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a  b  s  t  r  a  c  t

Species  distribution  models  use  small  samples  to  produce  continuous  distribution  maps.  The  question
of  how  small  a sample  can  be to produce  an  accurate  model  generally  has  been  answered  based  on
comparisons  to maximum  sample  sizes  of 200  observations  or fewer.  In addition,  model  comparisons
often  are  made  with  the  kappa  statistic,  which  has  become  controversial.  Therefore,  we used sample
sizes  ranging  from  30 to  2500  individuals  to model  16  tree  species  or species  groups  in  Minnesota’s
Laurentian  Mixed  Forest.  We  compared  all  smaller  sample  sizes  to  models  for 2500  records  and  then  1000
records  using  Cohen’s  kappa,  Pearson’s  r, Cronbach’s  alpha,  and two  intraclass  correlation  coefficients.
We  then  began  confirmation  of  our findings  by  repeating  the process  using  a smaller  extent  in a different
area,  a portion  of Missouri’s  Central  Hardwoods.  Although  there  are disadvantages  to  using the kappa
statistic  and  intraclass  correlation  coefficients,  due  to  conversion  to categories  or  computation  limitations
respectively,  the  model  comparison  metrics  produced  similar  results.  Comparison  values  depend  on  the
maximum  sample  size,  and  at sample  sizes  roughly  around  10–20%  of the  maximum  sample  size, values
will  begin  to  decrease  more  rapidly.  Models  may  not  be  very  accurate  below  a  sample  size of 200,  for
our  study  areas,  extents,  and  grains.  Nonetheless,  models  based  on  small  sample  sizes  still  may  provide
information  for  rare species.  We  recommend  using  the  full  sample  available  for  modeling,  after  using  a
partial  sample  for accuracy  assessment.  Future  research  is needed  to  confirm  our  findings  for  different
areas,  extents,  grains,  and  species.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Species distribution models use small samples from point loca-
tions to predict species occurrence probability for a continuous
spatial extent. The accuracy of species distribution models may
vary by species, statistical method, explanatory variables, and study
extent among other factors, although the unique ecological char-
acteristics of species, and consequent diverse distribution patterns,
may explain the greatest variance (Guisan et al., 2007; Syphard
and Franklin, 2010). Nevertheless, the accuracy of species distri-
bution models also depends on both sample size and the method
for comparison of models.

Sample  size is an important consideration for modeling accu-
racy, particularly for rare species where there are few samples.
Small sample sizes that produce inaccurate models may  provide
some information, but uncertainties associated with these models
are high. Although there is much research that compares ever-
changing statistical methods, establishing an appropriate sample
size as a base for appropriate comparisons has not been common.
Studies that have focused on sample size also have used small
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maximum sample sizes for comparison (e.g. Stockwell and
Peterson, 2002; Kadmon et al., 2003; Hernandez et al., 2006; Wisz
et al., 2008). Even though 100–200 individuals may  be more records
than available, models for 100 individuals may not be the best
standard.

To measure the agreement among species distribution maps,
Cohen’s kappa commonly is used (Cohen, 1960). Although the
kappa statistic is meant to account for chance agreement, the
definition of chance is uncertain (Vaughan and Omerod, 2005).
The kappa statistic also behaves paradoxically due to prevalence
(number of present cases) and location of species distributions
(McPherson et al., 2004; Jiménez-Valverde et al., 2008). Therefore,
other metrics to measure accuracy may  be preferable.

One option for measurement of model agreement is the familiar
interclass correlation coefficient. Interclass correlation coefficients,
such as the commonly used Pearson’s r or more rare Cronbach’s
alpha, are used to correlate different variables (such as height and
weight), and consequently, different variance. For Pearson’s r and
Cronbach’s alpha, the magnitude of difference between variables
does not matter. For example, pairwise values of 0.1 and 0.8, 0.2 and
0.9, and 0.3 and 1.0, would be correlated and yet are very different
values for species distribution maps.

Another option is intraclass correlation coefficients, which mea-
sure the relationship between the same variable from different
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sources (Shrout and Fleiss, 1979). This option may  be more suited
for model comparison, where the same variable (predicted prob-
ability) is compared and variation arises from methodological
choices, for example, when comparing predicted probabilities from
different statistical methods (i.e. different sources). Two  intra-
class correlation coefficient values may  be calculated: an absolute
agreement metric and a consistency metric. The absolute agree-
ment metric incorporates the different sources in the comparison,
whereas the consistency metric excludes variance from the source
(i.e. different methods), which is desirable when the magnitude of
difference is irrelevant. The consistency metric is similar to Pear-
son’s correlation, but based on an additive rather than a linear
transformation to relate lower and higher values (McGraw and
Wong, 1996).

Due  to the importance of sample size and the choice of accuracy
assessment metric, we had two objectives. First, we  used much
larger sample sizes than previous studies to evaluate adequate
minimum sample sizes. We  examined sample sizes ranging from
30 to 2500 individuals of 16 tree species or species groups in a
roughly 5 million hectare area of Minnesota. Secondly, in order
to compare species distribution models developed under various
sample sizes, we needed to determine if the current option, the
kappa statistic, was as reliable as alternative options. We  com-
pared all smaller sample sizes to models based on 2500 records and
then 1000 records using Pearson’s correlation, Cronbach’s alpha,
Cohen’s kappa, and two intraclass correlation coefficients. We  then
evaluated the comparison metrics for differences to identify the
strengths and weaknesses of each metrics. To strengthen our find-
ings, we repeated the process for a smaller extent in the Central
Hardwoods of Missouri. Our work will provide guidance in selec-
tion of appropriate sample size and metrics for species distribution
models.

2. Methods

2.1. Study area

The  primary study area covers about half of the 9.3 million
hectare Laurentian Mixed Forest province in northeastern Min-
nesota (Fig. 1; National Hierarchical Framework of Ecological Units;
ECOMAP, 1993). In the Laurentian Mixed Forest province, land-
forms (e.g. moraines and wetlands) were created by glaciers (Albert,
1995). Annual precipitation increases from about 55 cm in the west
to 80 cm in the east and long, cold winters prevail (mean annual
temperature about 2 ◦C).

2.2.  Tree surveys

The  USDA Forest Service Forest Inventory and Analysis (FIA) sur-
veys fixed plots (each composed of four subplots that are a total
of 0.065 ha) during a five year cycle. The latest complete cycle was
during 2004–2008 for Minnesota’s Laurentian Mixed Forest (Fig. 1).
The USDA Forest Service joined our predictor variables to plots (in
a table but based on accurate spatial locations) for modeling and
prediction because the available FIA plot locations are fuzzed (i.e.
location moved) and swapped to protect landowner privacy.

We  selected tree species that had at least 2500 individuals.
The species were American Basswood (Tilia Americana), balsam fir
(Abies balsamea), balsam poplar (Populus balsamifera), black ash
(Fraxinus nigra); black spruce (Picea mariana), bur oak (Quercus
macrocarpa), jack pine (Pinus banksiana), northern white cedar
(Thuja occidentalis), paper birch (Betula papyrifera), red maple (Acer
rubrum), red pine (Pinus resinosa), sugar maple (A. saccharum),
tamarack (Larix laricina), and quaking aspen (Populus tremuloides).
We also created two mixed species groups by genus, aspens

Fig. 1. Primary study area (shaded black), about 5 million ha in the Laurentian Mixed
Forest of Minnesota.

(Populus tremuloides, P. balsamifera) and maples (Acer rubrum, A.
saccharum).

2.3. Spatial units and environmental variables

Our spatial units were Soil Survey Geographic (SSURGO)
Database (Natural Resources Conservation Service;
http://soildatamart.nrcs.usda.gov) polygons. Soil surveys have
not been completed in Cook, Crow Wing, Isanti, Koochiching,
Lake, Pine, and St. Louis counties, leaving a study extent of about
4,895,238 ha (Fig. 1). After removal of polygons that were water
or otherwise miscellaneous areas e.g. mines, pits, dumps), there
were 310,000 soil polygons.

We  used sixteen predictor variables that are important for
tree presence. For soil variables, we determined values based
on polygons with similar characteristics by county (map units;
2364 map  units total). Soil variables were (1) drainage class (very
poorly drained to excessively drained), (2) hydric soil presence
class, (3) water holding capacity (cm/cm), (4) pH, (5) organic mat-
ter (%), (6) clay (%), and (7) sand (%). We  intersected two  more
categorical variables to each soil polygon: (8) ecological subsec-
tion, which is an ecological classification (ECOMAP, 1993), and (9)
bedrock geology. From a 30 m DEM (digital elevation model), we
determined mean values of terrain variables by a unique unit of
map  unit, land type association (an ecological classification), and
bedrock geology, which contained spatially distinct soil polygons
that averaged about 210 ha, and became our unit for predicted
probabilities. Terrain variables were (10) elevation (m), (11) slope
(%), (12) transformed aspect (1 + sin(aspect/180/3.14 + 0.79; Beers
et al., 1966) (13) solar radiation (0700–1900 in 4 h intervals on sum-
mer solstice for re-sampled 60 m DEM), (14) topographic roughness
(Sappington et al., 2007), (15) wetness convergence, and (16) topo-
graphic position index (T. Dilts; http://arcscripts.esri.com).

2.4. Sample sizes and statistical analysis

We randomly selected 2500, 1250, 1000, 5000, 200, 100, 50 and
30 polygons for each tree species or tree species group for mod-
eling. We  reserved the rest of the present samples for accuracy
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assessment. We  selected up to 2500 polygons with plots that did
not contain the species to serve as pseudoabsences.

Random Forests classification and regression trees are a non-
parametric alternative to traditional statistical methods (Breiman,
2001; Cutler et al., 2007). Random Forests grows multiple trees
by drawing different bootstrap samples and only a few randomly
selected variables are used to grow individual branches. We  used
the randomForest package (Liaw and Wiener, 2002) in R statistical
software (R Development Core Team, 2010). We  fixed the number
of classification trees to 1000. We  set the number of variables ran-
domly sampled at each split as the square root of the number of
predictors. For modeling, we used a modeling prevalence of 80% (1
pseudoabsence: 4 presence) to focus the statistical method on the
known presences rather than the uncertain absences. We  selected
a prevalence that was greater than 50% because we  wanted models
based on what was known (the present cases) rather than unknown
(pseudoabsences).

2.5. Species distribution model comparisons

We compared predicted probabilities for a sample size of 2500 to
all sample sizes and a sample size of 1000 to all lesser samples sizes
(i.e. 500, 200, 100, 50, 30). We  used Pearson’s correlation coefficient
and Cronbach’s alpha (Proc Corr; SAS software, Version 9.2, Cary,
NC, USA), weighted kappa (SAS Proc Freq; with weighted kappa,
partial credit is given to near groups), and intraclass metrics of (1)
an absolute agreement metric (ICC2; includes magnitude of differ-
ence) and (2) a consistency metric (ICC3; %INTRACC SAS macro;
R.M. Hamer). Due to computer memory requirements for calcu-
lating intraclass metrics, we reduced the entire dataset to 2365
records, representing one predicted probability per map  unit.

2.6.  Accuracy assessment

To  compare species distribution models for each species by sam-
ple size, we used assessments that did not require known absence
cases to evaluate omission and commission error. We  calculated
the true positive rate (ROCR package in R; Sing et al., 2005) and
area (as a surrogate for specificity, the true negative rate) at a 75%

threshold for species presence. We  also determined the overall
mean of predicted probabilities for each sample size by species.

2.7.  Confirmation

To  determine if our results were applicable to other, smaller
areas, we repeated this process in the Missouri Ozarks, part of the
Central Hardwoods. Units for terrain variables (and unique pre-
diction probabilities) were about 131 ha, smaller than the units
for Minnesota. The FIA sampling density of plots is about 1 per
2500 ha, which is too sparse to have 1000 or more trees of many
species in a smaller area. We  selected one ecological subsection, the
Current River Hills which has an areal extent of about 800,000 ha,
that had two  tree species with abundance that was greater than
1000 (and enough pseudoabsences to maintain an 80% modeling
prevalence). The tree species were black oak (Quercus velutina) and
scarlet oak (Q. coccinea). We  compared predictions among sample
sizes of 1000, 500, 200, 100, and 50 individuals.

3. Results

For model comparisons of all smaller sample sizes (1000, 500,
200, 100, 50, 30) to a maximum of 2500 records (where the species
were present), all the metrics produced similar trends, albeit with
different values and slopes (Fig. 2a). Compared to a sample size of
2500, metric values decreased steadily with sample size and then
more rapidly when sample sizes reached 500, or 20% of the maxi-
mum sample size, and then diminished even more rapidly at 200, or
about 10% of the maximum sample size. Pearson’s r and ICC2 had
a similar line slope as did Cronbach’s alpha and ICC3. The kappa
statistic decreased the most, to a value at sample size of 30 that
was 40% of the original value for sample size 2500 (See Appendix
A for correlation values among the sample sizes).

When we repeated this process to compare sample sizes of 500
and less to a sample size of 1000, the slopes were similar to the
slopes for the comparisons at a sample size of 2500 (given fewer
data points), and decreased rapidly at a sample size of 0.2 of the
maximum sample size (Fig. 2b). Values were similar at each relative
percentage of the comparison sample (i.e. at 20% of the maximum
sample size), even though they were re-set to a new comparison.
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Fig. 2. Accuracy assessment metrics that compare decreasing sample sizes to (a) a maximum sample size of 2500 and (b) a maximum of 1000 for species distribution models
covering about 5 million ha in Minnesota.
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Table 1
Increase in mean predicted probabilities by species as sample size decreases (Min-
nesota Laurentian Mixed Forest).

Sample size

2500 1250 1000 500 200 100 50 30

American basswood 0.46 0.51 0.53 0.57 0.59 0.61 0.65 0.66
Aspens 0.66 0.67 0.67 0.69 0.68 0.68 0.71 0.73
Balsam fir 0.42 0.47 0.49 0.54 0.61 0.64 0.68 0.68
Balsam poplar 0.38 0.44 0.45 0.51 0.58 0.58 0.57 0.64
Black ash 0.55 0.60 0.61 0.64 0.67 0.69 0.72 0.69
Black spruce 0.24 0.28 0.29 0.32 0.37 0.44 0.43 0.48
Bur oak 0.57 0.60 0.61 0.65 0.64 0.67 0.72 0.73
Jack pine 0.25 0.29 0.31 0.37 0.40 0.44 0.52 0.56
Maples 0.54 0.58 0.58 0.60 0.64 0.65 0.69 0.68
Northern white cedar 0.18 0.23 0.25 0.32 0.40 0.48 0.52 0.52
Paper birch 0.60 0.63 0.64 0.65 0.69 0.70 0.71 0.65
Quaking aspen 0.69 0.70 0.70 0.69 0.70 0.70 0.70 0.70
Red maple 0.54 0.58 0.59 0.62 0.64 0.62 0.66 0.69
Red pine 0.26 0.30 0.33 0.39 0.47 0.51 0.57 0.58
Sugar maple 0.38 0.45 0.46 0.49 0.51 0.51 0.58 0.62
Tamarack 0.27 0.31 0.33 0.36 0.38 0.44 0.37 0.41

However, values were greater than when compared to greater
absolute sample size (i.e. metric values at 500 were greater when
compared to 1000 than compared to 2500).

As sample size decreased, at a constant 75% threshold for accept-
ing species presence, true positive rate decreased, to about 75%
of the true positive rate value of the 2500 sample size, and area
increased rapidly, to about 180% of the area of the 2500 sample
size (Fig. 3). In addition, as sample size decreased, mean predicted
probabilities increased (Fig. 3), but not by the same amount for all
species (Table 1). Indeed, the distance between the two intraclass
coefficient metrics (Fig. 2) may  represent the difference in mean
predicted probability values by sample size.

To substantiate our findings for sample size, we correlated (Pear-
son’s r) samples sizes of 1000, 500, 200, 100, and 50 for black oak
and scarlet oak in one ecological subsection that was 800,000 ha
in the Missouri Ozarks (Fig. 4). The slope for correlation again
appeared to decrease at about 10–20% of the best model that had
1000 samples. As a side note, we correlated the sample of 1000 from
the subsection to sample of 1000 from the entire Missouri Ozarks
(about 9 million ha). For black oak, the correlation was 0.62 and for
scarlet oak, the correlation was 0.82, indicating that extent, and the
incorporated variation, will influence species distribution models.

4. Discussion

The comparison metrics all showed similar trends and therefore
selection of comparison metrics generally is a matter of prefer-
ence and situation. The kappa statistic uses categories and generally
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Fig. 3. True positive rate, mean predicted probability, and area (fraction of total
4,895,238  ha) for decreasing sample sizes of species distribution models in Min-
nesota.
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maximum sample size of 1000 for black oak and scarlet oak species distribution
models  covering about 800,000 ha in Missouri.

it seems better to directly use predicted probabilities rather than
lose information to categories; nevertheless, there may be circum-
stances when categories are desirable. Because the magnitude of
difference in sources is an artifact of sample size (the source),
Pearson’s r and ICC2 should be better metrics for sample size com-
parisons, but if the magnitude of difference is important, then ICC3
and Cronbach’s alpha may  be more suitable metrics. Lastly, Pear-
son’s r (and Cronbach’s alpha) is faster and simpler to calculate than
the intraclass metrics.

Comparison  of sample sizes is a slippery slope that depends on
the maximum sample size. When comparing to 2500 individuals,
a sample size of 1000 is very comparable, 500 reasonably so, and
there is a steep curve after reaching around 20% (500) to 10% (250)
of the maximum sample size. When comparing to 1000 individu-
als, a sample size of 200 appears reasonably similar, and then again
there is a steep curve below 0.2 of the maximum sample size. There-
fore, authors who  compare to a maximum sample size of 100–200
will find that sample sizes of 10–50 are comparable (e.g. Stockwell
and Peterson, 2002; Kadmon et al., 2003; Hernandez et al., 2006).

Although we never reached an asymptote where increased sam-
ple size no longer affected predicted probabilities, we  believe that
sample sizes of 500 individuals and greater will be comparable to
a sample size of 2500 based on a correlation of 0.9. At sample sizes
between 500 and 200, models will have some uncertainty. Keep-
ing in mind that every species is unique, models may not be very
accurate below a sample size of 200, at least for our models and
this area, spatial extent, and grain. We  generalized the results to
an ecological area in the Central Hardwoods of Missouri that was
about 5% of the size, but with only two species and one area, the
applicability of minimum sample size requirements is tentative. In
any event, models based on small sample sizes may  still be useful
for identifying trends, although prediction uncertainties are high
under small sample sizes (Wisz et al., 2008).

Mean predicted probability increased with decreasing sample
size perhaps because there was not enough information to fully
delineate sites where the species were present, resulting in greater
distance between sites where the species were present and not
present. To increase sample size, we  suggest running the model
with a portion reserved for accuracy assessment and then run-
ning the model again with the full dataset. Interestingly, decreasing
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the modeling prevalence will reduce predicted probabilities (Lobo
et al., 2007), which provides an option to reduce predicted prob-
abilities when the values seem inflated compared to probabilities
for more common species.

Our research was for a landscape of almost 5 million ha, similar
to other studies where the extents were entire countries or states
(e.g. Stockwell and Peterson, 2002; Kadmon et al., 2003; Hernandez
et al., 2006). We  were able to substantiate our sample size minimum
of about 200 records for a smaller extent in a limited manner, due to
the low density of plots and small number of trees in FIA surveys.
However, we expect that even though the minimum sample size
requirement may  decrease when a smaller study area limits envi-
ronmental variability, there will not be a large decrease because in
order to define a species, a certain amount of variability needs to
be captured by the sample. It also appears that species distribution
models will change based on the extent and given the choice, the
ideal extent for modeling probably depends on the scale of planned
applications.

Further research should investigate whether smaller extents
also need 200 or more records to produce a model similar to the
gold standard. There even may  be a sample size rule of thumb based
on the relationship between sample size and extent, which may
depend heavily on the spatial unit or grain as well. We  modeled tree
species and therefore minimum sample sizes for other taxa may  be
variable, due to differing strength of the environmental variables
to make predictions.
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Appendix A. Correlation among predicted probabilities for
varying sample sizes (Minnesota Laurentian Mixed Forest)

2500 1250 1000 500 200 100 50 30

2500 1.00 0.96 0.95 0.90 0.82 0.76 0.72 0.70
1250 0.96 1.00 0.99 0.95 0.87 0.81 0.78 0.75
1000 0.95 0.99 1.00 0.96 0.89 0.83 0.80 0.77

500 0.90 0.95 0.96 1.00 0.94 0.89 0.85 0.82
200 0.82 0.87 0.89 0.94 1.00 0.95 0.91 0.87
100 0.76 0.81 0.83 0.89 0.95 1.00 0.95 0.91

50 0.72 0.78 0.80 0.85 0.91 0.95 1.00 0.96
30 0.70 0.75 0.77 0.82 0.87 0.91 0.96 1.00
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