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A new sampling method for down coarse woody debris is proposed based on limiting the perpendicular
distance from individual pieces to a randomly chosen sample point. Two approaches are presented that
allow different protocols to be used to determine field measurements; estimators for each protocol are
also developed. Both protocols are compared via simulation against existing sampling methods that
are closely related in terms of theory and field implementation. The new method performed well in com-
parison to both fixed-area plot and perpendicular distance sampling, and may provide some simplifica-
tions in operational field use.
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1. Introduction

Down coarse woody debris (CWD) plays a number of roles in
forest ecosystems. For example, the abundance of CWD is associ-
ated with the abundance and diversity of fungi (Pouska et al.,
2010) and vertebrates (Bowman et al., 2000; Bunnell and Houde,
2010), and the survival rate of tree seedlings (Harmon and Frank-
lin, 1989). Coarse woody debris is a contributing fuel for stand-
regenerating wildfires (van Wagner, 1968), and a dynamic compo-
nent of an ecosystem’s net carbon exchange with the atmosphere.
For these and other reasons, sampling strategies for coarse woody
debris are employed for a variety of purposes ranging from nar-
rowly focused scientific inquiries to monitoring national forest car-
bon stocks (Woodall et al., 2008; Woodall et al., 2009). Therefore, it
is becoming more important to have sampling methods for down
CWD that are easily understood, conveniently applied in the field,
and competitive in terms of both time and estimator efficiency
with other extant methods.

By convention, a piece of downed CWD is called a log, and a
population of CWD may comprise all the logs within some delim-
ited area of a landscape. Common strategies for sampling logs on a
landscape include the use of fixed-area plots (Gove and Van Deu-
sen, 2011) or line intersect sampling (LIS) (Warren and Olsen,
1964). Within the last 15 years, several alternative strategies have
been advanced that utilize sampling with probability proportional
B.V.
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to the size (PPS) of a particular log attribute, for example, length
(Ståhl, 1998; Gove and Van Deusen, 2011), length-square (Gove
et al., 1999), or midpoint cross-sectional area (Bebber and Thomas,
2003). The PPS method is advantageous because the aggregate
amount of the design attribute across the landscape can often be
unbiasedly estimated from the count of logs in a sample.

Perpendicular distance sampling (PDS), which was advanced by
Williams and Gove, 2003, is remarkable because it samples logs
with probability proportional to volume. Consequently, the aggre-
gate volume of the logs on a landscape obtains from counts of logs
at sample points. This method also is useful for estimating carbon
stocks (Valentine et al., 2008), though one must subsample logs to
obtain the carbon to volume ratio. Another closely related method,
line intersect distance sampling, combines the strengths of PDS for
volume estimation, with the transect protocol of LIS (Affleck,
2008).

Perpendicular distance sampling is so-named because a log is
selected into a sample if (i) a line from a sample point intersects
the central axis (often termed the ‘needle’) of a log at a right angle,
and (ii) the length of this line is less than some limiting distance,
which changes along the log length in a manner that is based on
the design attribute (e.g., volume). Design-unbiased protocols for
PDS have also been developed for attributes other than volume
(e.g., coverage area), and Ducey et al. (2008) have shown how
the method can be extended to estimate other attributes. These
PDS protocols and others have recently been reviewed and com-
pared by Gove et al. (in press). In this paper, we introduce a strat-
egy for sampling CWD, called distance limited sampling (DLS),
which also uses a selection protocol based on a fixed perpendicular
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distance—but one that does not vary with log shape as in PDS. The
strategy is easy to understand, convenient to apply in the field, and
efficient in terms of time and precision.

Distance limited sampling involves sampling with probability
proportional to log length, so the aggregate length of logs on the
landscape is estimated from the count of logs in the sample. De-
sign-unbiased estimation of other attributes, for example aggre-
gate coverage area or volume obtains, respectively, from either
(i) measurement of log coverage area or volume and Horvitz–
Thompson estimation, or (ii) measurement of log diameter or
cross-sectional area and estimation by Monte Carlo integration.
In what follows, we make the distinction between how a log is se-
lected into the sample (the sampling protocol) and how measure-
ments are taken on a log, which in turn determines the estimator
to be employed in the expansion of the measurements for the final
estimate (the measurement protocol). A log is selected in the same
way independent of how the measurements are subsequently ta-
ken under this new scheme. But the way the measurements are ta-
ken once the log has been included, determines (or is determined
by) the estimator used for sample expansion. In the following sec-
tions, we describe the protocols and estimation procedures for DLS
in detail, and compare the performance of DLS against two compet-
ing methods—PDS and the ‘sausage’ sampling fixed-area plot pro-
tocol (Gove and Van Deusen, 2011)—by simulation. Finally, a set
of Monte Carlo experiments are conducted to provide a compara-
tive example of the sample size requirements for nominal 95% nor-
mal theory confidence interval coverage.
2. Methods

In general, an areal sampling method may be defined through a
clear exposition of the probabilistic component of the field sam-
pling selection protocol. This protocol determines the constraints
under which a log is sampled through the definition of an object’s
inclusion zone—that area within which a random point can fall,
selecting the object into the sample tally on a given point. This sim-
ple formula applies to all areal sampling methods whether they in-
volve lines, fixed-area plots, or variable sized plots. For example,
the inclusion zone for an object under line intersect sampling has
a well-defined area determined by the line orientation and length,
and the shape of the particle being sampled; while the sample
point is normally associated with the center point of the line. Sim-
ilarly, several protocols associated with fixed-area plot methods for
down CWD have recently been described by Gove and Van Deusen
(2011).

In the following, we assume that the logs lie on a tract A with
area jAj. Furthermore, no restrictions are made with respect to
the spatial distribution of the logs in A. Other components of the
Fig. 1. The inclusion zone for a log with length Li based on a distance limit of Dl is depic
(short dash) with the log’s ‘needle’ (long dash) is also shown.
field protocol, such as the establishment of what constitutes a
log in terms of size constraints and structural integrity are part
of the design of individual surveys, and are based on the survey
objectives; these are not required here for the probabilistic devel-
opment of the inclusion zone and associated estimators.

2.1. The sampling protocol

The development of the inclusion zone requires the establish-
ment of a log’s ‘needle’ for reference. For intact straight logs, the
needle would correspond to the pith along the main axis. For logs
that are branched, an imaginary needle can be establish extending
from the base to the portion of the most distal branch that still
meets the definition of CWD under the survey protocol (Williams
et al., 2005). Selection from a given sample point is based on the
idea that a log is sampled when the sample point falls perpendic-
ular to the log’s needle. The perpendicular distance within which
a sample point qualifies on either side of the log is limited, and is
denoted Dl. This very simple concept produces a rectangular region
with two sides tangent to the log ends, and the other two sides par-
allel to the log needle as shown in Fig. 1. The area of the zone is
ai = 2DlLi, where Li is the length of the ith log. The inclusion proba-
bility for a random point sampling the ith log follows simply as

pi ¼
ai

jAj ¼
2DlLi

jAj ð1Þ

It is clear then that both the inclusion area and the inclusion
probability differs for each log due to differing log lengths. Thus,
the new method is a variable probability method where logs are
sampled with probability proportional to their lengths. Fig. 1 also
depicts a sample point and perpendicular intersecting the log’s
needle demonstrating the sample selection concept: since the sam-
ple point falls a distance less than Dl from the needle, the log is se-
lected on that point.

2.2. Estimation

The general estimator for variable probability sampling is the
Horvitz–Thompson (HT) estimator (Gregoire and Valentine, 2008,
p. 215; Thompson, 1992, p. 49). Assume that we want to estimate
some attribute y on the population of down logs. Then the HT esti-
mator for the jth sample point is

bY j ¼
Xnj

i¼1

yi

pi
ð2Þ

where nj is the number of logs sampled on the jth point. Moreover,
if m points are sampled within A, then the mean is given as
ted. The length lj determined by a random sample point intersecting perpendicular



Table 1
Integral quantities that can be easily estimated under crude Monte Carlo.

Attribute g(l) Integral Integrand and Constant
description

Density 1
L

R L
0

1
L dl ¼ 1 L is total log length (m)

Length 1 R L
0 dl ¼ L

Surface areaa c(l) R L
0 cðlÞ dl ¼ as

c is circumference (m)

Coverage area d(l) R L
0 dðlÞ dl ¼ ac

d is diameter (m) parallel to the
horizontal plane of the ground

Volume x(l) R L
0 xðlÞ dl ¼ v x is cross sectional area (m2)

Biomass qx(l) q
R L

0 xðlÞ dl ¼ yb
q is bulk density
(mass per unit volume)

Carbon wqx(l) wq
R L

0 xðlÞ dl ¼ yc
w biomass to carbon conversion
(mass C per mass wood)

a This integral is approximate, but very close—compare with Table 2.
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bY ¼ 1
m

Xm

j¼1

bY j ð3Þ

with associated unbiased variance estimator

dVarðbY Þ ¼ 1
mðm� 1Þ

Xm

j¼1

ðbY j � bY Þ2 ð4Þ

With respect to our distance limited variable length plot meth-
od, substituting (1) the estimator (2) becomes

bY j ¼
jAj
2Dl

Xnj

i¼1

yi

Li

or, for m sample points using (3)

bY ¼ jAj
2Dlm

Xm

j¼1

Xnj

i¼1

yi

Li
ð5Þ

If the attribute of interest is log length, then yi = Li in the above,
and a simple count of the logs selected on the sample point will
provide an estimate of aggregate length. Other attributes require
measurements. For example, volume models such as Smalian’s for-
mula (Fraver et al., 2007) can be used to estimate log volume, and
in general require measurement of not only log length, but in the
case of Smalian’s, both end diameters as well. However, if volume
from Smalian’s is used for yi in (5), then length again cancels and
only the diameter measurements are required. Log density per unit
area (yi = 1) requires measurement of log length for each log. Woo-
dy biomass can be estimated from the log volume and an estimate
of the bulk density, q, for the log, either based on an overall species
factor or from subsampling (Valentine et al., 2008), and should ide-
ally reflect decay status. Carbon content can similarly be estimated
from biomass using a standard conversion of approximately one
half, but which may differ by species. Attributes like surface area
and coverage area are more problematic and would likely involve
a taper model for estimation. The sampling and associated mea-
surement protocols outlined thus far will be referred to as simple
distance limited sampling (DLS).

2.2.1. Crude Monte Carlo
In the last section we presented the basic DLS estimator and

showed how several quantities, yi, could be estimated using a pro-
tocol that is familiar from other methods. In particular, log volume
can be estimated using a model. An alternative protocol to this ap-
proach can be developed by considering a subsample within each
log for the estimation of volume and other attributes. The subsam-
pling procedure is based on the crude Monte Carlo (CMC) method
(Rubinstein and Kroese, 2008, p. 27), which was formalized for for-
est sampling problems by Valentine et al. (2001). The motivation
for using CMC lies in the estimation of integral quantities. For
example, suppose we wish to estimate the integral

h ¼
Z b

a
gðxÞ dx ð6Þ

for some arbitrary function g(x). In CMC, this integral can be esti-
mated using Monte Carlo simulation.

Recall that if the random variable X � f(x), then we can write the
expectation

E½gðXÞ� ¼
Z 1

�1
gðxÞf ðxÞ dx ð7Þ

Now let f(x) be a uniform distribution on [a,b] such that
X � U(a,b). Then under the uniform assumption, the integral (6)
can be expressed as
h ¼
Z b

a
gðxÞ dx ¼ ðb� aÞ

Z b

a
gðxÞ 1

b� a
dx

¼ ðb� aÞ
Z b

a
gðxÞf ðxÞ dx ¼ ðb� aÞ E½gðXÞ� ð8Þ

where f(x) = 1/(b � a) is the uniform PDF for X � U(a,b). The penul-
timate step in Eq. (8) is in the form of Eq. (7), which yields the final
result. The crude Monte Carlo estimator for h under the uniform
assumption is, by (8)

ĥ ¼ ðb� aÞ
m

Xm

j¼1

gðxjÞ ð9Þ

where m uniform deviates are drawn. This estimator is unbiased
and converges to the true h with probability one by the Strong
Law of Large Numbers (Suess and Trumbo, 2010, p. 67). This result
can also be arrived at through application of the mean value theo-
rem for integrals (Valentine et al., 2001).

The alternative approach to the direct estimation of log attri-
butes is to consider each an integral quantity in the form (6) to
be estimated. For example, log volume can be estimated using
(6) where g(l) is cross sectional area, and the limits of integration
are from 0 6 l 6 Li. Table 1 presents several other integral quanti-
ties that may easily be verified.

A key observation is that the perpendicular intersection with
the ith log’s needle from the jth random sample point, determines
a random length lj within the log as illustrated in Fig. 1. Because the
sample point is randomly located, the random length lj so deter-
mined is uniformly distributed. Thus, we may write (8) as

hi ¼
Z Li

0
giðlÞ dl ¼ Li E½giðLÞ�

which by (9) is estimated as

ĥi ¼
Li

m

Xm

j¼1

giðljÞ ð10Þ

Letting y � h and combining this result with (1) and (2) it is
straightforward to show that a design-unbiased estimator for each
of the attributes in Table 1 under this distance limited Monte Carlo
sampling (DLMCS) protocol is given as

bY ¼ jAj
2Dlm

Xm

j¼1

Xnj

i¼1

giðljÞ ð11Þ

Note in this estimator that selection of the ith log on more than
one sample point establishing different random lengths lj is
allowed for. In addition, note that the determination of log length
is unnecessary for any integral quantities other than density
(Table 1).



Table 2
Taper equation and associated equations used in the simulations.

Attribute Equation

Log Taper (m) dðlÞ ¼ Du þ ðDb � DuÞ L�l
L

� �2
r

Volume (m3)
vðlÞ ¼ p

4 D2
ulþ LðDb � DuÞ2 r

rþ4 1� 1� l
L

� �rþ4
r

� ��

þ2LDuðDb � DuÞ r
rþ2 1� 1� l

L

� �rþ2
r

� ��
Surface Area (m2)

S ¼ p
R L

0 dðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d0 ðlÞ2

4

q
dl

d0ðlÞ ¼ �2 ðDb�DuÞðL�lÞ
2

r�1

rL2r

Coverage Area (m2) CðlÞ ¼ 1
ðrþ2ÞL2

r
ðr þ 2ÞDulL

2
r þ ðL� lÞ

2
r ððDu � DbÞrL

h
þðDb � DuÞlrÞþðDb � DuÞrL

ðrþ2Þ
r

i
Where Db and Du are the large- and small-end log diameters and 0 6 l 6 L is some
intermediate length; d0(l) is the derivative term for the surface area integral—all
diameters are in the same units as length.
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2.3. Simulation methods

The unbiasedness of the estimators for the two protocols pro-
posed for this new distance limited method is easy to show. How-
ever, the properties of the estimators are still unknown with regard
to variability, and this will be addressed through simulations. Spe-
cifically, we employ a method formalized by Williams (2001a) and
Williams (2001b) called sampling surface simulation. This method
divides the tract A into square grid cells of predetermined resolu-
tion. The center of each grid cell is taken as a sample point. And the
tract area is populated with a collection of logs whose inclusion
zones are known, and therefore can be easily mapped. The sam-
pling surface itself is then developed separately for any given attri-
bute and sampling method or protocol (e.g., DLS or DLMCS) as
follows. The grid of cells comprise all possible sample points, m,
over the tract at the grid resolution used. At each grid cell center
a ‘‘sample’’ is taken such that any logs whose inclusion zone con-
tains the grid cell center are included in the sample for that point.
Next, the estimator under consideration is applied to the nj logs in
the sample at the jth point yielding the estimate bY j for that cell. In
this way, a variable sampling surface is built up for the tract, where
cells that have nj > 1 logs (due to nj overlapping inclusion zones)
get values that are the sum of the expanded attribute for the nj logs
at that point. All background cells with no overlapping inclusion
zones are assigned a zero value.

The sampling surface technique is conceptually simple and has
several added benefits over other methods, such as simply saturat-
ing the tract A with random points in a pure Monte Carlo experi-
ment. For example, the sampling surface method allows for
visual representation and comparison of different methods for a gi-
ven attribute; this is important because surface roughness is di-
rectly related to estimator variance. Protocols or methods that
have larger inclusion zones allow the attribute density to be spread
over a larger area, decreasing the variance. And methods that have
flat attribute surfaces within inclusion zones generally will have
less variance than those methods whose surface varies within
the individual zones (this is true for individual logs, but for a pop-
ulation of logs the overall result will depend on the juxtapositions
of the logs). Again this allows one to obtain a visual assessment of
the effect that different inclusion zone shapes and sizes make in re-
gard to estimator variance for the methods being compared. Final-
ly, while the approach sounds computationally intensive, it can be
implemented in a very efficient manner by overlaying individual
inclusion zones onto the tract and ‘‘heaping’’ the surface by simple
summation of the raster cells. In this way, background cells with
no inclusion zones are never visited. This approach has been imple-
mented for the sampling methods and attributes discussed here, as
well as several others, in the ‘‘sampSurf’’ package (Gove, in press)
for the R statistical language (R Development Core Team, 2012).

Finally, once a sampling surface has been created by the meth-
ods described above, statistics can be calculated on the surface. In
particular, for an unbiased estimator, the surface mean will
approximately equal the true attribute total for the logs in the pop-
ulation. In addition, as mentioned above, the variance of the sur-
face can be calculated by

VarðbY Þ ¼ 1
ðm� 1Þ

Xm

j¼1

ðbY j � bY Þ2 ð12Þ

where the summation over all m points equates to summation over
all m cells in the rectangular grid. Likewise an estimate of the sur-

face standard deviation is simply SDðbY Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbY Þq

. Note in partic-
ular that this is not the variance of the mean estimator given in (4).
In all cases the statistics will be close but not exact, as with any sim-
ulation method. This is because every possible sample point has not
been enumerated (there are infinitely many), only every possible
point at the given grid cell resolution. So while small percentage
‘‘bias’’ figures will be reported in the results, these will go to zero
as the grid cell resolution increases (smaller cells), and does not
equate with a biased estimator. Likewise the estimate of the vari-
ance will approach the true variance of the estimator for the popu-
lation under consideration as m ?1. In past simulation studies,
grid cell resolutions on the order of one quarter to one half meter
have proven quite reasonable (Williams and Gove, 2003; Gove
et al., 2005; Ståhl et al., 2010; Gove and Van Deusen, 2011), there-
fore we employ half-meter resolution here.

The log population for the simulations was constructed from a
simple taper equation (Van Deusen, 1990) given in Table 2. This ta-
ble also presents closed-form solutions to the corresponding vol-
ume, and coverage area equations, while surface area must be
numerically integrated. The taper equation can take on a variety
of geometric forms from neiloid (0 < r 6 2), through conical
(r = 2), to parabolic (r > 2). A population of N = 50 logs was gener-
ated and this same population was used in each simulation to com-
pare the methods. Random uniform values for the each quantity
were drawn from the following ranges: Db 2 [8,40] cm,
Du 2 [0,0.9] � Db, L 2 [1, 10] m and r 2 [1,10] (refer to Table 2 for
definitions). Each log was randomly placed within a tract of
jAj ¼ 1 ha, which was minimally buffered such that all inclusion
zones fit within the tract, insuring that no edge-effect bias was
introduced. Finally, each log was given a random orientation angle
/i 2 [0,2p], i = 1, . . . , N.
2.3.1. Efficiency comparisons with other methods
In order to gauge the efficiency of the new estimators (5) and

(11), they must be compared against similar methods. The shape
of the sampling surface within the inclusion zones comes into play
in determining which methods would best be used as standards.
The simple DLS method will have constant surfaces for all attri-
butes within individual log inclusion zones. However, the DLMCS
protocol will have a variable surface for all attributes that depend
on some function of diameter in Table 1; but surfaces for length
and density will be constant. Thus, it is prudent to match methods
with similar characteristics to these protocols for the comparisons.
In addition, to make a fair comparison in terms of estimator effi-
ciency, the sampling effort (number of total grid cells within log
inclusion zones, me) should be fairly closely matched between
the comparative methods. The mechanism for doing this on each
method is explained below.

A closely related technique to simple DLS was described as the
so-called ‘sausage’ method for fixed-radius circular plots (Gove and
Van Deusen, 2011). The method uses the same measurement
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protocols as described above for DLS, and is a probability propor-
tional to length method, so the surfaces within the inclusion zones
are constant for all attributes. It adds a half circular plot to each
end of the inclusion zone in Fig. 1 making an overall inclusion area
as = 2R Li + pR2, where R is the plot radius and is directly equivalent
to the distance limit Dl. To establish a reasonably equivalent sam-
pling effort to that of DLS for a given distance limit, determine the
mean log length ðLÞ in the population and solve the quadratic
�adls ¼ 2RLþ pR2 for the plot radius where �adls is the DLS inclusion
zone area associated with L.

Perpendicular distance sampling (PDS) (Williams and Gove,
2003) will be used as a comparative technique for DLMCS. PDS se-
lects logs with probability proportional to volume, surface area or
coverage area depending on the protocol, yielding a design-unbi-
ased estimate for the protocol attribute. Application is limited here
to the volume protocol, under which a count of the number of se-
lected logs per point yields an estimate of volume; other attributes
can be estimated via a Monte Carlo extension described by Ducey
et al. (2008). The inclusion zone for the volume protocol is an in-
flated version of log taper in terms of cross-sectional area. The
inflation factor is known as the Kpds factor and has units m�1. Logs
are sampled if the perpendicular distance from the sample point to
the log is less than xKpds, where x is the cross-sectional area at the
perpendicular to the sample point. To find a reasonably equitable
Kpds factor, determine the average midpoint diameter for the log
population ðDmidÞ and set Kpds ¼ 4Dl

pD2
mid

. Just how close the resulting

sampling effort is to Dl with this approximation will depend on
the taper variability in the simulated log population and may re-
quire small iterative adjustment to get a roughly equivalent num-
ber of sample points.

Fig. 2 presents the synthetic log population used in the simula-
tions, along with the inclusion zones for each of the methods dis-
cussed above. Recall that only the measurement protocol is
different between DLS and DLMCS, they both share the same inclu-
sion zone. In addition, the sausage inclusion zones are narrower to
account for the extra area at the ends, while the PDS inclusion zone
width will be roughly Dl at the midpoint of the average log. This
figure shows the difficulty in establishing an equitable Kpds factor
0 20 40 60 80 100

0
20

40
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y

Fig. 2. Population of N = 50 logs on a 1 ha tract used in the simulations illustrating
the difference between inclusion zones for DLS and DLMCS (solid), PDS (long dash)
and sausage (short dash). A distance limit of Dl = 2.5 m was used, with correspond-
ing Kpds = 50 m�1 and a plot radius of R = 1.67 m for the sausage method. A 10 m
buffer is also shown.
because inclusion zone shape under PDS is an inflated version of
cross-sectional taper, which varies for each log depending upon
the shape parameter r in the taper equation (Table 2); therefore,
it is difficult in general to define and ‘average’ log shape. The inclu-
sion zones for the sausage method, on the other hand, are readily
comparable to that of the distance limited methods.
2.3.2. Sampling distributions and confidence interval estimation
The sampling distribution of the estimators will play a role in

determining whether normal theory confidence intervals are
appropriate for samples of various sizes recorded in the field. For
example, Affleck (2008) questioned whether normal theory or even
bootstrap confidence intervals would be appropriate for inferences
on the sample mean in moderate sample sizes drawn from simula-
tion results under LIDS, PDS and LIS due to the skewness in the
sampling distributions. For normal theory inference to apply, the
distribution of sample means drawn from repeated samples of
the population sampling distribution for each method must ap-
proach a Gaussian distribution by the Central Limit Theorem (Bar-
rett and Nutt, 1979, p. 38). Barrett and Goldsmith (1976) showed
that normal theory intervals were applicable for moderately small
sample sizes, even in populations with bimodal or negative expo-
nential sampling distributions.

The sampling distribution for a given sampling surface realiza-
tion by attribute and sampling method is comprised of all possible
sample (grid cell) values. A combination of factors actually influ-
ences the shape of the sampling distribution, which will differ for
each attribute of interest and each sampling method or protocol.
First, the methods are all based on PPS sampling theory, and thus
are optimized for different attributes: DLS, DLMCS, and sausage
for length, and PDS for volume. Second, the measurements taken
on the log to estimate a given attribute, especially with DLMCS
and PDS, may be quite variable. This last point is related to the
form of the estimator itself—compare for example (5) and (11)—
and the estimators under PDS for multiple attributes are more
irregular then that for DLMCS. The cumulative effect of these fac-
tors produces sampling distributions that can vary from quite well
behaved to severely multimodal, or negative exponential in shape.
As a consequence, the number of samples required for confidence
interval estimation will also vary depending on the sampling
method and attribute to be estimated.

The goal in this line of investigation is to illustrate these con-
cepts for the simulated population of logs described above, by
drawing a simple set of repeated Monte Carlo samples from each
sampling surface distribution to determine the normal theory con-
fidence interval coverage rates. The results will be applicable to the
population at hand and could be used to establish some general
guidelines for determining how large a sample may be required
in populations with similar sampling distributions.
3. Results

3.1. Efficiency comparisons with other methods

The results of the simulations for the population of 50 logs are
shown in Table 3. Attributes such as surface area, biomass and car-
bon content are not presented as they are closely related trans-
forms of the variables shown. The first and most important point
to notice is that all methods, including the newly proposed DLS
and DLMCS are unbiased. These results substantiate our earlier
claims concerning the method; the small positive or negative
percent bias shown is purely an artifact of sampling, not of the
methods themselves as mentioned previously. Approximately
me = 4900 sample points out of m = 40,000 total cells (roughly
12%) contained samples where logs were recorded because their



Table 3
Results of the simulations for a standard synthetic log population of size N = 50 logs.
Sampling constants were: Dl = 2.5 m, Kpds = 50 m�1, and R = 1.67 m.

Attribute/
protocol

Population
total

Sampling surface

Estimate % Bias SD Max me
a

Volume (m3)
DLS 13.51 13.50 �0.07 48.50 417 4893
Sausage 13.51 13.54 0.23 47.90 446 4896
DLMCS 13.51 13.51 0.05 49.27 429 4893
PDS 13.51 13.47 �0.27 37.40 300 4927

Length (m)
DLS 264.04 264.85 0.31 735.1 4000
Sausage 264.04 264.42 0.15 745.6 4686
DLMCS 264.04 264.85 0.31 735.1 4000
PDS 264.04 265.16 0.42 1371.4 82285

Density
DLS 50 50.12 0.23 166.9 2002
Sausage 50 50.14 0.29 148.5 1360
DLMCS 50 50.12 0.23 166.9 2002
PDS 50 50.13 0.26 257.2 26229

Coverage area
(m2)

DLS 60.50 60.55 0.08 185.7 1423
Sausage 60.50 60.63 0.22 185.9 1594
DLMCS 60.50 60.56 0.10 187.1 1456
PDS 60.50 60.41 �0.15 185.6 3582

a Values for me, the number of sampled grid cell centers, are the same for each
attribute.
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inclusion zones overlapped the grid cell centers for each of the
methods. For the two distance limited protocols, the variance (as
measured by the standard deviation) was comparable for each
attribute with neither protocol showing an advantage. For attri-
butes length and density, the variance was equivalent between
these protocols because neither relies on a model or on the CMC
approach (Table 1).

The two constant surface methods, DLS and sausage, were also
quite similar in their results, and were indistinguishable in terms
of variance for volume and coverage area. The sausage method
was somewhat better for density, but the opposite was true for
length, where DLS had lower variance. However, it is not a good
idea to impart too much weight to these rankings with the small
synthetic population used in this simulation as the methods will
rank somewhat differently under different realizations of the sam-
pling surface from other log populations. The main point is that the
two methods are very comparable in their estimation efficacy for
each attribute as long as the inclusion zone areas have been equal-
ized on average; they differ mainly in their field protocol. It is
interesting to note that because DLS and DLMCS are both similar
in result, DLMCS is also comparable to the sausage method.

Among the two variable surface methods, DLMCS and PDS, the
rankings are more clear cut for all attributes except coverage area,
Fig. 3. Sampling surface realization under DLS for volume estimation using the same po
inclusion zones with a maximum of 417 m3 (Table 3).
where they both perform equally well. PDS is optimized for vol-
ume, and has a flat sampling surface within individual log inclu-
sion zones for this attribute; thus, it is not surprising that it
performs best out of all methods tested for this attribute. This will
also be true of biomass and carbon estimates. However, the PDS
estimates for length and density are not competitive with the other
estimators variance-wise. This has to do with the form of the esti-
mator itself. The estimator for both attributes contains a x(lj)�1

term (see Ducey et al., 2008 for full details); therefore, any log that
tapers to a small diameter (or to the tip) will have very small cross-
sectional area, causing the estimator to inflate in this area of the
stem. In addition, the estimator for log density also includes a
L�1

i term, which can be quite variable, but whose magnitude helps
assuage the problem. The direct result of this can be seen in the
maximum surface values given in Table 3 for PDS. The DLMCS esti-
mator (11) does not suffer from inflation issues due to denomina-
tors tending to zero, and is thus a more well-behaved estimator in
general for these two quantities.

The maximum height of the sampling surface is closely corre-
lated with the estimator variability (SDðbY Þ); though the compari-
son is not one-to-one, because the juxtaposition of the logs
literally determines how the inclusion zone attribute densities
are heaped through summation within overlapping inclusion zones
for any synthetic log population. However, it is quite evident that
the large variance for length and density under PDS is directly re-
lated to the substantially larger peaks in surface height under this
method. The results in Table 3 only tell a summary of the full story
with regard to differences in the estimators. A more thorough
understanding of the various subtleties described above can be
seen by examining the resulting sampling surfaces themselves. Be-
cause each attribute and method combination results in a different
surface, we regard only a subset in what follows.

Figs. 3 and 4 show the resulting sampling surfaces for volume
estimation under DLS and DLMCS, respectively. The effect of the
estimators is clearly shown in contrasting these two surfaces. First,
under DLS, it is clear from the form of the estimator in (5) that yi is
constant for the entire log, for each attribute, and regardless of
where the point falls within the inclusion zone. This, therefore,
produces the constant surface within individual zones shown. In
contrast, the form of the estimator in (11) for DLMCS provides
for differing values of gi(lj) depending on where the jth sample
point lands within the inclusion zone. This produces the variable
surface for all quantities but length and density in Table 1. The ex-
tent to which the surface slopes is determined by the cross-sec-
tional taper of the log for volume estimation, which can be
roughly deduced by the shape of the PDS inclusion zones in
Fig. 2, since they are proportional to cross-sectional area. Logs that
have little taper in cross-section, will have only gradual slope to
the surface, while those that taper more dramatically, have steeper
slope. The surface for the sausage method is very similar to that in
pulation of logs as is shown in Fig. 2. The surface is constant within individual log



Fig. 4. Sampling surface realization under DLMCS for volume estimation using the same population of logs as is shown in Fig. 2. The surface is variable within individual log
inclusion zones with a maximum of 429 m3 (Table 3).
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Fig. 5. The zero-truncated sampling distributions of volume for each sampling method based on the sampling surface results in Table 3.
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Fig. 3, except the individual zones will be slightly narrower and
possess rounded ends. The PDS sampling surface for volume is flat
within zones, and has the shape shown for individual logs in Fig. 2.
It should be clear that the way the individual zones ‘heap’ to form
the overall surface will be different under each method. Finally,
other attributes will also show different results even within meth-
ods; for example, PDS for length will be variable, while DLMCS for
length will be constant and exactly the same as DLS (Table 1).

3.2. Sampling distributions and confidence interval estimation

As stated previously, the results in this section seek to deter-
mine some broad guidelines on how large of a sample is required
for nominal 95 percent confidence interval coverage on a popula-
tion of logs with sampling distributions similar to those described
here. The sampling distributions were zero-truncated for the
experiment, because while zero is a valid value for a sample point,
the number of zero cells is a direct consequence of the tract size
and resolution, distance limits, etc., which would make the result
conditional on those factors. For example, the sampling distribu-
tions for volume are shown in Fig. 5. Note that the distributions
vary by method from discretely multimodal (PDS) to mildly
exponential.

The results of the confidence interval experiments are pre-
sented in Table 4. These results will vary not only with the log pop-
ulation used, but also simply with drawing another set of intervals
from the same population in a different Monte Carlo run. There-
fore, we consider intervals with approximately 94% coverage to
be nominally adequate at the a = 0.05 confidence level. The results
for volume then suggest that the two distance limited methods
would require in the range 20 6m 6 30 sample points for interval
estimation. Sausage sampling would require perhaps 10–20 more.
Interestingly, however, PDS appears to require more than m = 250
samples even though it is optimized for volume. The reason is be-
cause each log counts for a fixed amount of volume at each sample
point, in this case with Kpds = 50, this translates to 100 m3 ha�1.



Table 4
Approximate coverage percentages (nominal 95% target coverage) of the population
mean for normal theory confidence intervals. The results are based on drawing 1000
repeated samples with replacement from the respective zero-truncated sampling
(surface) distributions (see Table 3). The sampling surface distributions are exactly
the same for attributes length and density under DLS and DLMCS, the differences
below arise from different Monte Carlo draws.

Attribute/protocol Sample size (m)

10 20 30 50 100 250

Volume (m3)
DLS 92.8 93.6 94.6 94.2 94.9 95.5
Sausage 93.0 93.8 93.1 94.8 95.0 95.9
DLMCS 94.7 93.9 94.9 94.4 94.8 94.4
PDS 62.7 85.4 76.6 85.0 91.2 91.8

Length (m)
DLS 56.8 79.5 91.8 93.1 90.2 94.4
Sausage 92.6 91.9 92.2 93.6 94.0 95.0
DLMCS 58.8 81.9 93.3 91.3 91.6 94.1
PDS 74.0 78.0 79.4 85.1 86.5 91.7

Density
DLS 88.6 89.5 91.5 90.2 92.8 95.2
Sausage 91.7 94.3 93.1 94.0 92.3 94.9
DLMCS 87.8 90.4 92.0 93.3 93.5 94.1
PDS 78.4 83.5 82.5 86.2 87.7 90.5

Coverage area (m2)
DLS 94.2 93.8 95.4 94.4 95.2 96.4
Sausage 93.3 94.4 94.5 95.7 94.3 95.0
DLMCS 95.0 94.3 95.2 95.3 94.9 94.1
PDS 88.6 88.9 89.9 92.4 91.3 93.9
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Therefore, for every inclusion zone that overlaps a grid point in the
sampling surface, the surface will heap in multiples of 100, gener-
ating the trimodal sampling distribution shown in Fig. 5. In addi-
tion, the average confidence interval width for PDS was on the
order of one-third the width of the other methods for all sample
sizes. This all results in the slow convergence to the nominal cov-
erage level seen in the distribution of sample means from this par-
ticular log population.

Results for the other attributes are equally interesting and var-
ied. The results for length may require in excess of m = 100 sample
points for nominal coverage rates. Again, we see that for the dis-
tance limited methods a constant amount is accrued for each log
at a given point (grid cell), yielding a multimodal sampling distri-
bution, smaller confidence interval widths on average, and hence
requiring a larger number of samples. And this is a direct conse-
quence of the method being optimized for length. The sausage
method is slightly better because even though it is a probability
proportional to length method, the surface accrual is not in con-
stant steps, as can be seen by the inclusion area, as, when combined
with the general HT estimator (2) (Gove and Van Deusen, 2011).
The distribution for PDS is severely negative exponential with a
long tail of large values as discussed above, contributing to its poor
performance. The results for density are similar to those for length,
except that the sampling distributions for the two distance limited
methods are strongly exponential in this case. Finally, the sampling
distributions for coverage area are quite well behaved for the
length-based methods, requiring only 10 6m 6 20 sample points
for interval estimation. PDS again has a moderate exponential dis-
tribution and would require a sizable sampling effort. However, an
alternative is to use PDS optimized for coverage area (Ducey et al.,
2008), which may produce better results.
4. Discussion

This paper has introduced a new sampling method based on the
concept of limiting the distance from an object within which it can
be sampled by a random point. This limiting distance concept itself
is not new; for example, fixed-area plot protocols do the same
thing (Gove and Van Deusen, 2011), and as has been shown, the
new sampling protocol is closely related to the sausage sampling
protocol for fixed area plots. Both are probability proportional to
length methods and both use a fixed distance limit, resulting in
an inclusion zone whose area is proportional to log length, leading
to different sized zones for each log. Both methods also share a
simple measurement protocol based on HT estimation. However,
two points differentiate the new distance limited protocol from
the sausage protocol. First, there is the obvious difference in the
shape of the inclusion zones due to the ability to sample the log
from the ends as well as the sides in the sausage protocol
(Fig. 2). In the distance limited methods one must be perpendicular
to the log ‘needle’ to even consider whether the log might be a can-
didate for sampling. The restriction on the distance limited method
may seem overly constraining at first glance; however, the original
motivation for the method derived from the DLMCS estimator pro-
tocol that enables the design-unbiased estimation of all attributes,
and this is where the restriction becomes necessary. This latter
point forms the second difference, as none of the fixed-area proto-
cols has a Monte Carlo variant.

The field measurement protocols were shown to differ very lit-
tle in the simulation experiments reported on the estimators. How-
ever, there are some subtleties that may make more of a difference
in the choice of the two protocols than simply how they are imple-
mented in the field. We have seen (Table 1) that for some attri-
butes such as length and density, the estimators for DLS and
DLMCS will be the same. However, for other attributes such as cov-
erage area, volume, or related quantities, there is a difference in the
two measurement protocol estimators. For example, under DLS
volume would normally be estimated using a model like Smalian’s
formula. This is contrast with the estimate of volume under
DLMCS, which derives from taking a random cross-sectional mea-
surement on a perpendicular from the sample point to the log’s
needle. As pointed out by Affleck (2008), the former imparts an
unknowable model bias, while the latter can produce a more var-
iable estimate, depending on the taper distribution in the log pop-
ulation. In the case of a population of logs that taper dramatically
this could impart a high degree of variability in the estimate. How-
ever, in the results of the simulations conducted here, using a vari-
ety of taper models, the difference between the two protocols in
terms of average confidence interval width was negligible for all
attributes and all six sample sizes considered in Table 4. This is also
supported by the overall sampling surface results in Table 3, where
the variability between the two protocols were quite comparable.
Therefore, the concern for extra variability in the Monte Carlo pro-
tocol under DLS appears unwarranted. But keep in mind that this is
a limited study, and field results could be more in line with the
above observations, especially when considering log decay and
deflation as components of measurement error in either protocol.

In field applications a number of issues can hamper the proper
measurement of diameters and cross-sectional areas on down logs,
including curved or branched pieces, and decay induced deflation.
The former has been addressed in detail by Williams et al. (2005)
and Valentine et al. (2001). The field protocols these authors de-
scribed are appropriate for minimizing measurement error under
both distance limited sampling protocols. Unfortunately, the mea-
surement of pieces where deflation has changed the shape of the
log itself can be more problematic. This affects all methods for
sampling down material, not just those described here, and at pres-
ent there is no recommended general approach available to the
problem beyond ad hoc corrections based on decay classes. How-
ever, because the CMC approach does not depend on a solid geo-
metric model in the case of volume estimation, it may accrue
less overall error because of the reliance on only diameter-based
measurements. Note that if the estimation of carbon content or
biomass is desired, then the Monte Carlo sampling point lj along



Table 5
Surface standard deviation for various distance limits (Dl); the number of grid cells,
me, falling within the inclusion zones for each level of Dl is also shown based on the
population of logs in Table 3.

Attribute/protocol Distance limit Dl (m)

2.5 3 5 8 10

DLS
Volume (m3) 48.5 44.4 34.8 28.0 25.1
Length (m) 735.1 674.0 538.6 440.0 394.3
Density 166.8 153.1 121.7 98.4 88.2
Coverage (m2) 185.6 170.2 134.3 108.9 97.7

DLMCS
Volume (m3) 49.2 45.1 35.4 28.6 25.6
Length (m) 735.1 674.0 538.6 440.0 394.3
Density 166.8 153.1 121.7 98.4 88.2
Coverage (m2) 187.1 171.4 135.2 109.9 98.5
me 4893 5755 8811 12696 15146
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the log can be used to extract a woody sample for an estimate of
bulk density, for example (Valentine et al., 2001).

Only one distance limit was investigated in detail here, there-
fore it is reasonable to inquire how the results for the two distance
limited protocols will change as Dl increases. Obviously an increase
in Dl will increase the inclusion zone area for each log. As a result,
there will be more overlap between zones, and more logs sampled
at each grid cell (sample point). As a rule, as each inclusion zone
area increases, the attribute density will be spread out over a larger
area. However, the height of the surface within any given inclusion
zone depends on z ¼ jAj

2Dl
, which is a fixed amount for given Dl.

Therefore, as Dl increases, z decreases and so the height will de-
crease for both DLS and DLMCS sampling protocols. This results
in a decrease in surface variability for any attribute (Table 5). In
general then, it may seem like the larger Dl is, the better. But it is
well-known under search based techniques such as PDS, that the
larger the Kpds factor (and hence the larger the inclusion zone),
the more searching is necessary to determine candidate logs, and
the higher the probability of missing pieces in the survey. There-
fore, there is always an optimal search distance that will minimize
possible non-detection bias, while also reducing the variance of the
estimate. The best way to determine this in practice is with a small
reconnaissance inventory as these factors depend on the popula-
tion under consideration. Finally, the results in Table 5 show that
the two sampling protocols, DLS and DLMCS are consistently com-
parable in terms of variability of the estimators for any given dis-
tance limit tested.

Restricting Dl to a distance that is manageable considering the
conditions of the tract to be inventoried in terms of visibility is a
strong point for the method. Of the methods compared here, fixed
area plots (i.e., the sausage method) allows this same capability as
previously mentioned. However, in general there is no design-
unbiased estimator for all the usual attributes of interest under
fixed-area plot sampling. In contrast, the DLMCS protocol provides
the estimator (11), which is design-unbiased for all attributes in
Table 1. Similarly, PDS and its extensions (Ducey et al., 2008) also
provide design-unbiased estimators. However, because the inclu-
sion zone under PDS depends on a function of diameter, it can be
difficult to control the width of the zones such that the search dis-
tance does not get too large, unless one has some idea of the max-
imum log diameter on the tract. Recently, a new PDS variant has
been developed that incorporates the distance limited protocols
described here to remedy this perceived shortcoming in PDS
(Ducey et al., in press). Additionally, PDS requires a distance check
that depends on diameter whenever a sample point lies near the
boundary of the inclusion zone, necessitating a look-up table of
‘‘limiting distances’’ by diameter. While these are only minor nui-
sances, having just one limiting distance to worry about, Dl, seems
like an potentially attractive alternative.
As discussed in the opening, there are many methods now avail-
able for sampling down coarse woody debris. Many comparisons
among these methods have been made in the literature, using LIS
as a standard. LIS was not used here as a standard for two reasons.
First, it has been shown by Williams and Gove (2003) using a sim-
ilar simulation approach, that overall PDS had lower variance for
volume and density estimation than LIS. Secondly, in order to
equalize the inclusion zone areas among the different methods
compared, a line length of approximately 2Dl would be used (it
would vary somewhat because the angular differences in line-log
intersections result in non-rectangular inclusion zones). This is
obviously much shorter than what is normally used in an LIS
inventory and therefore unrealistic in general.

The results from the Monte Carlo confidence interval coverage
experiments showed a large degree of variability in terms of re-
quired sample sizes both by method and attribute (Table 4). It
must be emphasized again that these results are applicable to
the log population used in the simulations, and potentially to other
larger populations with similar sampling distributions. The results
should not be taken as a fixed set of guidelines to be appropriated
to a given method or attribute for any population. Populations of
logs can be constructed that will give quite different sampling dis-
tributions, and hence quite different appropriate sample sizes for
nominal normal theory coverage (e.g., Gove et al. (in press)),
underscoring the difficulty involved in constructing general guide-
lines applicable to diverse populations.

In the simulations a buffer was created that was large enough so
that no part of any log’s inclusion zone fell outside the tract bound-
ary, eliminating any requirement for extra boundary overlap cor-
rection (Fig. 2). This is essentially what has become known as
Masuyama’s (Masuyama, 1953; Masuyama, 1954) method, where
an external buffer is set up around the tract in which sample points
may fall, and still sample logs within the tract. This buffering meth-
od may be used in field applications where it is possible to estab-
lish such an encompassing zone. In cases where access outside the
tract is not possible, one can use a method such as the ‘walk-
through’ (Ducey et al., 2004). When applying the walkthrough, it
is important that any portions of logs extending past the tract
boundary be truncated at the boundary and not considered part
of the population. Then, one simply applies the walkthrough meth-
od by traversing the shortest straight-line distance to the tract
boundary, with reference distance taken directly through the log’s
‘needle’ (other walkthrough protocols can also be envisioned).
Other related methods have been developed in recent years based
on buffering including the ‘toss-back’ method (Iles, 2003, p. 641),
and a set of iterated correction procedures (Holt, 2012). These
methods also present unbiased alternatives for boundary correc-
tion. A discussion of comparative merits of each is beyond the
scope of this paper, interested readers may consult (Ducey et al.,
2004), Iles (2003, Chapter 14) and Gregoire and Valentine (2008,
§7.5 and 10.7) for a review of these methods.
5. Conclusions

A new method for sampling down coarse woody debris has
been presented along with two estimators, one of which (DLMCS)
provides design-unbiased estimates for all attributes of interest
that can be approximated with integral quantities on the log. Both
protocols performed well in comparison to existing methods
(fixed-area plot and PDS) that are both similar operationally and
in their respective estimation strategies. It appears that field
implementation of the distance limited methods based on limited
trials is simple and straightforward. The DLMCS protocol should
offer no new field-related problems over PDS, which has been
thoroughly field tested; and the DLS protocol is familiar to all
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who have used fixed-area plots. Finally, like PDS, distance limited
sampling could be applied to populations of objects other than
logs, providing one can define a suitable ‘needle’ axis for the object.
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