Physiographic Province. This study uses rainfall
and runoff from two forested-mountainous watersheds within
the northern portion of the Etowah basin in the Chattahoochee
National Forest. Etowah 2 and Etowah 3 soils are fine loams, sandy
loams, and sands. The Etowah forest cover consists of hardwoods
and pines.

Curve Number Estimation

Tabulated curve numbers for each watershed are determined by us-
ing Table 2 for woods land use, hydrologic soil group (defined for
each watershed), and a good hydrologic condition (i.e., protected
from grazing with litter and shrubs covering the soil). For water-
sheds with soils classified into more than one hydrologic soil
group, the procedure calculates an area-weighted-average curve
number (Table 1).

This study compared tabulated curve numbers with watershed
curve numbers determined by five procedures using gaged rainfall
and runoff. These procedures include the median (NRCS 2001),
geometric mean (NRCS 2001), arithmetic mean (Bonta 1997),
nonlinear, least squares fit (Hawkins 1993), and standard asymp-
totic fit (Sneller 1985; Hawkins 1993).

Table 2. Curve Numbers for Woods Nationwide With Different
Hydrologic Conditions and Soil Groups

Hydrologic soil group

Land use Hydrologic condition A B C D
Woods Poor 45 66 77 83
Fair 36 60 73 79

Good 30 55 70 77

Note: Initial abstraction is 20% of the maximum potential retention.
Adapted from NRCS (2001).

1190 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER 2012

J. Hydrol. Eng. 2012.17:1188-1198.


http://pubs.usgs.gov/wri/wri934076/stations/02389000.html
http://pubs.usgs.gov/wri/wri934076/stations/02389000.html
http://pubs.usgs.gov/wri/wri934076/stations/02389000.html
http://pubs.usgs.gov/wri/wri934076/stations/02389000.html

By using measured rainfall-runoff (P — Q) pairs, the event
maximum potential retention S is (Hawkins 1993)

S=5P+20—+/40*+5PQ) )

This study defined a series of annual maximum events for
Fernow and Hubbard Brook on the basis of the annual maxi-
mum peak flow and the annual maximum event runoff volume for
Coweeta. The Etowah watersheds had only 21 months of rainfall-
runoff measurements; hence, this study compiled a partial duration
series of all storms with >25 mm (1 in.) of rainfall.

For both the median and arithmetic mean, this study calculated
the curve numbers for events from maximum potential retention §
[Eq. (1)]. The geometric mean is found by first taking the logarithm
of the event maximum potential retention S found by using Eq. (1),
log S; finding the arithmetic mean of the series, log S; and then
estimating the geometric mean maximum potential retention,
102 5. The curve number is then CN = 100/(1 + 10°¢ S/a) in
which a = 254 mm (10 in.).

The fourth method uses a nonlinear, least squares fit to find the
curve number that minimizes the sum of squared differences
between observed and estimated runoff for each series. Use of
the logarithm of observations linearized the nonlinear equation.
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The standard asymptotic method first ranks the rainfall series
and then the runoff series; the procedure then matches rainfall
and runoff having the same frequency of occurrence to compute
corresponding curve numbers. Frequency matching does not
necessarily pair the event runoff with the rainfall that caused the
response.

Sneller (1985) and Hawkins (1993) identified three types of
watershed responses (standard, violent, and complacent). The stan-
dard response occurs when the rainfall-runoff ratio becomes con-
stant for increasing rainfall. In these cases, the curve number as a
function of rainfall P [CN(P)] decreases to an asymptotic constant
CN, (Fig. 2) or CN(P) = CN, + (100 — CN,) exp(—kP) with
k = the fitting coefficient or rate constant that describes the curve
number approach to the asymptotic constant CN .. Sneller (1985)
found the standard response on 80% of 70 watersheds investigated.
Hawkins (1993) found 70% of 37 watersheds investigated to
have a standard response. A violent response occurs when runoff
begins after rainfall exceeds a threshold, observed in 10% of
watersheds (Hawkins 1993), and is described as CN(P) =
CN [l — exp(—kP)]. The fitting constant k is different for each
watershed response, especially for standard versus violet. The
complacent response occurs when the curve number does not
approach an asymptotic limit and runoff is linearly dependent
on rainfall Q = CP, where C = empirical coefficient approximated
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Fig. 2. Asymptotic curve numbers for selected watersheds using frequency matching of independently ranked rainfall and runoff series; CN(P) is the
curve number as a function of rainfall volume and CN, = 100/ (1 + 0.01969P) defines a threshold below which no runoff occurs until rainfall P in
mm exceeds an initial abstraction of 20% of the maximum potential retention
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by the percentage imperviousness in a watershed but that is nor-
mally estimated by using rainfall-runoff measurements. This re-
sponse occurred on 16% of watersheds, which Hawkins (1993)
attributed to channel and riparian imperviousness contributing to
runoff, even during large storms. Sneller (1985) provides guidance
on determining which of the three responses is appropriate for each
watershed.

Statistical Analysis

This investigation estimated agreement by comparing observed
series of runoff Q; with the estimates Q; using the Nash-Sutcliffe
efficiency (Nash and Sutcliffe 1970)

X (Qi = )
Y0 - 0)
where n = number of storm events; and O = mean runoff for the

series. An additional measure of goodness of fit is the coefficient of
determination (Aitkin 1973)

E=1- )

n _0N)2
ot ZhilQ=0) 5
11(0i—0)
where Q,- = improved estimate obtained by removing bias

(i.e., regressing estimated runoff against observed runoff Q;.
Both the Nash-Sutcliffe efficiency and coefficient of determina-
tion describe the degree of association between the observed and
estimated runoff. A negative coefficient of efficiency can occur for
biased estimates and indicates that the mean observed runoff is a
better estimate than that calculated by using the curve number
runoff equation. The Nash-Sutcliffe efficiency for unbiased esti-
mates (assuming a linear relationship) ranges between 0 and 1, cor-
responding to the absence of correlation and perfect correlation,
respectively. Compared to observed, biased estimated runoff occurs
when the efficiency is less than the coefficient of determination

(Aitkin 1973). Although a good measure of the association between
the observed and the calculated runoff, the coefficient of determi-
nation does not reveal systematic error (Aitkin 1973). Both the
efficiency and coefficient of determination are always less than
unity, and large values approaching unity indicate accurate esti-
mates of runoff (Hope and Schulze 1981; McCuen et al. 2006; Jain
and Sudheer 2008).

Statistical testing also compared observed with estimated runoff
using the two-tailed, paired Student ¢-test. The null and alternative
hypotheses determine whether differences are significantly differ-
ent from zero at the 5% level of significance. This study also used
Duncan (1955) multiple comparison tests to determine significant
differences between observed and estimated runoff. While the
curve number precision is reported to the nearest tenth of a unit,
it is important to recognize that the accuracy is limited to (at best)
the nearest unit.

Results

Table 3 presents tabulated and estimated watershed curve numbers.
Tabulated curve numbers range from 41 (Hubbard Brook 5) to 70
(Fernow 3 and 4). For the central tendencies, Fernow 4 has the
maximum estimated curve number, whereas Coweeta 2 has the
minimum. Least squares fits range from 40 (Etowah 3) to 84
(Fernow 4), and asymptotic fits range from 38 (Etowah 3) to 83
(Hubbard Brook 3).

Geometric-mean curve numbers are generally larger (seven of
10 watersheds) than values estimated by the other procedures.
The median provides the largest curve number for two of the other
watersheds (Etowah 2 and Hubbard Brook 5), whereas the arith-
metic mean is largest for Etowah 3. The arithmetic mean is smaller
than the geometric mean but larger than the median for four of the
10 watersheds. For all 10 watersheds, these three central tendencies
are larger than those estimated by using the nonlinear least squares
and the asymptotic fits, except for the Hubbard Brook watersheds

Table 3. Tabulated and Estimated Curve Numbers with Uncertainty Ranges or Standard Error for Ten Forested-Mountainous Watersheds in the Eastern

United States

Nonlinear least

Arithmetic mean

squares

Asymptotic (%, SE)

Watershed Tabulated Median Geometric mean
Coweeta 2 55 (35-74) 58.0 (32.3-88.7) 58.2 (30.8-81.3)
Coweeta 28 55 (35-74) 60.6 (37.3-88.8) 61.2 (34.4-82.6)
Coweeta 36 55 (35-74) 71.5 (55.2-99.1) 75.1 (37.8-93.7)
Coweeta 37 55 (35-74) 71.7 (50.7-99.2) 75.3 (62.3-81.9)
Fernow 3 70 (51-85) 83.9 (62.5-99.2) 88.7 (48.4-98.7)
Fernow 4 70 (51-85) 84.2 (71.5-98.5) 89.8 (49.4-98.4)
Hubbard Brook 3 46 (27°-66) 83.7 (57.4-98.7) 84.9 (55.9-96.0)
Hubbard Brook 5 41 (23b—61) 84.1 (58.2-97.2) 84.0 (55.0-95.7)
Etowah 2 62.6 (43-80) 67.3 (39.9-85.4) 66.3 (42.7-73.9)
Etowah 3 62.2 (42-79) 61.4 (34.3-77.3) 62.0 (37.7°-74.2)

57.4 (32.2-82.6)
60.3 (48.6-72.0)
72.5 (51.0-94.0)
73.1 (53.9-92.3)
85.1 (68.2-102%)
86.5 (71.8-101%)
82.6 (63.3-102%)
81.7 (61.9-102%)
65.6 (46.1-85.1)
71.1 (52.8-89.4)

45.8 (32.5-59.1)
56.5 (45.0-68.0)
68.1 (56.8-79.4)
70.2 (60.5-79.9)
82.6 (74.3-90.9)
84.0 (76.9-91.1)
81.9 (72.1-91.7)
80.9 (70.9-90.9)
55.0 (45.1-64.9)
40.4 (33.1%-47.7)

50.3 (0.74, 0.708)
53.9 (0.76, 1.42)
63.5 (0.63, 1.46)
66.6 (0.60, 1.50)
73.1 (0.90, 1.93)
72.7 (0.91, 2.04)
82.7 (0.001, 0.302)
81.6 (0.15, 0.566)
62.6 (0.26, 2.25)
37.5° (0.85, 3.89)

Note: This investigation expresses the uncertainty for (1) NRCS tabulated curve numbers based on I, = 0.2 S using Table 10-1 for antecedent runoff
conditions I and III, which Hjelmfelt (1991), NRCS (2001), and Hawkins et al. (2009) note approximately define the 90% confidence interval;
(2) median as the range of curve numbers determined from each storm event; (3) the geometric and arithmetic means as the 95% confidence inter-
val; (4) nonlinear least squares fit curve numbers as plus or minus the standard error, which is the square root of the minimum objective function
¥, (Q; — 0;)? divided by n (number of observations of rainfall and runoff) without correction for degrees of freedom in large samples, where Q; is
the observed runoft for rainfall-runoff pair i and Qi is the runoff for rainfall-runoff pair i computed from the curve number runoft equation (Hawkins
et al. 2009); and (5) the asymptotic curve number as r? the Pearson correlation coefficient (McCutcheon et al. 2006) and SE, the standard error of the
asymptotic curve number, which is the same as the standard error of the nonlinear least squares fit except Qi is the runoff computed from the curve
number equation using the curve number (as function of rainfall P) for a standard watershed response CN(P) = CN,, + (100 — CN,) exp(kP) in
which CN, is the asymptotic curve number and k is a fitting coefficient (Hawkins 1993).
#Curve numbers greater than the limit of 100 are an unrealistic artifact of the calculation of the 95% confidence interval for the arithmetic mean, reported here
solely to quantify estimates of uncertainty consistently.
®NRCS (2001, Table 9-1, footnote 6, p. 9-3) recommends that curve numbers less than 30 be approximated as 30 and composite curve numbers (Hubbard
Brook and Etowah) of less than 40 as 40 for all runoff calculations; however, this study reports values less than 30 or 40 to fully define uncertainty consistently.

1192 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER 2012

J. Hydrol. Eng. 2012.17:1188-1198.



Table 4. Multiple Comparisons Using Duncan Grouping of Runoff
Watershed

Duncan grouping

Coweeta 2 A A A A,B A, B,C B,C C
Mean 24.51 2426 23.62 20.62 1847 15.52 11.33
Number 68 68 68 68 68 68 68
Method GMQ MQ AMQ TQ OBQ ASQ LSQ

Coweeta 28 A A A A A A A
Mean 56.13 54.86 54.36 50.29 46.74 43.69 40.13
Number 29 29 29 29 29 29 29
Method GMQ MQ AMQ OBQ LSQ TQ ASQ

Coweeta 36 A A, B A, B A A B, C C
Mean 79.76 74.17 71.88 70.36 64.77 55.63 39.88
Number 59 59 59 59 59 59 59
Method GMQ AMQ MQ OBQ LSQ ASQ TQ

Coweeta 37 A A A A A A, B B
Mean 98.30 92.96 89.66 89.66 86.11 69.60 52.07
Number 37 37 37 37 37 37 37
Method GMQ AMQ OBQ MQ LSQ ASQ TQ

Fernow 3 A A,B A,B AB B C C
Mean 45.72 39.37 3835 37.34 35,53 2240 19.00
Number 53 53 53 53 53 53 53
Method GMQ AMQ OBQ MQ LSQ ASQ TQ

Fernow 4 A A,B A,B AB B C C
Mean 43.08 37.19 36.20 34.04 33.27 1890 16.23
Number 53 53 53 53 53 53 53
Method GMQ AMQ OBQ MQ LSQ ASQ TQ

Hubbard Brook 3 A A A A A A B
Mean 43.69 41.66 40.39 40.13 39.88 38.86 5.08
Number 48 48 48 48 48 48 48
Method GMQ MQ OBQ ASQ AMQ LSQ TQ

Hubbard Brook 5 A A A A A A B
Mean 42.67 4242 39.12 38.61 38.35 3734 3.68
Number 43 43 43 43 43 43 43
Method MQ GMQ OBQ AMQ ASQ LSQ TQ

Etowah 2 A A A A A A A
Mean 8.15 759 7.19 6.07 5.72 572 4.78
Number 14 14 14 14 14 14 14
Method MQ GMQ AMQ OBQ ASQ TQ LSQ

Etowah 3 A A A A A A A
Mean 475 4.67 455 447 4.45 333 2.08
Number 17 17 17 17 17 17 17
Method TQ GMQ AMQ ASQ MQ LSQ OBQ

Note: The ranked means of observed and estimated runoff (mm) with the
same Duncan grouping letter (A, B, or C) are not significantly different at
a 5% level of significance. Number refers to rainfall-runoff pairs. Method
of determining runoff from a specific curve number is abbreviated as
follows: geometric mean curve number (GMQ), median curve number
(MQ), arithmetic mean curve number (AMQ), tabulated curve number
(TQ), observed runoff (OBQ), asymptotic curve number (ASQ), and
nonlinear-least-squares-fit curve number (LSQ).

where all five estimated curve numbers are comparable (Table 3).
Nevertheless, the runoff estimated by the three central tendencies
and least squares fit is never significantly different from the ob-
served runoff. The asymptotic curve number estimates of runoff
did not vary significantly from observed for seven of 10 watersheds
(Table 4).

The uncertainties defined in Table 3 are not exactly comparable
for all methods of determining the curve number but are similar,
overall, except for the asymptotic curve numbers. The 90% confi-
dence intervals for tabulated curve numbers typically are 34 curve

number units to 39 curve number units, whereas the ranges vary
from 27 (Fernow 4) to 56 (Coweeta 2). The 95% confidence inter-
val for the geometric mean is 20 (Coweeta 37) to 56 (Coweeta 36),
whereas the arithmetic mean confidence interval varies from 23
(Coweeta 28) to 50 (Coweeta 2). Larger confidence intervals indi-
cate poorer confidence in the expected watershed curve numbers. The
Coweeta watersheds tend to have the greatest and least uncertainty in
curve numbers based on central tendencies, indicating that the uncer-
tainty ranges are not substantially different among the four locations
in North Carolina, West Virginia, New Hampshire, and Georgia.

Much of the uncertainty in Fig. 2 is caused by rainfall-
magnitude effects; curve numbers consistently decrease with
increasing rainfall for all 10 watersheds (Hawkins 1993). Fig. 3
compares observed with estimated runoff to illustrate this trend,
and Fig. 4 illustrates the bias in these runoff estimates.

Table 5 lists the Nash-Sutcliffe efficiency and the coefficient of
determination for each of the six methods and 10 watersheds. From
the negative Nash-Sutcliffe efficiencies, a simple average of the ob-
served series of runoff provides a better estimate than calculations
using NRCS-tabulated curve numbers for Etowah 2 and Hubbard
Brook 3 and 5. Bias in tabulated curve numbers used to estimate
runoff (when the efficiency and coefficient of determination are
different) occurs for six of the 10 watersheds (Coweeta 36 and
37, Fernow 3 and 4, and Hubbard Brook 3 and 5). The Duncan
multiple comparison tests in Table 4 confirm the significance of
these biases.

Neither the coefficients of efficiency nor determination indicate
that estimated runoff using tabulated curve numbers is well corre-
lated (defined as >0.8 for this investigation only) with observations
(Table 5). However, the central tendencies estimate runoff that is
not substantially biased (coefficients and efficiency and determina-
tion are quite similar in magnitude) but also not well correlated
(<0.8 for this investigation only) with observations. The limited
correlation is seemly caused by the large uncertainty shown in
Table 3 and Figs. 3 and 4. For the five methods of calculating
curve numbers from gaged watersheds, Coweeta 36 and 37 and
Hubbard Brook 3 and 5, show little bias, as is evident from the
similar magnitude of the Nash-Sutcliffe efficiency and the coeffi-
cient of determination. On the basis of the differences between the
coefficients of efficiency and determination, three of 10 watershed
runoff estimates indicate bias using the nonlinear least squares fit;
five of 10 based on the asymptotic curve number indicate bias.
However, the Duncan multiple comparison tests of significant dif-
ferences in observed and estimated runoff are not fully consistent
with all indications of bias in Table 5. None of the runoff estimates
based on a nonlinear, least squares fit curve numbers are signifi-
cantly different from observations. Runoff estimated from asymp-
totic curve numbers is significantly different for Coweeta 36 and
Fernow 3 and 4. Nevertheless, none is as noticeable as the biases
of the tabulated curve numbers for Coweeta 36 and 37, Fernow 3
and 4, and Hubbard Brook 3 and 5.

On the basis of the Nash-Sutcliffe efficiency, the median ranked
first among curve numbers based on the central tendency for seven
of 10 watersheds (Table 6), but neither the efficiencies nor these
curve numbers are substantially different. The multiple comparison
tests of central tendencies in Table 4 ranked the geometric mean
first for seven watersheds; the geometric mean is ranked first or
second for all watersheds, but none of the differences between es-
timated and observed runoff was significant for the central tenden-
cies and least squares fit. In a choice between the median and
geometric mean, the geometric mean curve number is the better
choice (NRCS 2001) because the calculation of the 95 or 90% con-
fidence intervals allow a probabilistic definition of the great uncer-
tainty observed in event curve numbers for a watershed (Table 3).
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Fig. 3. Relationship between measured and estimated runoff; this investigation-based estimated runoff is on the arithmetic mean curve number of 57.4
for Coweeta 2; median curve number of 71.5 for Coweeta 36; median curve number of 83.9 for Fernow 3; median curve number of 84.2 for Fernow 4;
median curve number of 83.7 for Hubbard Brook 3; and median curve number of 67.3 for Etowah 2

The range of curve numbers, which is the best expression of un-
certainty to associate with the median (Table 3), is not intrinsically
probabilistic (Hjelmfelt 1980, 1991).

Tables 3 and 6 suggest that calibrated curve numbers from
paired or adjacent watersheds are similar for all locations. By using
the Nash-Sutcliffe efficiency to rank the five methods to calculate
curve numbers for gaged watersheds, Table 6 lists the maximum
ranked method and the calibrated curve numbers selected for each
of the 10 watersheds. The paired Student z-test established that,
with one exception, none of the estimated runoff based on the
best-ranked curve number is statistically different from that ob-
served at a 5% level of significance, but the robustness of this test
was not established.

The Duncan multiple comparison tests in Table 4 establishes
that the estimated runoff based on the tabulated curve number is
significantly different from the observed runoff for Coweeta 36
and 37, Fernow 3 and 4, and Hubbard Brook 3 and 5. The multiple
comparison tests also reveal no significant difference (5% level of
significance) in using the median, geometric mean, and arithmetic
mean curve numbers to estimate runoff for all 10 watersheds.

For these 10 forested-mountainous watersheds, Tables 3-5
indicate that the distribution of curve numbers is approximately
lognormal because the runoff estimated from the median and
geometric mean curve numbers are not significantly different

(Yuan 1933). Yet, the arithmetic mean curve number falls between
the median and geometric mean for four of the 10 watersheds and is
similar to the median or geometric mean for the other six, indicating
that an appropriate distribution is not uniquely identifiable.
Table 7 shows that the rainfall records should be suitable to de-
termine standard asymptotic curve numbers because the maximum
rainfalls recorded are greater than 58.496/k. The only exceptions
are Fernow 3 and 4, which are complacent. As indicated by Fig. 2,
none of the 10 watersheds investigated exhibit violent responses.

Discussion

Tabulated curve numbers for woods provide runoff estimates for
six of the 10 forested watersheds that are significantly smaller
than observed (Table 4). For the Etowah and Hubbard Brook
watersheds, the accuracy of tabulated curve numbers is so poor
that the average of observed runoff provides better estimates or
coefficients of determination and efficiency indicate bias. Tabulated
curve number estimates are modestly correlated (Nash-Sutcliffe
efficiency = 0.56) with observed runoff for only Coweeta 28.
Smaller Nash-Sutcliffe efficiencies compared to coefficients of
determination for at least six watersheds (Coweeta 36 and 37, Fer-
now 3 and 4, and Hubbard Brook 3 and 5) indicate that estimated
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Table 5. Nash-Sutcliffe Efficiency (E) and Coefficient of Determination (D) for Watershed Curve Numbers

Nonlinear least

Tabulated Median Geometric mean Arithmetic mean squares Asymptotic
Watershed E D E D E D E D E D E D
Coweeta 2 0.373 0.377 0.362 0.382 0.361 0.382 0.365 0.381 0.173 0.349 0.329 0.366
Coweeta 28 0.556 0.640 0.605 0.630 0.601 0.629 0.606 0.630 0.586 0.637 0.498 0.644
Coweeta 36 0.457 0.774 0.773 0.789 0.744 0.790 0.768 0.789 0.772 0.787 0.714 0.784
Coweeta 37 0.390 0.764 0.778 0.778 0.762 0.779 0.776 0.779 0.774 0.777 0.737 0.773
Fernow 3 0.217 0.621 0.611 0.613 0.557 0.608 0.609 0.611 0.603 0.614 0.323 0.620
Fernow 4 0.268 0.756 0.724 0.743 0.662 0.734 0.722 0.740 0.723 0.743 0.366 0.755
Hubbard Brook 3~ —0.454 0.637 0.732 0.748 0.731 0.748 0.729 0.748 0.724 0.748 0.729 0.748
Hubbard Brook 5  —0.593 0.516 0.678 0.707 0.679 0.707 0.674 0.708 0.668 0.709 0.674 0.708
Etowah 2 —0.096 0.108 0.059 0.134 0.036 0.129 0.017 0.125  —-0.715 0.053  —0.096 0.108
Etowah 3 0.099 0.141 0.101 0.140 0.099 0.141 0.100 0.140  —0.339 0.011  —0.500 0.008

runoff using tabulated curve numbers only marginally correlates to
observed runoff and may be biased (Aitkin 1973; McCuen et al.
2006). When a tabulated curve number consistently underestimates
runoff from undeveloped forest, the effect of urbanization will be
consistently overestimated, and drainage overdesigned, perhaps
explaining part of the annual overdesign costs estimated to be

as great as $2 billion per year in the United States (Schneider

and McCuen 2005).

Causes of inaccurate runoff estimates using tabulated curve
numbers in these forested watersheds are unclear. The original
information used to estimate the tabulated curve numbers for
woods is no longer available (Hawkins et al. 2009). Thus, this study
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Table 6. Representative Curve Numbers, Uncertainty, Degrees of Freedom, and Paired Student #-tests

Watershed Procedure® CN (range)® Degrees of freedom t-statistic Probability < |
Coweeta 2 Arithmetic mean 57.4 (32.2-82.6) 67 —2.138 0.036
Coweeta 28 Arithmetic mean 60.3 (48.6-72.0) 28 —0.950 0.350
Coweeta 36 Median 71.5 (55.2-99.1) 58 —0.502 0.617
Coweeta 37 Median 71.7 (50.7-99.2) 36 0.020 0.984
Fernow 3 Median 83.9 (62.5-99.2) 52 0.505 0.616
Fernow 4 Median 84.2 (76.5-98.9) 52 1.655 0.104
Hubbard Brook 3 Median 83.7 (57.4-98.7) 47 —0.473 0.639
Hubbard Brook 5 Geometric mean 84.0 (80.8-86.7) 42 —1.165 0.250
Etowah 2 Median 67.3 (39.9-85.4) 13 —0.656 0.524
Etowah 3 Median 61.4 (34.3-77.3) 16 —0.866 0.400

Note: CN = curve number; the uncertainty is the range or 95% confidence interval.
“Procedure selected based on the ranking of the coefficients of efficiency (D, Table 4).
bUncertainty for the median is the range and 95% confidence interval for geometric and arithmetic means.

Table 7. Standard Asymptotic Watershed Responses for Frequency-
Matched Rainfall and Runoff Series

Watershed P ax (mm) k (mm™) 2.303k~! (mm)
Coweeta 2 239 0.02382 96.7
Coweeta 28 2901 0.01575 146
Coweeta 36 315 0.01122 205
Coweeta 37 318 0.01177 196
Fernow 3 162 0.01142 202
Fernow 4 162 0.01031 223
Hubbard Brook 3 213 0.08283 27.8
Hubbard Brook 5 213 0.07126 32.3
Etowah 2 126 0.06016 38.3
Etowah 3 150 0.01988 116

Note: P, is maximum observed rainfall for period of record, and k is a
fitting coefficient.

could not compare the uncertainties observed here for forested
watersheds and the uncertainties associated with the wooded water-
shed or watersheds used to derive the tabulated curve numbers.

Attributing these estimation errors to procedural mistakes and
misclassification is not plausible. Specifically, a concern in using
the curve number method, in general, is that many soils may be
misclassified, especially those in Groups B and C (Neilsen and
Hjelmfelt 1998). However, misclassification cannot explain the
large discrepancies in runoff estimation. For example, if the higher
elevation Coweeta 36 and Coweeta 37 soils are hypothetically in
Group C (as opposed to Group B), a curve number of 70 would
better agree with curve numbers of 72 to 75 determined from
rainfall-runoff observations. As recently as 2005, the Monongahela
National Forest changed the Fernow soil hydrologic group from
B to C, resulting in a curve number change from 55 to 70
(McCutcheon et al. 2006). However, even a change to Group D
(77) would not match curve number estimates of 84 to 89 from
the Fernow and Hubbard Brook rainfall-runoff observations. More-
over, Group D is inconsistent with the National Engineering Hand-
book (NRCS 2001) guidance, especially for steep mountain forests
in which shallow water tables and waterlogged soils are rare. In
addition, in U.S. national forests, in general, and in experimental
forests, in particular, a good hydrologic condition is maintained and
expected. As a result, neither the selection of the soil hydrologic
group nor hydrologic condition could explain the bias in tabulated
curve number for woods.

One approach for reducing these uncertainties is to understand
the relation between the magnitude of curve numbers for a water-
shed and hydrologic responses. At Coweeta, curve numbers are
substantially smaller for the low-to-mid elevation watersheds
(Coweeta 2 and 28) compared to the two higher elevation watersheds

(Coweta 36 and 37). These large differences in hydrologic
responses reflect physical differences between watersheds, i.e., soil
depth and annual evapotranspiration are much larger on the lower
elevation watersheds (Swift et al. 1988), which increases the poten-
tial for soil moisture storage and controls subsurface flow during
storm events (Hibbert and Troendle 1988; Hewlett and Hibbert
1966). Only approximately 10% of annual discharge occurs as
storm runoff on lower elevation Coweeta watersheds compared
to more than 30% on higher elevation watersheds (Hewlett
1967; Swift et al. 1988), which is consistent with the relative hydro-
logic response shown by this curve number analysis.

This investigation attributes the large ranges and 95% confi-
dence intervals, in part, to the dependency of the curve number
on rainfall magnitude. All 10 forested-mountainous watershed
curve numbers displayed asymptotic curve numbers that are less
than the median, geometric mean, and arithmetic mean, all associ-
ated with a 2-year return interval. Although this rainfall-magnitude
dependency explains much of the uncertainty, other sources of un-
certainty (e.g., antecedent moisture, rainfall intensity and duration,
slope, watershed size, soil depth and other characteristics, and the
season of the year and tree harvesting) are also likely to be impor-
tant for some watersheds.

Only the two Fernow watersheds have a complacent response
(Hawkins 1993). Fernow event curve numbers vary substantially
with rainfall magnitude and do not approach an asymptotic curve
number for the 53 years of record, thus strongly suggesting that
curve numbers be determined for each design period of importance
(McCutcheon et al. 2006). As a result, the asymptotic curve number
is less likely than curve numbers based on the central tendencies to
serve as a unique watershed curve number to translate design rain-
falls into runoff for ungaged watersheds.

Another method to reduce uncertainties is to calibrate curve
numbers by using locally gaged rainfall and runoff. For these
forested-mountainous watersheds, the central tendencies and non-
linear least squares estimates are equally capable of estimating run-
off with, at most, a 5% error (Table 4). Thus, a single watershed
curve number, with large uncertainty might be sufficient to re-
present the runoff response of Coweeta 28 and 37 and the Hubbard
Brook watersheds. Coweeta 28 and 37 have among the largest
ranges of annual maximum rainfall and are less sensitive to the
smaller rainfall events that introduce greater uncertainty (e.g.,
Etowah) by increasing curve numbers in watersheds with a stan-
dard response (Hawkins 1993). The Hubbard Brook watershed
responses, by contrast, quickly approach an asymptote, which is
similar to the means and median, making these watersheds ame-
nable to a single watershed curve number. The partial duration
series of 14 to 17 events recorded on Etowah in less than two years

1196 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER 2012

J. Hydrol. Eng. 2012.17:1188-1198.



of monitoring may be too few to determine reliable curve numbers
for gaged watersheds.

At Hubbard Brook, use of a single calibrated watershed curve
number (with large uncertainty) is feasible but not for the two
Fernow watersheds in which each design storm may require a sep-
arate curve number. The Etowah partial duration series seem to in-
volve too few storms to determine whether the reliability of the
curve number method is adequate to estimate runoff. Forested
watershed response at Coweeta, Fernow, and Etowah may require
separate curve numbers for 2-, 10-, and 100-year return intervals
(Titmarsh et al. 1995; McCutcheon et al. 2006).

Any evaluation of the curve number method on a watershed or
event basis should anticipate inconsistencies because of the formu-
lation of the curve number method. The SCS only intended the
tabulations (Table 2) to represent the typical response of wooded
watersheds nationwide that have the same soil hydrologic group
and soil cover and condition (Ponce 1996). As demonstrated in this
paper, actual runoff responses for different watersheds and from
storm to storm vary widely from the typical responses used by
the SCS to derive the curve numbers for woods.

Establishing that the curve numbers for woods (Table 2) are not
representative for forest runoff, in general, is currently infeasible.
The variability from the typical runoff response from woods is un-
known because the records and documentation for the development
of curve number tables are no longer available (Hawkins et al.
2009). In addition, this investigation never intended these 10 ex-
perimental watersheds to be representative of woods (open forests
with limited tree density) or forests nationwide despite many
extrapolations from Coweeta, Fernow, and Hubbard Brook to
understand the hydrology of the Appalachian Highlands and else-
where. Because of the missing records, the likelihood of updating
the NRCS curve number table (NRCS 1998, 2001) seems remote
despite recommendations by Rallison and Miller (1982) and
Schneider and McCuen (2005). Unfortunately, these curve num-
bers for select Appalachian Highland watersheds are not consistent
enough to develop a limited supplement similar to past additions to
the original tabulations (NRCS 2001, Chapter 9, Tables 9-3 and
9-4). More importantly, these results establish that regional curve
numbers for forested-mountainous watersheds are necessary (and
feasible from the close agreement obtained for the five paired
watersheds).

Because of the high degree of uncertainty associated with event
curve numbers for a given watershed, this investigation was unable
to completely distinguish advantages in calculating curve numbers
to estimate runoff that was not significantly different from obser-
vations. One exception was the asymptotic curve number that was
only effective for 70% of the watersheds (Coweeta 2, 28, and 37,
Hubbard Brook 3 and 5, and Etowah 2 and 3) in estimating runoff
(Table 4), and even then, the significance testing was not robust
enough (because of large uncertainty) to also distinguish poor
goodness-of-fit and bias. Because of frequency matching, the
asymptotic curve numbers were more precise than the curve num-
bers derived by the other four methods for which this study did not
use frequency matching to determine watershed curve numbers.
The estimated runoff may not have been significantly different
from observed because of the uncertainty, but the Etowah water-
sheds had negative efficiencies so that the curve number runoff
equation was not as good as a simple average of observed runoff
during the 21 months of observation. For the Fernow watersheds
and perhaps Coweeta 28, the difference in the coefficients of
efficiency and determination indicated bias, even with the insignifi-
cant difference between estimated runoff and observed. Thus, this
study finds that the asymptotic curve number is not reliable, gen-
erally, as a single watershed curve number to replace the geometric

mean or median for estimating runoff from forested- mountainous
watersheds of the Appalachian Highlands. Nevertheless, when
multiple curve numbers for a watershed must be associated with
design rainfalls of different return intervals, the asymptotic fit is
indispensable.

Runoff estimation using the nonlinear least squares fit was con-
sistent with observations (Table 4), but the average observed runoff
from the Etowah watersheds was better, and some bias was possible
for Coweeta 2. Thus, only the central tendencies provided runoff
estimates generally free of bias.

That the 95% confidence intervals for the arithmetic mean for
the Fernow and Hubbard Brook watersheds exceeded 100 favored
the NRCS (2001) procedures of using the median or geometric
mean. Of these two, the geometric mean is procedurally superior
in allowing probabilistic estimates of confidence intervals to inter-
pret the determination of a single watershed curve number.

Conclusions and Practical Implications

Although the curve number method is widely used for estimating
runoff from ungaged watersheds, substantial uncertainties are
present when applied to forested watersheds of the mountainous
eastern United States. Runoff estimates using tabulated curve num-
bers are unreliable to estimate runoff for nine of the 10 forested-
mountainous watersheds investigated. Curve number selection for
the forests of the Appalachian Highlands requires independent cal-
ibration to watersheds representative of regional landscape and
hydrologic characteristics.

For some watersheds, the geometric mean curve number derived
from an annual maximum series of observed rainfall and runoff
from gaged watersheds (NRCS 2001) provides locally consistent
estimates with a probabilistic basis. For some watersheds, each
appropriate design storm required a different curve number.
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