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Abstract
Cost-effective surveillance strategies are needed for efficient responses to biological invasions and must

account for the trade-offs between surveillance effort and management costs. Less surveillance may allow

greater population growth and spread prior to detection, thereby increasing the costs of damages and con-

trol. In addition, surveillance strategies are usually applied in environments under continual invasion pres-

sure where the number, size and location of established populations are unknown prior to detection. We

develop a novel modeling framework that accounts for these features of the decision and invasion environ-

ment and determines the long term sampling effort that minimises the total expected costs of new inva-

sions. The optimal solution depends on population establishment and growth rates, sample sensitivity, and

sample, eradication, and damage costs. We demonstrate how to optimise surveillance systems under bud-

getary constraints and find that accounting for spatial heterogeneity in sampling costs and establishment

rates can greatly reduce management costs.

Keywords
Biological invasions, cost efficient, detection, eradication, gypsy moth, Lymantria dispar, monitoring, pest

management, resource allocation, risk management..

Ecology Letters (2012) 15: 803–812

INTRODUCTION

Invasive species threaten ecosystem stability worldwide (Simberloff

2000; Pimentel et al. 2001), and may inflict sizable economic dam-

age, including expenditures for control and losses of market and

non-market benefits (Aukema et al. 2011). For example, the invasion

of the emerald ash borer (Agrilus planipennis Fairmaire) in the United

States alone is expected to cost homeowners and municipalities

nearly $10 billion over the next decade for landscape tree treatment

or removal (Kovacs et al. 2010). Unintentional introductions of

non-indigenous species are by-products of international travel and

trade, and cumulative numbers of established species continue to

rise despite regulatory measures designed to prevent introductions

(Aukema et al. 2010). Enhanced efforts to detect and eradicate

newly established species are critical to reducing their ecological and

economic harms (Lodge et al. 2006).

In resource management, integrating monitoring and treatment is

important to ensure maximum utility of the resulting information

(Nichols & Williams 2006; McDonald-Madden et al. 2010). Monitor-

ing is coupled with treatment in adaptive management frameworks

to gather information and reduce uncertainty about resource dynam-

ics (Walters & Hilborn 1976; Probert et al. 2011; Williams 2011).

Monitoring also is used to reduce uncertainty about the state of a

resource and improve the quality of treatments, with applications in

erosion control (Tomberlin & Ish 2007), environmental compliance

(White 2005) and endangered species management (Chadès et al.

2008). A wide range of modeling tools are available for designing

and evaluating post-border surveillance systems for biosecurity

(Hester et al. 2010), although few integrate monitoring and manage-

ment activities.

Cost-effective surveillance systems for invasive species must

balance the intensity and cost of surveillance with the costs of

eradicating newly detected populations. Greater surveillance effort

requires larger upfront investment, but increases the likelihood of

detecting invasions earlier when they are less costly to control

and cause less damage (Epanchin-Niell & Hastings 2010). Con-

versely, lower surveillance effort may increase the resources avail-

able for eradication, but increase the chance that invasions are

large and difficult to deal with when detected. Previous studies

accounting for these trade-offs have provided important insights

about factors that influence optimal levels of surveillance. Their

applicability to optimising surveillance efforts for real-world bio-

security concerns depends on underlying assumptions about the

invasion process and the decision-making environment, which

differ across studies.

Mehta et al. (2007) optimised surveillance for an invasive popula-

tion, assuming that costs and damages increased with delayed detec-

tion. Homans & Horie (2011) optimised surveillance for small

populations establishing ahead of an advancing front; they embed-

ded a model of optimal post-detection management and examined

how optimal surveillance differed with distance from the invasion

front. In contrast to these studies, Bogich et al. (2008) assumed that

the likelihood of detecting a population increases with population

size. These three studies all assumed that the number and size of

target populations is known, which is not often the case for bio-

security surveillance systems.
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While previous approaches employed dynamic optimisation

methods, Hauser & McCarthy (2009) developed a static model to

optimise one-time surveillance effort across multiple sites when

species’ presence is uncertain prior to detection, accounting for

heterogeneity in species presence and detectability across sites.

Their approach considers species’ presence or absence and

defines a parameter that captures all future costs and damages

from failing to detect the species when present. They found this

parameter to be among the most important determinants of opti-

mal surveillance effort. While this parameter may be difficult to

estimate in practice, this approach allowed the authors to derive

elegant analytical solutions for optimal one-time surveillance and

to suggest important insights.

Here, we present a new model for designing optimal long-term

surveillance programs for high concern invasive species, to minimise

the total costs of preventing their long-term establishment and

spread. Our motivation is to include additional features of the man-

agement environment that are not included in previous work. Speci-

fically, our model allows for (1) repeated invasion events over time,

(2) stochastic invasion establishment and detection, (3) unknown

number, size, and location of populations prior to their detection

and (4) increasing detectability and costs with increasing population

size. In addition, our model provides significant flexibility for adapta-

tion to designing surveillance for specific invaders and is based on

mechanistic processes, facilitating parameterisation.

We use the model to show how optimal surveillance intensity and

management costs depend on population establishment rates, rates

of spatial expansion by local populations (which we refer to hence-

forth as growth rate), sample sensitivity, and sample, eradication,

and damage costs. We further develop the approach to optimise

surveillance across heterogeneous landscapes, allowing for a region-

wide budget constraint, and illustrate an application by designing an

optimal surveillance program for gypsy moth (Lymantria dispar) in

California, USA.

PROBABILISTIC SIZE CLASS MODEL OF POPULATION DYNAMICS

Consider a large region in which new populations of a non-native

pest are establishing from an outside source. The region-wide rate

at which new, isolated populations establish is known and consis-

tent, but the actual arrival of new populations is random in both

space and time, such that the number, size, and location of popula-

tions on the landscape at any point in time are unknown. We

assume that each population occupies a circular area that grows

radially at a known rate. To find populations, surveys are conducted

at regular (e.g. annual) intervals. Each survey consists of a number

of samples (e.g. visual assessments or traps) distributed at random

over the surveyed region and at a cost dependent on sampling

intensity (e.g. hours of field work or number of traps deployed).

For each sample that intercepts a circular population, the population

is detected with a probability that depends on the sensitivity of the

sampling method. When a population is detected, we assume it is

successfully eradicated, at a cost dependent on the population’s area.

If no samples intercept a particular population or if all intercepting

samples fail to detect it, that population continues to grow. Knowl-

edge of the rates of population establishment and spread, and the

probability of detecting a population when intercepted by a sample,

allows calculation of the steady-state probability distribution of pop-

ulation sizes and numbers for any potential long-term sample den-

sity. Thus, we can determine the constant, long-term sample density

that minimises the total expected costs of surveillance, eradication,

and damages over time. This approach simplifies a complex

dynamic problem by solving for its optimum equilibrium solution.

We define S as the set of potential population size (or age) clas-

ses, S = {1,2,…,Smax}, where a(s) is the area occupied by a popula-

tion of size class s. The area a(s) can be modeled by an

appropriately parameterised growth function. For practical applica-

tions, this may be the most difficult factor to estimate accurately, as

most invasive species populations are controlled following discovery

and their age is rarely known. The maximum size class, Smax, should

be chosen to represent the maximum acceptable size for a popula-

tion to achieve before detection, based on factors such as the likeli-

hood of eradication success or likelihood of propagating new

populations. We define G as the set of possible numbers of popula-

tions of each size class, G = {0,1,2,…,Gmax}, where Gmax is greater

than the highest number of populations likely to ever establish in a

single time period. We then define x s
i as the probability of there

being i ∈ G populations of size s ∈ S on the landscape, X s as a row

vector of the probabilities xsi .

We assume that establishment of new populations is stochastic

with an average rate b, such that the probability distribution of the

number of new populations (of size class s = 1) can be described

by a Poisson distribution with mean and variance b:

x1
i ¼ bi

i!
e�b 8i < Gmax ð1Þ

x1
i ¼ 1� e�b

XGmax�1

k¼0

bk

k!
i ¼ Gmax ð2Þ

We assume implicitly that the establishment rate b is determined by

a combination of site conditions and propagule pressure from out-

side the survey area. This rate may be estimated based on observed

historical establishments or knowledge of introduction pathways

and success likelihoods (e.g. Work et al. 2005).

We define psi; jðdÞði; j 2 GÞ as the probability of transitioning

from i populations of size class s to j populations of size class

s + 1 in the following time period, and P s(d ) is a matrix of transi-

tion probabilities psi; jðdÞ . These transition probabilities are func-

tions of sample density, d. In the absence of detection, all

populations of size class s transition to size class s + 1 in the fol-

lowing time period. However, with sampling effort, some popula-

tions may be detected and controlled in each time period. Our

model assumes that all populations are eradicated following detec-

tion, as this is the primary objective of most surveillance programs;

surveillance provides few benefits if control methods are not avail-

able for the target species.

The probability of detecting each population on the landscape

depends on sample density d, population size a(s) and sample sensi-

tivity y. We define sample sensitivity as the probability that a sample

detects a population when placed within the population’s bound-

aries, which can depend on sampling technology or methods, char-

acteristics of the species (e.g. its crypticness or population density)

and characteristics of the landscape (e.g. grassland or shrub; Hauser

& McCarthy 2009). Because we assume that both sample placement

and population establishment are random in space, the probability

that at least one sample will fall within the range of an isolated

population and detect that population equals 1�exp[�da(s)y]. Thus,
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in common with past studies (e.g. Mehta et al. 2007; Hauser &

McCarthy 2009), the probability of failing to detect an invading

population declines exponentially with sampling effort and sample

sensitivity. Here, it also declines with population size (e.g. Bogich

et al. 2008). This pattern is consistent with empirical data (Moore

et al. 2011).

For a given trap density d, detection of each population of size

class s can be viewed as a Bernoulli trial with probability 1�exp

[�da(s)y] of success. Thus, the probability psi;jðdÞ of transitioning

from i populations of size class s to j populations of size class

s + 1, which equals the probability of detecting i-j of i populations,

is specified as

psi; j ðdÞ ¼
i

ði � jÞ
� �

ð1� e�aðsÞdyÞði�jÞðe�aðsÞdyÞj 8j � i; 8s < Smax

ð3Þ

psi; j ðdÞ ¼ 0 8j > i; 8s < Smax ð4Þ
We construct the matrix Ps(d) from these probabilities for each

s < Smax.

The invasion and detection process described above is a Markov

process: the probability of being in a given state in one time period

depends only on the probability of each state in the previous time

period and the choice of control. The row vector Xs of state proba-

bilities xsi (for any state s > 1) is thus calculated as

X s ¼ X 1
Ys�1

k¼1

PkðdÞ 8s > 1 ð5Þ

and defines the equilibrium probability distribution of the number

of populations of size class s under constant sampling density d.

DETERMINING OPTIMAL SAMPLE DENSITIES

We consider four component costs in calculating total invasion

management costs: costs of sampling for populations, costs of

eradicating populations, damages associated with established popu-

lations and costs associated with failing to detect and eradicate a

population prior to it achieving size class Smax. We define Cs(d,A)

as the surveillance (or sampling) cost associated with sample

density d applied over the surveyed region of area A. We define

Ce(a(s)) to be the cost of eradicating a population of size a(s). This

includes all expected costs associated with eradication, including

delimitation, treatment, monitoring, quarantine, public relations and

follow-up costs. In a given time period, the probability of

detecting (and eradicating) k populations of size class s equalsPGmax

i¼k

xs
i p

s
i;i�k ðdÞ. The total expected number of eradicated popula-

tions of size s thus equals
PGmax

k¼0

k
PGmax

i¼k

xs
i p

s
i;i�k ðdÞ. Across all size

classes, the total expected costs of eradication in a given time

period are

EðTCerad Þ ¼
XSmax�1

s¼1

CeðaðsÞÞ
XGmax

k¼0

k
XGmax

i¼k

xsi p
s

i;i�k
ðdÞ ð6Þ

We define Cd(a(s)) to be the expected damage costs caused by a

population of size a(s). In a given time period, the total expected

damages across all size classes equal

EðTCdamageÞ ¼
XSmax�1

s¼1

Cd ðaðsÞÞ
XGmax

k¼0

kxsk ð7Þ

Our model also includes a penalty cost, cfail, associated with fail-

ing to detect and eradicate a population prior to its reaching the

maximum size class (Smax). This penalty cost is designed to encom-

pass the range of costs associated with large populations, which

may have greater probabilities of spawning new populations, being

ineradicable, incurring trade bans or causing large damages. This

cost also includes the potentially very high cost of eradication

efforts when the population eventually is detected. This cost should

be set large enough to ensure a high probability of eradicating pop-

ulations prior to achieving size class Smax, as Smax is defined as the

largest acceptable size class for a population to reach prior to detec-

tion and control. The total expected penalty cost associated with

large populations is

EðTCpenaltyÞ ¼ cfail
XGmax

k¼0

kx
Smax

k ð8Þ

Having accounted for the costs associated with large populations,

we assume perfect detection and removal of populations of size

class Smax to avoid double counting of eradication or damage costs:

p
Smax

i;j ðdÞ ¼ 1 ð9Þ

p
Smax

i;j ðdÞ ¼ 0 8j > 0 ð10Þ
The objective is to choose the sample density (d *) that minimises

the sum of expected surveillance costs, eradication costs, damage

costs and the penalty costs associated with failing to detect and

eradicate large populations:

TC ðdÞ ¼ CsðA; dÞ þ
XSmax�1

s¼1

CeðaðsÞÞ
XGmax

k¼0

k
XGmax

i¼k

xsi p
s

i;i�k
ðdÞ

þ
XSmax�1

s¼1

Cd ðaðsÞÞ
XGmax

k¼0

kxsk þ cfail
XGmax

k¼0

kx
Smax

k ð11Þ

We do not need to choose a discount rate because we focus on

equilibrium dynamics.

Application of this framework to a single region implicitly

assumes that the invasion processes and costs are homogeneous

across the survey area. However, invasion processes and costs may

vary in space. Such heterogeneities can be accounted for by opti-

mising surveillance across subregions, defined as discrete areas that

represent similar population establishment and growth rates, costs,

damages and sampling sensitivity. Our framework does not require

that subregions are equally sized, but they should be substantially

larger than the largest acceptable population size, Smax.

Consider a survey area composed of N subregions, with each

subregion indexed by n ∊ {1,2, …,N}. We then choose the optimal

sample density dn* for each subregion to minimise the total manage-

ment costs across all subregions:

min

dn

X
n 2 f1;2;...;Ng TCnðdnÞ ð12Þ

where all parameters are indexed by subregion n. If a budget con-

strains surveillance efforts, the following constraint is imposed:
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X
n 2 f1;2;...;Ng Csnðdn;AnÞ�B ð13Þ

where B is the total region-wide annual surveillance budget.

Model complexity prevents derivation of analytical solutions to

this optimisation problem, so we solve for optimal sample densities

numerically as a constrained optimisation using the ‘fmincon’ solver

in Matlab R2010b (The MathWorks, Inc.) with an interior point

algorithm.

MODEL BEHAVIOUR

To apply this model, functional forms and parameter values must

be defined to represent the specific system being modeled. To illus-

trate the general behaviour of the model we define arbitrary, albeit

reasonable, functional forms and baseline parameter scenarios. We

assume that total sampling costs increase in proportion to sampling

density, eradication costs and population damages increase propor-

tionately with population size and populations grow radially with a

constant radial rate (Table 1).

Figure 1 shows how total and component management costs vary

with sampling density for each of twelve baseline scenarios. Surveil-

lance costs increase with sampling density, as per definition. Total

expected penalty costs, eradication costs and damage costs decrease

with increasing sampling density, because earlier detection reduces

these costs. The convex shape of the total cost curve, which is the

sum of the four component costs, reflects the trade-off between

surveillance expenditures and invasion costs. Optimal sampling den-

sity occurs at the minimum of the total cost curve.

Understanding how each component total cost function depends

on model parameters facilitates intuition for how total cost and

optimal sample density depend on invasion and economic character-

istics. Total damage and eradication cost lines (1) increase with pop-

ulation growth rate (row 1 vs. 2) because costs accrue faster, (2)

may increase with Smax (row 2 vs. 3) because costs can accrue for

longer, (3) increase with establishment rate (columns 1 vs. 2, 3 vs.

4) because more populations are on the landscape and (4) are unaf-

fected by sample costs (columns 1 vs. 3, 2 vs. 4) as by definition

(Fig 1). For any given sample density, total expected penalty costs

(1) decrease with growth rate (row 1 vs. 2) because populations that

grow quickly are more likely to be detected prior to achieving size

class Smax, (2) decrease with Smax (row 2 vs. 3) because there are

more opportunities for detecting each population prior to reaching

size class Smax, (3) increase with establishment rate (columns 1 vs. 2,

3 vs. 4) because there are more populations and (4) are unaffected

by sample costs (columns 1 vs. 3, 2 vs. 4).

Because total management costs are the sum of the four compo-

nent costs, this cost line increases with establishment rate (columns

1 vs. 2, 3 vs. 4) and with marginal eradication, damage, penalty and

sample costs (columns 1 vs. 3, 2 vs. 4), and decreases with increas-

ing sample sensitivity and maximum size class (row 2 vs. 3). The

relationship between total cost and growth rate is variable (row 1

vs. 2) because population growth rate affects eradication and dam-

age costs positively and penalty costs negatively.

Table 1 Model parameters used in the generalised analysis and in optimisation of surveillance for the gypsy moth in California, USA

Model function Notation Units Baseline assumptions Case study assumptions

Population size

(area)

a (s) km2 a (s) = p(g s)2
aðsÞ ¼ p

Ps
i¼1

gim

hm þ im

� �2

Eradication costs Ce (a(s)) $/population Ce (a(s)) = ce a(s) Ce (a(s)) = ce a(s)

Damage costs Cd (a(s)) $/population Cd (a(s)) = cd a(s) Cd (a(s)) = cd a(s)

Sampling costs Cs (d,A) $ Cs (d,A) = cs d A Cs (d,A) = cs d A

Model parameter Symbol Units Baseline scenario values†

Case study values

Statewide County-level‡

Sample density d samples/km2 Optimised Optimised Optimised

Establishment rate b populations/year* 0.1, 1 [0.55] 0.862 0.142 (0.657)§

Sample sensitivity y — 1 0.95 0.95

Maximum population

size class

Smax — 10, 100 [10] 17 17

Population growth rate g km/year* 0.3, 3 [1.65] 1.5 1.5

Marginal eradication costs ce $/km2 5000 29 357 29 357

Half time for reaching

asymptotic growth rate

h year* — 5 5

Growth function shape

parameter

m — — 5 5

Marginal damage costs cd $/km2 1000 0 0

Marginal sampling costs cs $/sample 50, 250 [150] 47.78 43.15 (68.74)

Penalty cost cfail $/population 100 000 000 61 403 248 61 403 248

Region area A km2 10 000 414 633 7149 (8187)

Max. no. populations in

a size class

Gmax — 100 100 50

*Year or other choice of inter-survey period.

†The parameter values in brackets are those used as the baseline in Fig. 2.

‡Mean and standard deviation (in parentheses) for parameters that vary across counties.

§Values shown as populations/10 000 km2/year for comparison across different-sized counties; simple, unweighted mean.
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While optimal sampling density leads to minimum total manage-

ment costs, the sensitivity of total costs to deviations from optimal

sampling effort is determined by the slope of the total cost function

around its minimum. For the baseline scenarios (Fig. 1), this sensi-

tivity is higher for higher sample cost, as indicated by the steeper

slope near the minimum (columns 1 vs. 3, 2 vs. 4).

Figure 2 shows how optimal surveillance effort and total expected

management costs vary in response to changes in model parameters.

We vary each parameter one at a time, over a broad range of poten-

tial values, holding all others at their average baseline value

(Table 1). We also consider a joint change in growth rate and maxi-

mum size class, which specifies the maximum acceptable size of a

population. Under the average baseline parameterisation and optimal

management, at any given point in time the expected numbers of

populations 1, 2, 3 and 4 years old are 0.550, 0.366, 0.072 and

0.002, respectively, with no populations (i.e. <0.00001) >4 years old.

We find that optimal sample density and total expected manage-

ment costs increase with increasing population establishment rate,

marginal damages and marginal eradication costs (Fig. 2a,b and c);

decrease with increasing sample sensitivity and maximum size class

Smax (Fig. 2d and g); and are insensitive to the choice of penalty

cost (Fig. 2e). As sample costs increase, optimal sample density

decreases and total management costs increase (Fig. 2f). Optimal

sample density and management costs change non-monotonically

with changes in population growth rate, because population size

affects the costs and detectability of populations in ways that have

antagonistic effects on optimal management and costs (Fig. 2h). At

very low growth rates, the role of detectability dominates, such that

very high sampling densities are needed to reduce expected penalty

costs from failing to detect populations before they reach size class

Smax. As population growth rate increases, detectability increases

which decreases optimal sampling density. At higher population

growth rates, damage and eradication costs of populations become

larger, increasing the optimal sample density and total expected

costs. Again, at very high growth rates, increased detectability

reduces optimal sample density, but total costs continue to increase.

sampling costs

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1 Total and component costs for 12 baseline scenarios. Dashed lines show surveillance costs and expected eradication, damage, and penalty costs. Solid lines show

total expected management costs. Square marks optimum. The top row represents species with a high growth rate (g = 3) and short time horizon for detection prior to

incurring a penalty cost (Smax = 10); the middle row represents low growth rate (g = 0.3) and short time horizon (Smax = 10); the bottom row represents low growth rate

(g = 0.3) and long time horizon (Smax = 100). The left and right columns show low sample costs (cs = $50/sample) and high sample costs (cs = $250/sample), respectively.

The first and third column represent low establishment rates (b = 0.1), and the second and forth columns represent high establishment rates (b = 1).
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A different relationship occurs when growth rate and the maximum

size class, Smax, vary simultaneously such that the area of largest size

class, a(Smax), remains similar and slow growing populations have

more time available for detection to avoid a penalty cost (Fig. 2i).

Specifically, we chose Smax ¼ round

ffiffiffiffiffiffiffiffiffi
A=3

p
g
ffiffiffi
p

p
! 
, where we rounded

down and g is the population growth rate, so that the maximum

sized population is no larger than one third of the survey area A.

Here, total management costs increase monotonically with growth

rate, while optimal sampling density increases initially with growth

rate, reflecting the effects of increasing damage and eradication costs,

but decreases at very high growth rates when detectability is high.

CASE STUDY: OPTIMAL MANAGEMENT OF GYPSY MOTH IN

CALIFORNIA, USA

We apply our model to the problem of detecting and eradicating

isolated gypsy moth (Lymantria dispar) populations in California,

USA. The gypsy moth, a native of temperate Europe, Asia and

North Africa, is now established throughout the northeastern Uni-

ted States and is one of the country’s most devastating forest pests

(Liebhold et al. 1995). It is capable of establishing and becoming a

pest throughout North America (Morin et al. 2004) in natural and

urban landscapes. Nearly every year, isolated gypsy moth popula-

tions establish outside the species’ current introduced range through

human-assisted dispersal (e.g. on vehicles, firewood, cargo ships).

Networks of pheromone traps are used to detect these populations

so that they can be eradicated (Liebhold & Bascompte 2003; Hajek

& Tobin 2011).

We demonstrate the use of our model to optimise surveillance

for gypsy moth across California, with and without a state-wide

budget constraint. We parameterised the model for California as a

whole and separately for each of its 58 counties, the scale at which

trapping information and establishment history are available. The

parameter values and functional forms are based on a combination

of empirical data, estimates from the literature and expert opinion

(see Table 1 and Supporting Information). Population growth is

modeled by a sigmoid function, representing initially accelerating

radial population growth that eventually asymptotes at a rate g; such

dynamics are characteristic of species that are subject to strong

Allee effects (Vercken et al. 2011). Damages are assumed to be zero

because gypsy moths cause minimal damage in populations smaller

sample sensitivity, y sample cost, 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2 Sensitivity of optimal sample density (dashed line) and expected management costs (solid line) to model parameters. The circle on the x-axis shows the baseline

parameterisation (Table 1).
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than the maximum acceptable size class Smax (Appendix S1). Sam-

pling costs and establishment rates are heterogeneous across the

region and have been parameterised at the county level (Fig. 3a and

b). Sampling uses pheromone traps, so surveillance effort is mea-

sured as trap density (traps/km2). The statewide establishment rate

and sample cost parameters are calculated as the sum and area-

weighted average, respectively, of their county-level values.

We first used the model to optimise homogeneous sampling den-

sity for the state of California as a whole. The optimal solution is

0.031 traps/km2, corresponding to a total annual expected manage-

ment cost of $1.46 million (Fig. 4), and is similar to 0.037 traps/

km2, the actual statewide sampling density for California in 2010

(Kevin Hoffman, California Department of Food and Agriculture,

personal communication). The model suggests that there is little dif-

ference in the expected management costs at these sampling densi-

ties. Total management costs drop steeply with initial investments

in sampling, but are less sensitive to changes in sampling density

between c. 0.02 and 0.05 traps/km2 (Fig. 4). Nonetheless, there is

significant variation in total sampling and total eradication costs

across sampling densities. The expected equilibrium number of pop-

ulations in each size class is shown in Table S3.

Next, we optimised heterogeneous surveillance effort between the

58 counties of California based on data for establishment rates and

sampling costs for each county. Here, the optimal number of traps

deployed in total is nearly the same as for the previous analysis
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costs, and penalty costs from failed detection) under optimal management for

various budget and sampling allocations and actual trapping densities in

California (Table S2).
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Figure 3 Parameterisation of (a) establishment rate (populations/10 000 km2/year) and (b) sample costs ($/trap) across California counties. Subregional optimisation

results showing (c) optimal trap densities (traps/km2) and (d) expected management costs ($/km2/year) across California counties.

Figure 4 Expected management costs as a function of trap density. The square

represents the optimal trap density (0.031 traps/km2) and the total annual

expected management costs associated with that density ($1 464 200/year). The

circle represents the actual average statewide trap density (0.037 traps/km2) for

California.
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(12 794 vs. 12 832) but the optimal distribution of samples across

counties differs dramatically (Fig. 3c; Table S1), ranging from 0.002

to 1.434 traps/km2 with a mean of 0.093 and standard deviation

0.207 traps/km2.

Heterogeneous trapping in response to county differences in estab-

lishment rate and sampling costs dramatically reduces the expected

statewide management expenditures (Fig. 5; Table S2): eradication

costs and surveillance costs are reduced by about half ($748 416/

year), while penalty costs are negligible under both strategies. The

expected annual county-level management costs are shown in Fig. 3d.

If county-specific establishment rates were not known, then a

suitable strategy for heterogeneously allocating surveillance effort

might be to divide the total optimal surveillance budget under

homogeneous management ($611,294/year) across counties in pro-

portion to their area. If we assume that counties deploy as many

traps as their sampling budget allows using the county-specific trap-

ping costs, then nearly twice as many traps (21 803 vs. 12 793) are

deployed across the state, which reduces total expected statewide

management costs by 25% (Fig. 5; Table S2). By allowing sample

density to vary based on sampling costs, surveillance is more intense

in counties that have lower average sampling costs, which reflects

the optimal response of sampling effort to cost differences. Thus,

even a relatively naı̈ve heterogeneous sampling plan may result in

substantial savings in comparison to a homogeneous approach.

Finally, we applied our methods to predict the effect of region-

wide sampling budget reductions of 25, 50 and 75% relative to

sampling expenditures needed for optimal heterogeneous sampling

effort ($299 465). The model suggests that by re-optimising surveil-

lance effort between counties, a 25% reduction in the sampling

budget leads to about a 3% increase in total management costs;

expenditures on surveillance are reduced, but increases in eradica-

tion costs almost exactly offset this reduction (Fig. 5; Table S2).

A sampling budget reduction of 50% causes a 16.6% increase in

total expenditures and a 75% sampling budget reduction increases

total management costs by almost 70%. Such large sampling budget

reductions would induce significant shifts in expenditure from sur-

veillance to eradication and increase the risk of failing to detect

populations before they become ineradicable.

California’s 2010 county-level trapping densities (Kevin Hoffman,

personal communication) correspond closely to the optimal hetero-

geneous trapping policy derived from the model. Overall, we esti-

mate that the expected costs state-wide are 29% greater than under

optimal heterogeneous management (Fig. 5; Table S2). Although

California’s current trapping policies have not been derived from a

formal analysis of expected management costs, as performed here,

the distribution of traps among counties reflects historical tenden-

cies of new gypsy moth populations to establish in areas with

higher human populations (Lippitt et al. 2008) and guidelines recom-

mending varying densities of traps based on local habitat features

that affect establishment risk (U.S. Department of Agriculture

2009). When we compared the expected management costs for each

county based on reported trap density with the costs expected

under optimal trap density (Figure S1), we found that suboptimality

in the trap densities of just three counties caused 50% of the differ-

ence in state-wide costs. These results suggest that adjusting the

sampling effort in just three counties might provide significant

long-term gains in cost efficiency (unless those counties are basing

their management on important additional information not consid-

ered here).

DISCUSSION

Our analyses suggest that greater surveillance effort is warranted for

invasive species that have higher establishment rates, cause higher

damages, that are more costly to eradicate or for which sampling is

less costly. These results corroborate previous findings that optimal

surveillance effort increases with the number of local populations

on the landscape (Bogich et al. 2008; Homans & Horie 2011), the

probability of species presence (Hauser & McCarthy 2009), the cost

of damages (Homans & Horie 2011), eradication costs (Bogich et al.

2008), and decreasing surveillance costs (Bogich et al. 2008; Homans

& Horie 2011). In contrast to our results, Homans & Horie (2011)

concluded that optimal surveillance decreases with control costs,

because they did not require populations to be eradicated upon

detection and damages only accrued for a finite time horizon.

Our approach assumes the probability of detecting a population

depends on population size, surveillance effort (measured as sample

density), and sample sensitivity (i.e. the probability of detecting a

population if a sample is located within it). In contrast, Bogich et al.

(2008) assumed perfect sample sensitivity, and Homans & Horie

(2011), Hauser & McCarthy (2009), and Mehta et al. (2007) did not

consider changes in detectability with increasing population size.

While we find that optimal surveillance effort declines with

sample sensitivity, Homans & Horie (2011) found increases with

detectability, which may reflect a decrease in effective sampling cost.

Hauser & McCarthy (2009) found that a highly ineffective

surveillance method should not be used at all and moderately

effective methods warrant greater investment than more effective

methods.

We find that optimal surveillance effort depends non-monotoni-

cally on population growth rate, a finding that parallels that of

Bogich et al. (2008) who also accounted for changes in detectability

with population size. Optimal sample densities are lowest for

species with very low growth rates (and long time horizons for

detection), because they remain small longer and are less expensive

to eradicate. Optimal surveillance effort is highest for infestations

with moderate growth rates because their costs of damages and

eradication grow quickly but they may not be easy to detect. Species

with very high growth rates warrant less surveillance effort because

they are easier to detect. In contrast, Homans & Horie (2011)

found a strictly increasing relationship by considering the effect of

growth rate only on future costs and not on detection probability.

We show that substantial long-term savings may be achieved by

accounting for spatial heterogeneity of invasion risk and surveillance

costs. Only Hauser & McCarthy (2009) have previously considered

optimal allocation of resources across multiple sites. In our exam-

ple, we found that accounting for differences in surveillance costs

and establishment rates across counties in California reduces

expected annual management costs for gypsy moths by half. We

expect that stratifying the management region (i.e. California) based

on physiography and human geography instead of political bound-

aries (i.e. counties) would likely increase potential savings. Further-

more, stratifying based on additional features, such as surveillance

costs, damages, and eradication costs, also could improve allocation

of resources across space. Our method can accommodate this infor-

mation and be used to optimise surveillance accordingly.

Our dynamic approach allows intuitive and mechanistic inclusion

of future consequences of populations remaining undetected during

a survey period. We simplify the solution and specification of this
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dynamic problem by solving for the optimal long-term equilibrium

surveillance effort. This approach requires several simplifying

assumptions.

First, while we allow for interannual variation in the number of

local populations established, our equilibrium analysis imposes the

requirement that the average rate of establishment is constant.

However, establishment rates may depend on the (changing) distri-

bution of local populations in the survey area or may change in

response to trade patterns, quarantine efforts, and control of source

populations. While the former could be accounted for by specifying

the establishment rate as a function of the size and number of

other populations, the latter defies equilibrium analysis. Our

approach may still be useful for guiding surveillance efforts in the

context of an exogenously changing establishment rate, if strategies

are updated over time as rates change. Furthermore, surveillance

can provide valuable information for updating or improving esti-

mates of establishment rates. Equilibrium analysis also is inappropri-

ate for determining one-time surveillance efforts, an application for

which Hauser & McCarthy’s (2009) approach would be more

appropriate, or for optimising surveillance if many local populations

are thought to have established prior to the initiation of a surveil-

lance program. In the latter case, higher surveillance effort may ini-

tially be optimal, prior to implementing the long-term surveillance

effort identified by our model.

Our analysis also assumes that populations are successfully eradi-

cated following detection. If, during surveillance implementation, a

population were discovered that was not eradicated, rates of local

population establishment would likely increase because of the addi-

tional propagule source. We do not believe that this assumption

markedly limits the applicability of this approach, as most surveil-

lance programs are established with the objective of early detection

and eradication. Furthermore, our approach can account for the

anticipated costs of a population becoming ineradicable through

inclusion of this value in the penalty cost. In this way our model

can help balance the risk of potential long term population estab-

lishment with the costs of surveillance.

As with any model of invasive species management, a challenge to

applying our model is that many of the parameters will not be

known with certainty. In such cases, ‘value of information’ methods

can help determine how much it is worth to reduce uncertainty in

model parameters (e.g. Runge et al. 2011). When model parameters

are uncertain, the expected value of perfect information (EVPI) is

the difference between the expected value of an optimal action after

the new information has been collected and the expected value of an

optimal action before the new information has been collected. EVPI

can be interpreted as the maximum amount a decision-maker is will-

ing to pay to acquire the information. Our methods can be extended

to evaluate the value of information leading to the elimination of dif-

ferent subsets of uncertainty, which can help prioritise the direction

of information gathering efforts. Undertaking a thorough analysis

would require estimating the distribution of model uncertainty, and

we leave that to future work.

Efficient allocation of resources to managing invasive species is

needed to reduce their ecological and economic harm. We believe

that our new model for optimising invasive species surveillance has

general applicability to a wide range of unwanted plant, animal,

and pathogen species. With minimal conceptual adjustment it may

also be applicable to problems of environmental monitoring

(e.g. detecting pollution of groundwater) and food quality (e.g.

shellfish toxicity). When adequate data are available on invasion

biology, surveillance efficiency and management costs, our metho-

dology can be applied in diverse management settings to identify

the most efficient surveillance strategy for managing invading

species over large and heterogeneous landscapes.
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