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The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent
caterpillar in northern Minnesota and neighboring Ontario, Canada have increased over the last century due
to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide
application that has fostered increased dominance of host tree species. Modeling approaches are currently
being used to understand and forecast potential management effects in changing insect disturbance trends.
However, detailed forest composition data needed for these efforts is often lacking. We used partial least
squares (PLS) regression to integrate different combinations of satellite sensor data including Landsat,
Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data
(Wolter et al., 2009), to determine the best combination of sensor data for estimating near species-level
proportional forest composition (12 types: 10 species and 2 genera). Single-sensor and various multi-sensor
PLS models showed distinct species-dependent sensitivities to relative basal area (BA), with Landsat variables
showing greatest overall sensitivity. However, best results were achieved using a combination of data from all
these sensors, with several C-band (Radarsat-1) and L-band (PALSAR) variables showing sensitivity to the
composition and abundance of specific species. Pixel-level forest structure estimates derived from SPOT-5
data were generally more sensitive to conifer species abundance (especially white pine) than to hardwood
species composition. Relative BA models accounted for 68% (jack pine) to 98% (maple spp.) of the variation in
ground data with RMSE values between 2.46% and 5.65% relative BA, respectively. Receiver operating
characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species relative
BA estimates which ranged from 5.94% (jack pine) to 39.41% (black ash). These estimates were then used to
produce a dominant forest species map for the study region with an overall accuracy of 78%. Most notably, this
approach facilitated discrimination of aspen from paper birch as well as spruce and fir from other conifer
species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics in the Upper
Midwest. We also demonstrate that PLS regression is an effective data fusion strategy for mapping
composition of heterogeneous forests using satellite sensor data.
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1. Introduction

Spatially explicit information about forest tree species composi-
tion, stand structure, landscape configuration, and changes in each of
these over time are essential for understanding and forecasting
ecosystem function (Pastor & Post, 1986; Aber et al., 1995; Sturtevant
& Gustafson, 2004; Bonan, 2008). This information may be used to
track the effects of climate change on biological diversity (Peters &
Darling, 1985; Betts et al., 1997; He et al., 2002; Percy et al., 2002),
improve our knowledge of fauna habitat preference and suitability
(MacArthur & MacArthur, 1961; Pastor et al., 1999; Hanowski et al.,
2005; Hyde et al., 2006; Moen et al., 2008), or assess the impact of past
and present forest management on tree species distribution and
abundance (Wolter & White, 2002; Friedman & Reich, 2005). Data on
host tree species also provides insight into the patterns, cycles, and
severity of insect disturbance, as well as the likely consequences of
outbreaks on a regional scale (Blais, 1983; Batzer et al., 1995; Radeloff
et al., 2000; Scheller et al., 2005; Bouchard et al., 2006; Ellenwood &
Krist, 2007).

In recent years, the estimationof forest biophysical parameters using
satellite data has become increasingly routine (Franco-Lopez et al.,
2001; Cohen et al., 2003; Pulliainen et al., 2003; Rauste, 2005; Hyde
et al., 2006; Chopping et al., 2008; McRoberts et al., 2007, and many
more). However, improvements in the level of detail and precision
among many estimated parameters continue to be a challenge
(Couturier et al., 2009; Moisen et al., 2006; Wolter et al., 1995, 2008,
2009), especially when the aim is to augment or supplant traditional,
ground-based forest inventory data (Holmgren & Thuresson, 1998;
Meng et al., 2009; McRoberts, 2009).

http://dx.doi.org/10.1016/j.rse.2010.10.010
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Table 1
Unique phenology windows that aid forest type determination using optical imagery.

Date Species Event

15−20 May Quaking and bigtooth aspen
(P. tremuloides, P. grandidentata,)

First hardwoods to flush
leaves

1−5 June Black ash (Fraxinus nigra) Last hardwood to flush
leaves

5−10 September Black ash First hardwood to shed
leaves

20−25 September Sugar and red maple
(Acer saccharum, A. rubrum)

Unique autumn leaf color

15−20 October Eastern larch (Larix laricina) Unique autumn leaf color
Late February–March Eastern larch Leaves off, snow covered

ground
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Pixel-wise estimation of forest tree species composition usingmulti-
spectral satellite sensor data (e.g., Landsat or SPOT) poses unique
challenges in regions where species diversity and structural complexity
arehigh (Wolter et al., 1995, 2008; Franco-Lopezet al., 2001;Reeseet al.,
2002; Leckie et al., 2005; McRoberts, 2008; Stabach et al., 2009; Bauer
et al., 2009). For example, in the upper Midwest, especially in northern
Minnesota, multi-spectral forest classifications have rarely achieved
accuracies greater than65–85%(Franco-Lopezet al., 2001). By and large,
this is because it is difficult to adequately account for the full range
of spectral variability of forests using ground-based training data
(Holmgren & Thuresson, 1998; Franco-Lopez et al., 2001), due to
differences in density, age, understory vegetation, soil, slope, etc. If
spectrally confounding factors such as terrain position (Bolstad &
Lillesand, 1992), tree density (Huang et al., 2001), tree size and crown
closure (Wolter et al., 2009), understory vegetation (Shenet al., 1985) or
other landscape characteristics (Vogelmann et al., 1998) are accounted
for—or at least their affects are reduced in someway—accuracies among
image-derived forest species composition and abundance estimates
may be improved beyond past levels.

1.1. Study objective

The objective of this research was to investigate the combined use
of optical (Landsat and SPOT-derived forest structure estimates) and
synthetic aperture radar (SAR) satellite image data for estimating the
distribution and abundance of four dominant deciduous hardwood
types (two genera and two species: aspens, Populus tremuloides and
P. grandidentata combined; maples, Acer saccharum and A. rubrum
combined; paper birch, Betula papyrifera; and black ash, Fraxinus
nigra) and eight coniferous tree species (red pine, Pinus resinosa;
white pine, P. strobes; jack pine, P. banksiana; black spruce, Picea
mariana; white spruce, P. glauca; balsam fir, Abies balsamea; eastern
larch (tamarack), Larix laricina; and northern white cedar, Thuja
occidentalis) in northern Minnesota to support ongoing efforts to
understand insect disturbance dynamics in the upper Midwest. We
extend the work of Wolter et al. (2008), where partial least squares
(PLS) regressionwas applied to estimate andmap the distribution and
abundance of host tree species (balsam fir and spruces) for spruce
budworm (Choristoneura fumiferana), to include all major forest
dominants, including host species (aspens) for forest tent caterpillar
(Malacosoma disstria). Tree species rarely found (Quercus spp.) or
found only intermittently as sparse associates (e.g. B. alleghaniensis,
P. balsamifera, F. americana, F. pennsylvanica, and Prunus serotina) with
dominant species were not focal points of this mapping effort. The aim
is to accurately discriminate host tree species from other optically
similar non-host species to improve insect disturbance modeling.

A secondary objective was to determine whether C-band (5.30 GHz)
and L-band (1.27 GHz) synthetic aperture radar (SAR) amplitude data
can be used in concertwith SPOT structure estimates, opticalmeasures of
forest phenology (Wolter et al., 1995), and other indices to distinguish
aspens frompaper birch (Betula papyrifera), as these two forest types are
optically similar (Shen et al., 1985; Franco-Lopez et al., 2001). In the past,
it was common practice to combine aspen and birch for Landsat image
classifications (e.g., Moore & Bauer, 1990; Wolter & White, 2002), as
efforts to separate these species have been unsuccessful (Franco-Lopez
et al., 2001) or merely satisfactory when performed under ideal
conditions (Wolter et al., 1995). Northeast Minnesota provides an
excellent test landscape for this data fusionexperiment because forests in
this region are heterogeneous in terms of both spatial configuration and
species composition (Heinselman, 1973).

1.2. Background

1.2.1. Forest phenology and satellite image data
The discrimination of forest species using optical imagery can be

improved by the optimal timing of image acquisition with respect to
phenological timing (Sayn-Wittgenstein, 1961, Wolter et al., 1995)
(Table 1). Imagery from late spring is important to discriminate aspen
(Populus spp.) from birch (Betula spp.) because leaves of the
understory woody vegetation (e.g., Corylus cornuta, Acer spicatum, or
Cornus spp.) are not fully developed at that time, and hence less likely
to dampen spectral differences observed between overstory species
(Shen et al., 1985; Badhwar et al., 1986). Species-level forest
classifications with overall accuracies as high as 80% have been
developed in Wisconsin (Wolter et al., 1995) and Minnesota (Wolter
& White, 2002) using Landsat imagery that captures specific
phenological events, with results outperforming efforts that did not
use such information (Bolstad & Lillesand, 1992; Schriever &
Congalton, 1995; Mickelson et al., 1998; Franco-Lopez et al., 2001).
1.2.2. Combined use of optical and synthetic aperture radar (SAR) imagery
SAR data have been used extensively to estimate forest structural

variables (Sader, 1987; Ranson et al., 1997; Koskinen et al., 2001;
Fransson et al., 2001; Santoro et al., 2002; Pulliainen et al., 2003;
Engdahl et al., 2004) and to classify forest cover types (Lim et al.,
1989; Ranson & Sun, 1994; Dobson et al., 1995; Touzi et al., 2004).
However, fewer examples of research exist in which SAR data have
been used alone or in combination with optical data to map or
estimate forest composition (e.g., Leckie, 1990; Dobson et al., 1995;
Townsend, 2002).

Theoretical SAR backscatter models have shown sensitivity to
numerous vegetation attributes, including dielectric properties,
structure, and vegetation orientation (Dobson et al., 1992a; Imhoff,
1995). Each forest type has a unique set of structural attributes (e.g.,
bole shape, crown shape, branch arrangement, and leaf orientation)
that may produce unique backscatter at different radar wavelengths
(Sader, 1987; Leckie, 1990; Ahern et al., 1993; Ranson et al., 1997;
Imhoff, 1995). As a result, C-band (5.6 cm wavelength) and L-band
(23.6 cm wavelength) SAR image data have been used with
knowledge-based classification procedures to map broad forest
categories characterized by differences in leaf type (needle-leaf or
broadleaf) and canopy shape (excurrent or decurrent) with high
accuracy (Dobson et al., 1995). Airborne SAR data were used in
Canada to classify jack pine (Pinus banksiana), black spruce (Picea
mariana), quaking aspen, and three classes of mixed forest with 90%
accuracy, and 98% accuracy in the separation of pure jack pine from
pure black spruce (Saatchi & Rignot, 1997). Use of both leaf-on and
leaf-off C- and L-band SAR data has been suggested for improving
forest classification results (Ranson et al., 1997), but has not yet been
widely explored in heterogeneous forests.

It should be noted that detection of specific hardwood phenology
events (e.g., leaf-flush/drop) using C-band SAR data is possible
(Sharma et al., 2005). However, confounding variation in C-band
backscatter due to unstable environmental conditions during spring
and autumn limits reliable application (Ranson & Sun, 1994, 2000;
Verbyla, 2001).
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By gathering SAR imagery during environmentally stable seasons
(summer and winter), we aim to maximize the strengths of SAR
imagery through fusion with optical sensor data (Pohl & Van
Genderen, 1998; Nielsen, 2002; Treuhaft et al., 2004). The goal of
image fusion is to employ different types of sensor data to obtainmore
information from their union than is possible from separate analyses.
Nielsen (2002) described the use of canonical correlation analysis
(CCA) and partial least squares (PLS) regression as effective means of
achieving data fusion, since both are used to transform the original
data into new orthogonal variables or latent components. Fusion of
Landsat and Radarsat-1(C-band) data is purely a multi-sensor union
of disparate data with no difference in spatial resolution (Pohl & Van
Genderen, 1998). Thus, these sensors provide complementary
information (Pohl & Van Genderen, 1998). On the other hand, the
combination of Radarsat-1(30 m pixels, C-band) and Phased Array
L-band Synthetic Aperture Radar (PALSAR) (12.5 m pixels, L-band)
data represents a multi-resolution, multi-wavelength integration that
may provide additional power for tree species discrimination. For
example, white spruce and red pine or aspen and paper birch are
spectrally similar using summer Landsat data, but are very different in
terms of branch, foliage, and bole arrangement (e.g. multi-stemmed
paper birch, Cooper, 1913; Buell & Niering, 1957). Therefore, these
species differ considerably in radar reflectivity (Hallikainen et al.,
1990; Ranson & Saatchi, 1992).

Both single polarizations (HH and VV) and cross polarizations (HV
and VH) of L-band SAR data are sensitive to forest biomass and other
forest parameters due to strong L-band interaction (double bounce)
with tree boles (Richards et al., 1987; Durden et al., 1989; Wang et al.,
1993, 1995; Dobson et al., 1995; Santoro et al., 2009) and large
branches (Sader, 1987; Dobson et al., 1992b; Pulliainen et al., 1999). In
addition, correlations between backscatter and forest basal area and
above ground biomass at L-band HV and VV polarizations suggest that
L-band SAR response is weakly dependent on species type (Sader,
1987; Watanabe et al., 2006). While data from the Japanese Earth
Resources Satellite (JERS-1, 18 m pixels, L-band) have been combined
with C-band SAR data to map forest composition (Kellndorfer et al.,
Fig. 1. The study area in northeast Minnesota which consists of a SPOT-5 image footprint (K58
Area (BWCA) wilderness.
1997), only a few published studies to date have used data from the
new L-band PALSAR sensor (launched in January 2006) to map
general land cover (Turkar & Rao, 2008), make assessments of
hurricane damage (Watanabe et al., 2007), or to estimate tree height
(Shimada, 2007). We demonstrate one of the first assessments of the
use of PALSAR data to characterize forest composition in detail.

1.2.3. Landsat, SPOT, and partial least squares regression
PLS regression (Wold, 1966, 1975) is similar to the canonical

variate substitution (CVS) fusion method described by Campbell
(1993). In CVS, linear combinations of bands (factors) are generated
to maximize the difference between input image variables with
reference to variation in field training data (Pohl & Van Genderen,
1998). Similarly, PLS is a linear regression method that also forms
components (factors or latent variables) as new independent
variables (explanatory variables or predictors) in a regression
model. However, the unique assumption with PLS is that response
and predictor variable blocks are manifestations of the same set of
underlying latent variables (Wold et al., 2009). As with CVS,
components in PLS are determined by both the response and
predictor variables (Wold et al., 2009). Consequently, a PLS regression
model can be expected to have a smaller number of components
without an appreciably smaller R2 value.

Recently, PLS regressionwas successfully usedwithmulti-seasonal
Landsat sensor data to estimate the distribution and relative basal
area (BA) of host tree species (white spruce, black spruce, and balsam
fir) for spruce budwormwithin a 6.4 million hectare area covering the
Border Lakes region of northern Minnesota, U.S.A. and northwestern
Ontario, Canada (Wolter et al., 2008). Their analyses yielded estimates
for overall forest BA (R2 of 0.62, RMSE 4.67 m2 ha−1 or ≤20% of
measured BA), spruce relative BA (R2 0.88, RMSE 12.57 m2 ha−1), and
balsam fir relative BA (R2 0.64, RMSE 6.08 m2 ha−1). The use of PLS
regression was appropriate in this case as the technique does not
assume zero error in the predictor/image variables, whichmany linear
methods do (Curran & Hay, 1986); and PLS regression uniquely
handles multi-collinearity among image predictors making it more
7 and J253) within the Superior National Forest and part of the BoundaryWaters Canoe



Fig. 2. (A) layout of field plots for this study (collected 2006–2007) and an earlier study
(2003–2004, Townsend and Sturtevant unpublished data) designed for integration
with 30 m satellite data, and (B) plot layout for data collected by the Natural Resources
Research Institute (NRRI) of the University of Minnesota—Duluth for forest bird habitat
modeling. Estimates of basal area (BA) by species for a plot were collected at each subplot
using angle count samplingwith ametric basal area factor (BAF) twoprism (A) or using an
English factor 10 prism (B). NRRI subplot measurements of basal area (ft2ac−1) were
averaged by plot and converted to m2 ha−1 to account for differences in prism BAF.
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robust than traditionalmultiple linear regression (Wolter et al., 2008).
This work builds on Wolter et al. (2008) by including ten additional
tree species to the predictive models.

Wolter et al. (2009) demonstrated use of PLS regression to
estimate forest structural parameters in northeastern Minnesota
using 5 and 10 m SPOT-5 data. We developed an automated variable
selection procedure for use with PLS regression (Wolter et al., 2008)
that producedmodels for pixel-wise estimation andmapping of mean
values, respectively, for deciduous hardwood and coniferous crown
diameter (R2=0.82 and 0.93, RMSE 0.62 and 0.47 m), bole diameter
(R2=0.82 and 0.90, RMSE 2.92 and 3.75 cm), tree height (R2=0.69
and 0.92, RMSE 1.27 and 1.59 m), crown closure (R2=0.52 and 0.68,
RMSE 5.49 and 6.02%), vertical length of live crown (R2=0.58 and
0.81, RMSE 0.96 and 1.25 m), and basal area (R2=0.71 and 0.74,
RMSE 2.47 and 4.58m2 ha−1) for a 3600 km2 area in northeast
Minnesota (see Fig. 1). Predictive variables included neighborhood
statistics (standard deviation, variance, semivariogramsill variance, and
ratios of these metrics at 5 and 10m) calculated from multi-spectral
(10 m) and panchromatic (5 m) SPOT-5 sensor data and derivatives.

2. Methods

2.1. Study region

The study region consists of a single 60×60 km Systeme pour
l'Observation de la Terre (SPOT-5) image footprint (K587, J253
centered at N 47.681° latitude and W 91.345° longitude) located
within the Superior National Forest (Fig. 1). This region is composed
of diverse tree species (five conifer genera and seven broadleaved,
deciduous tree genera) and is considered transitional between the
sub-boreal, Great Lakes–St. Lawrence forests and boreal forest
(Heinselman, 1973; Baker, 1989). These forests have been intensively
managed for wood fiber for over 100 years. Through time, forest
management practices and fire suppression have altered forest
composition resulting in the current dominance of aspen, paper
birch, white spruce, and balsam fir (Heinselman, 1973; Reich et al.,
2001; Wolter & White, 2002). However, the northern portion of the
region is largely protected (Fig. 1) and has an extensive fire history
that supports large stands of pioneer forest dominated by jack pine. In
addition, the study area contains remnants of old-growth white pine
(Pinus strobus) and red pine forests (Heinselman, 1973; Frelich &
Reich, 1995).

2.2. Field data

Field data included plots sampled in 2003–2004 (n=67) and
2006–2007 (n=120) by the authors as well as additional plots
sampled in 2006 by the Natural Resources Research Institute (NRRI) at
the University of Minnesota—Duluth to support forest bird habitat
modeling (Fig. 2). Field plot data sampled by the authors consisted of
a total five variable-radius (Grosenbaugh, 1952) subplots: one located
at the intersection and one at each of the four end points of two
crossing 60 m transect lines placed near center of large (≥4.4 ha),
homogenous stands (Fig. 2A). Sufficient stand size and homogeneity
assured that stand edge effects were minimized during analysis, and
that image misregistration errors were inconsequential. Basal area
(BA) by species was measured at each subplot using a metric basal
area factor (BAF) 2 prism. In addition, percent cover of forest trees by
species was estimated visually in one of 10 cover classes following
Peet et al. (1998) for the canopy and subcanopy. Total crown closure
for the plot was estimated using 121 densitometer measurements
made in one meter increments along the two 60 m plot axes. Data
from NRRI consisted of three variable-radius subplots per plot
sampled using English BAF 10 prisms (Fig. 2B). Species composition
data were then used as dependent variables (total BA and the relative
BA for 12 forest types) in the PLS regression models.
2.3. Satellite remote sensing data

Landsat's six reflective bands (30 m), mapped estimates of forest
canopy structure derived from 5 and 10 m SPOT-5 sensor data (31
August and 15 July 2006, respectively) reported by Wolter et al.
(2009), and amplitude data from two SAR sensors (Radarsat and
PALSAR, Table 2) were used to calibrate PLS regression models for
estimating relative BA for 12 forest species types. Wolter et al. (2009)
provides a detailed description of the SPOT-5 sensor data (bands and
processing) used to produce the forest canopy structure estimates
used in this study.

2.3.1. Synthetic aperture radar
Six Radarsat-1 amplitude images and one PALSAR amplitude

image (fine beam, 34.3o incidence angle, Table 2) were acquired and
registered to UTM zone 15 coordinates. Radarsat-1 images collected
during summer and winter (Table 2) were selected to minimize
effects due to environmental variability (Ranson & Sun, 1994).
Radarsat-1 is a C-band SAR sensor (5.3 GHz, 5.6 cm wavelength)
with horizontal send and receive (HH) polarization that is capable of

image of Fig.�2


Table 2
Satellite image data used in this study. Radarsat-1data (HH, C-band, 5.3 GHz) have a
pixel resolution of 30 m and were collected as standard beam 2 which have an earth
incidence angle of 27.7°. PALSAR data (HH and HV, L-band, 1.27 GHz) have a 12.5 m
pixel resolution and an earth incidence angle of 34.3°. Temperatures on the ground at
the time of SAR data collection are listed.

Landsat-5 date Radarsat date Radarsat temp.
(°C)

PALSAR date PALSAR temp.
(°C)

3/3/2008 7/27/2006 17.8 10/19/2008 8.9
5/4/2007 8/20/2006 7.8
6/9/1997 12/18/2006 −11.1
8/26/2008 1/11/2007 −2.2
9/24/2001 2/4/2007 −30
9/27/2002 2/28/2007 −3.9
10/14/1985
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collecting data at several incidence angles. Radarsat-1 data used in
this study are all standard mode 2 (S2) products, which have an
average incidence angle of 27.5°. Standard mode 2 provided the best
repeat coverage of our study area and a good compromise between
undesirable sensitivity to low local slope effects at steeper angles and
terrain shadowing effects at shallower angles (see Singhroy & Saint-Jean,
1999). PALSAR is an L-band SAR sensor (1.27 GHz, 23.6 cmwavelength)
which has several operational modes. The dual polarization PALSAR data
used in this study were collected as part of the Japan Aerospace
Exploration Agency's (JAXA) comprehensive acquisition strategy
(see Rosenqvist et al., 2006), where incidence angle and other sensor
parameters were fixed in advance to streamline the acquisition of
spatially and temporally consistent global coverage. Hence, both HH
and horizontal send and vertical receive (HV) energy are recorded at a
12.5 m pixel resolution with an incidence angle of 34.3°. Because SAR
data are sensitive to the dielectric properties of vegetation and soil,
temperature at the times of data acquisition were noted for later
interpretation (Table 2). Both the Radarsat-1 and PALSAR image data
were processed (radiometric, geo-location, and terrain correction) using
AlaskanSatellite Facility (ASF) softwareMapReady2.1 (ASF,University of
Alaska—Fairbanks, Fairbanks, AK).

SAR image data are inherently noisy due to signal-dependent
speckling (Lee, 1981), and are often filtered (sacrificing spatial
Table 3
List of predictor variables used with PLS regression and ground plot data to estimate specie
letters R (March), M (May), J (June), A (August), S (24 Sept.), T (27 Sept.), and O (October)

Predictor image Description

R1, R2, R3, R4, R5, R6, R7, R8, R9 3 March 2008
components (

M1, M2, M3, M4, M5, M6, M7, M8, M9 4 May 2007 L
J1, J2, J3, J4, J5, J6, J7, J8, J9 9 June 1997 L
A1, A2, A3, A4, A5, A6, A7, A8, A9 26 August 20
S1, S2, S3, S4, S5, S6, 57, 58, S9 24 Septembe
T1, T2, T3, T4, T5, T6, T7, T8, T9 27 Septembe
O1, O2, O3, O4, O5, O6, O7, O8, O9 14 October 19
SAVI Soil-adjusted
SR Simple NIR/R
MSI Moisture stre
GEMI Global enviro
SVR, SVR7 Shortwave in
ASH_J, ASH_S, ASH_T SR from leaf-
TAM_R, TAM_M SR from 3/3/0
AI_S, Al_T, AI_O Autumn indic
R1M, R2M, R3M, R4M, R5M, R6M Radarsat neig

5=2/4/07, an
R1S, R2S, R3S, R4S, R5S, R6S Radarsat neig

4=1/11/07, 5
R13, R14, R15, R16, R23, R24, R25, R26 Ratios of the
RLF, PLF Shaded relief
PHM, PVM PALSAR neigh
PHS, PVS PALSAR neigh
PAL PALSAR ratio
CDIA, DBH, HT SPOT-based c
CC, LC, BA SPOT-based c
information) to dampen these effects (Sader, 1987; Wu & Sader,
1987; Lopes et al., 1993; Rauste, 2005; Amini & Sumantyo, 2009).
However, neighborhoods surrounding any given SAR pixel (e.g., mean
or standard deviation, Sader, 1987) may contain far more valuable
information than any one pixel (Dell'Acqua et al., 2006). To extract
such information and avoid edge effects, pixel-wise local SAR statistics
were collected by first using a 10 m, multi-spectral (red, green, near-
infrared, and shortwave infrared), SPOT-5 image (15 July 2006) to
define spectral Euclidean neighborhoods (distance≤10 digital numb-
ers) within a 97.5 m radius from the center pixel location (following
Wolter et al., 2009). After a SPOT-5 neighborhood was defined for a
pixel location, the mean and standard deviation of all the corre-
sponding SAR image pixels in the neighborhood were calculated and
written to separate image files. Finally, two shaded relief images were
produced from 10 m digital elevation models (DEM) (source: www.
usgsquads.com/elevationdata.htm) using the respective satellite's
ephemeris information to model earth surface illumination by
microwave energy. The two relief images were derived specifically to
be used during PLS regression to account for differences in observed SAR
backscatter related to topography (see Ranson et al., 2001).

2.3.2. Landsat image data
Seven Landsat Thematic Mapper (TM) images were acquired for

this study based on temporal proximity to field data collection
(2006–2007) or whether they captured specific forest phenology
events (Tables 1, 2). All seven Landsat images were downloaded from
the USGS Earth Resources Observation and Science Center (EROS)
web site (source: http://glovis.usgs.gov/) in UTM zone 15 coordinates.
These freely available 30 m Landsat images are convenient as they are
precision-orthorectified and geo-corrected using Global Land Cover
Facility (GLCF) GeoCover data (source: www.landcover.org). The
seven Landsat images used in this study exhibited excellent pixel
coregistration with each other. However, these data should be used
with some caution as cubic convolution rather than nearest neighbor
resampling is employed, which is known to negatively affect some
analyses (Jensen, 2005). Each Landsat image was converted to top of
atmosphere reflectance using published sensor calibration coeffi-
cients (Thome et al., 2004) and then topographically corrected (see
s-wise relative basal area. Dates for Landsat bands and indices are indicated using the
. For example, J2 and SVR_J represent June TM2 and SVR, respectively.

Landsat bands (blue, green, red, NIR, SWIR5, SWIR7, respectively) and tasseled cap
Crist & Kauth, 1986) brightness (7), greeness (8), and wetness (9).
andsat bands and tasseled cap components.
andsat bands and tasseled cap components.
08 Landsat bands and tasseled cap components.
r 2001 Landsat bands and tasseled cap components.
r 2002 Landsat bands and tasseled cap components.
85 Landsat bands and tasseled cap components.
vegetation index (Huete, 1988).
ED ratio (Jordan, 1969).
ss index (Rock et al., 1986).
nmental monitoring index (Pinty & Verstraete, 1992).
frared to visible ratio (Wolter et al., 2008): SWIR/visible & SWIR7/visible.
off black ash (J: 6/9/1997, S: 9/24/2001, T: 9/27/2002) minus SR from 8/26/2008.
8 and 5/4/07 (eastern larch leaf-off) minus SR from 8/26/08; respectively.
es (TM3/TM1) for 9/24101, 9/27/02, and 10/14/85 (J. Vogelmann pers. comm.)
hborhood means (M), where 1=7/27/06, 2=8/20/06, 3=12/18/06, 4=1/11/07,
d 6=2/28/07.
hborhood standard deviation (S), where 1=7/27/06, 2=8/20/06, 3=12/18/06,
=2/4/07, and 6=2/28/07.

means for the specified Radarsat images (e.g., R13=R1M / R3M and so forth).
using Radarsat and PALSAR ephemeris, respectively.
borhood means for HH and HV, respectively.
borhood Std. Dev. for HH and HV, respectively.
PHM / PVM.
anopy diameter, bole diameter, tree height (Wolter et al., 2009).
rown closure, live crown length; basal area (Wolter et al., 2009).

http://www.usgsquads.com/elevationdata.htm
http://www.usgsquads.com/elevationdata.htm
http://glovis.usgs.gov/
http://www.landcover.org


Table 5
Dependent forest composition variables modeled using PLS regression. Relative basal
area (RBA) values for separate species or types represent percentages of the total basal
area (i.e. species BA / total BA).

Dependent variable Description

TBA Total basal area (m2 ha−1)
MPL Relative BA sugar and red maple
ASP Relative BA quaking and bigtooth aspen
BIR Relative BA paper birch
ASH Relative BA black ash
JP Relative BA jack pine
WP Relative BA white pine
RP Relative BA red pine
BS Relative BA black spruce
WS Relative BA white spruce
FIR Relative BA balsam fir
WC Relative BA white cedar
EL Relative BA eastern larchl
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Riaño et al., 2003) using a 30 m digital elevation model (source:
http://ned.usgs.gov/) and scene-specific sun position information.
However, Landsat scene-to-scene radiometric normalizations were
not performed.

Wolter et al. (2008) identified key Landsat image bands, dates,
ratios, and indices that were import for estimating forest basal area in
Minnesota (Table 3). In particular, the shortwave infrared (SWIR) to
visible ratio (SVR), which is the average of both Landsat SWIR bands
divided by the average of the three visible bands, was the strongest
predictor of fir and spruce relative BA. Here, we added the SVR7 ratio
which uses only the second Landsat SWIR band (TM7, 2.09–2.35 μm)
in the calculation of the ratio because TM7 has been shown to bemore
sensitive to forest basal area than TM5 (Brockhaus & Khorram, 1992).
We also employed the autumn index (AI=TM3/TM1, J. Vogelmann
pers. comm.) for the September and October images because AI
specifically enhances elevated red reflectance due to autumn foliar
senescence (Table 3). The late September images were selected from
the Landsat archive as these dates fall approximately within the
timeframe of maximum maple and paper birch senescence for this
region (Ahlgren, 1957; Eder, 1989; Wolter et al., 1995).
2.3.3. SPOT-5 structure information
Wolter et al. (2009) successfully estimated six forest structural

parameters for the current study area using pixel-wise neighborhood
statistics (standard deviation, variance, semivariogram sill variance,
and ratios of these metrics at 5 and 10 m) calculated from multi-
spectral and panchromatic SPOT-5 sensor data and derivatives.
Estimates were derived using PLS regression and used to map tree
canopy diameter (CDIA), bole diameter at breast height (DBH), tree
height (HT), crown closure (CC), vertical length of live crown (LC),
and basal area (BA). To make use of this structure information for
estimating forest species relative BA, the original 10 m estimates were
first smoothed using a 3×3 median filter then transformed to 30 m
using nearest neighbor resampling (Table 3). For details on SPOT data
processing see Wolter et al. (2009).
2.4. PLS regression model development and forest composition estimation

Nine PLS regression models were developed to explore the
sensitivity of 147 image variables (Table 3) derived from four satellite
sensors (Landsat TM, SPOT-5, Radarsat-1, and PALSAR), including
different sensors combinations (Table 4), for simultaneously estimat-
ing total basal BA and relative BA for 12 forest types (dependent
variables Table 5) using plot data collected in 2006–2007 (n=120). A
recursive backward elimination band selection approach was devel-
oped for use with the PLS regression procedure (see Wolter et al.,
2008) to pre-select the most relevant image predictor variables. Once
the best model was identified in each case, band-wise PLS regression
Table 4
Nine PLS regressionmodels were tested for estimating forest composition. The acronym
SAR indicates combined use of Radarsat-1with PALSAR. A lower predicted residual sum
of squares (PRESS) statistic indicates a better overall PLS regression model.

Sensor combinations
studied

Number of
images

Number of
variables

Variables
selected

Number of
components

Model
PRESS

Landsat TM+SAR+SPOT 16 147 63 55 0.43
Landsat TM+SAR 14 141 72 52 0.48
Landsat TM+SPOT 9 119 57 48 0.46
SAR+SPOT 9 34 31 29 0.70
SAR 7 28 27 26 0.82
LandsatTM 7 113 56 48 0.52
PALSAR 1 6 6 6 0.91
Radarsat 6 22 19 18 0.87
SPOT 2 6 6 6 0.86
coefficients for respective relative BA estimates by species were used
to produce species-specific maps of relative BA.

The relative BA models were validated during the PLS regression
procedure using leave-one-out cross validation (Gong, 1986), while
the resulting relative BA estimates were assessed using Receiver
Operating Characteristic (ROC) curves (Hanley & McNeil, 1982;
Kerekes, 2008). ROC curves were used to specifically determine the
optimal lower limit of detection for a given forest type at a given pixel
location. The goal of ROC curve analysis is to find a balance between
prediction sensitivity or the true positive rate of detection (the
benefits) and the false positive rate (the cost). Area under the curve
(AUC) and Youden's index (Youden, 1950) both provide single
metrics that summarize the accuracy of this test, where

Youden’s Index = 1– false positive rate + false negative rateð Þ: ð1Þ

2.5. Mapping relative basal area

The best relative BA cut-off values resulting from ROC curve
analysis were used to exclude problematic predictions from being
mapped. Once this was done for each forest species type, mapped
estimates were then used to construct a forest type map. While these
spatially explicit relative BA estimates for the 12 forest types can be
combined in a number of different ways to produce forest cover maps,
here we constructed a map of the single dominant forest species type
occurring at each pixel location. The resulting forest cover map was
validated using field data collected in summer of 2003–2004 and field
data collected by NRRI (N. Danz, unpublished data, University of
Minnesota—Duluth) in 2006 (n=138) for a total validation set of
n=203.

Prior to accuracy assessment, the forest cover type map was
smoothed using a 3×3 majority filter. Then, ground data points were
used to extract pixel information, which was used to produce a
confusion matrix for determining the user's, producer's, and overall
accuracy (Congalton & Green, 1999) of this dominant forest type
classification. Note, however, that all data on relative dominance by
species type are retained and can be used to map any user-defined
combination of species.

3. Results

3.1. Single and multi-sensor model comparisons

Multi-temporal Landsat image data (see Tables 2, 3) yielded the
best single-sensor PLS regression models for estimating species type
composition (Fig. 3), with one exception (SPOT for white pine).
Structural variance in plot data explained by the Landsat-based forest

http://ned.usgs.gov/


Fig. 3. PLS model results for species relative basal area and total basal area using data
from individual satellite sensors and Radarsat-1and PALSAR combined (SAR). Landsat
was superior to the other sensor data (except for white pine) with the highest adjusted
R2 (A) and lowest root mean squared error (B) values. Note total basal area RMSE units
are m2 ha−1.

Fig. 4. PLS model results for species relative basal area and total basal area using
combinations of different satellite sensor data, where SAR refers to use of Radarsat-1with
PALSARdata.While collectiveuse of data fromall the sensors studiedproduced thehighest
adjusted R2 values (A) and the lowest root mean squared errors (B) in most cases, other
sensor combinations that included Landsat rivaled the best model results. Note total basal
area RMSE units are m2 ha−1.
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composition models (R2 range 0.52–0.97) was often twice that ex-
plained using SPOT structure data (R2 range 0.12–0.80), Radarsat-
1data (R2 range 0.12–0.62), or PALSAR data (R2 range 0.08–0.47)
alone (Fig. 3A). Moreover, 10 out of the 13 Landsat-based composition
estimates showed similar or lower RMSE values compared to the
other single-sensor models (Fig. 3B). Estimates of composition based
on multi-temporal Radarsat-1 amplitude data and derivatives (see
Tables 2, 3) ranked second behind Landsat in seven out of the 13
cases, ahead of SPOT and PALSAR, respectively. In every instance, the
combined use of Radarsat-1and PALSAR (hereafter referred to simply
as SAR) to estimate total BA and species relative BA yielded
coefficients of determination substantially higher (R2 range 0.14–
0.66) than either sensor's individual results (Fig. 3A). However, RMSE
values for the combined SAR model estimates were also generally
higher (except for maple and red pine) than estimates produced using
either Radarsat-1or PALSAR sensor data alone (Fig. 3B). SPOT-based
structure information was second only to Landsat data for explaining
variation in eastern larch (R2=0.35, RMSE=9.98%) and black spruce
(R2=0.33, RMSE=12.13%) relative BA, while the SPOT-based white
pine relative BA estimates (R2=0.80, RMSE=6.24%) eclipsed all other
sensor-specificmodels including Landsat (R2=0.50, RMSE=7.81%) for
characterizing this species (Fig. 3).

Models that employeddata fromall the sensors (Landsat, SPOT, and
SAR) outperformed all other sensor combinations (Table 4) in terms
of proportion of ground variation in forest composition explained
(Fig. 4A) and, with the exception of white cedar (RMSE=7.53%,
Landsat-SPOT), error among the respective estimates (Fig. 4B). Total
variation in ground data explained by the Landsat-SAR-SPOT model
was 86.3% (Table 6). Estimates produced using either Landsat with
SPOTor Landsatwith SAR explainednearly asmuch variance in species
structure among plot data with similar or slightly higher error in most
cases (Fig. 4A, B). Structure models produced using a combination of
SPOT and SAR data explained the least amount of variation in plot data
and had the highest error among the respective estimates (Fig. 4),
except for white pine relative BA (R2=0.85, RMSE=5.54%), which
rivaled the TM-SPOT (R2=0.90, RMSE=4.73%) and TM-SPOT-SAR
model results (R2=0.91, RMSE=4.53%).
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Table 6
PLS regressionmodel cross validation results for total (m2 ha−1) and relative (%) basal area
(relative BA=total BA/species BA). PLS regression models were calibrated using ground
data collected specifically for this study. Note total basal area RMSE is in m2 ha−1 (*).

Image variables used 63
PRESS 0.43
Components 55
Model variation explained (%) 99.9
Variation in field data explained (%) 86.3
Model PrNF 0.0001

Forest parameter statistics Adj. R2 RMSE (%)

Total basal area (m2 ha−1) 0.77 5.20*
Maple (sugar and red) 0.98 5.65
Aspen (quaking and bigtooth) 0.89 6.64
Paper birch 0.85 6.60
Black ash 0.92 5.89
Jack pine 0.68 2.46
White pine 0.91 4.53
Red pine 0.91 7.57
Black spruce 0.93 6.57
White spruce 0.80 6.11
Balsam fir 0.78 2.26
Northern white cedar 0.78 10.26
Eastern larch 0.93 5.44
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3.2. PLS estimates and component loadings

In general, Landsat-SAR-SPOTmodel estimates for species relative BA
(except maple) slightly underestimated observed relative BA, with jack
pine, white cedar, and white spruce showing the greatest deviations
from unity (Figs. 5, 6). High R2 values among relative BA estimates
are inflated in cases where stands consistently lacked intermediate
abundance values—where species abundance was either very high or
low. Thiswas especially true for sugarmaple andeastern larch (Figs. 5, 6)
which occur almost exclusively as pure stands within the study area.
Species that typically occur across a more complete distribution of
Fig. 5. PLS regression results for relative basal area of deciduous hardwood species. Estimate
underestimate observed relative basal area.
relative BA values (such as aspen and birch) reflect a more realistic
portrayal of PLS model performance.

In any event, iterative variable selection based on PLS regression
(Wolter et al., 2008) was used to optimize four sensor-specific and
five multi-sensor models for estimating total forest BA and species
relative BA (Table 4). In each case, resulting component loading
information relates the reduced set of predictor bands (e.g., 63 bands
used in the Landsat-SAR-SPOT model) to each of the 13 forest com-
position parameters. However, due to the volume of data, we report
only component loading results for the best PLS model (Fig. 7,
Landsat-SAR-SPOT). Positive and negative component loadings results
are indicated below using ‘+’ and ‘–’ symbols, respectively, preceding
the image predictor variable name.

3.2.1. Hardwood component loadings
Overall, Landsat predictor bands and derivatives exhibited greater

influence than SAR and SPOT variables for estimating hardwood
relative BA (Fig. 7, Table 3). The most heavily weighted bands for
determining maple relative BA were greenness indices from 9 June
1997 and 26 August 2008 (+J8, −GEMI_A, and −SAVI_J), followed
closely by 3 March 2008 NIR (−R4), 4 May 2007 brightness (+M7),
and the 24 September 2001 autumn index (+AI_S). The strongest
non-Landsat loading for maple was SPOT canopy diameter (+CDIA),
followed by SPOT canopy closure (−CC), −R26 (leaf-on/off ratio of
Radarsat-1neighborhood means 20 August 2006 / 28 February 2007),
SPOT length of live crown (−LC), and −R23 (leaf-on/off ratio of
Radarsat-1neighborhood means 20 August 2006 / 18 December
2006). All other SPOT and SAR variables had lesser loading weights
for maple relative BA.

The strongest component loadings for aspen relative BA came from
a mix of Landsat greenness and SWIR-related bands and indices: 24
September TM4/TM3 simple ratio (+SR_S), June SWIR7/visible ratio
(+SVR7_J), May moisture stress index (+MSI_M), 24 September
SAVI (−SAVI_S), as well as June Tasseled Cap wetness, SWIR7, and
Tasseled Cap greenness (+J9, −J6, and +J8, respectively). The
s for maple are close to the 1:1 line while the aspen, birch, and black ash models slightly
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Fig. 6. PLS regression results for relative basal area of conifer species. In general models are close to the 1:1 line. However, jack pine, white cedar, and white spruce underestimate
relative basal area at high levels of abundance.
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strongest non-Landsat predictor variables for aspen relative BA were
−R26, +R4S (leaf-off Radarsat-1neighborhood SD for 11 January
2007), SPOT canopy closure and diameter (−CC and −CDIA), and
three other Radarsat-1variables: −R2S (leaf-on SD, 20 August 2006),
−R6M (leaf-off mean, 28 February 2007), and +R23 (leaf-on/off
ratio).

Top ranked component loading for paper birch relative BA were
also dominated by Landsat variables with emphasis on 27 September
2002 wetness (−T9), March SWIR5 and NIR (−R5 and +R4), and
June SWIR5 (−J6). Leading SPOT and SAR variables were−LC, +R2S,
+CDIA, +R1S (leaf-on Radarsat-1neighborhood SD 27 July 2006),
PALSAR HV and HH neighborhood means (−PVM and −PHM,
respectively), and SPOT tree height (+HT) in order of decreasing
magnitude.

For black ash relative BA, Landsat variables ranked ahead of SAR
and SPOT variables, but there were no clearly prominent loadings
among Landsat-based variables. March Tasseled Cap greenness (−R8)
had the greatest magnitude but the next four ranking variables had
similar weights (−SAVI_O,−J8,−M7, and−J9). Among the SPOT and
SAR variables, canopy closure (+CC) was clearly the dominant
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Fig. 7. Scaled PLS component loadings for the reduced set of 63 bands used by the best combination of sensors (Landsat-SAR-SPOT) to model forest composition. Positive and
negative loadings are depicted as red and blue filled circles, respectively, while circle size indicates loading magnitude. Overall, Landsat variables and derivatives are loaded more
heavily than either SAR or SPOT-based variables for describing forest composition.
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Table 7
Receiver operating characteristic (ROC) curve analysis, performed prior to assembling
cover type maps, for selecting optimal species presence/absence cut-off values. Area
under curve (AUC) (Hanley & McNeil, 1982) and Youden's index (Youden, 1950) are
metrics for assessing test accuracy. Estimated relative basal area (RBA) by species and
study-specific plot information were used as input data for the ROC tests.

Cover type Best RBA
cut-off
(%)

AUC 0.5–1 AUC 95 % C.I Youden's
index
(0–1)

Lower Upper

Quaking/bigtooth aspen 22.05 0.97 0.88 1.01 0.84
Paper birch 8.73 0.89 0.81 0.97 0.64
Sugar/red maple 24.65 0.98 0.94 1.03 0.86
Black ash 39.41 1.00 0.98 1.02 0.98
White pine 8.49 0.97 0.91 1.04 0.85
Red pine 27.48 0.99 0.94 1.03 0.89
Jack pine 5.94 0.95 0.85 1.05 0.89
Black spruce 24.10 0.96 0.86 1.05 0.87
White spruce 11.76 0.96 0.89 1.04 0.86
Balsam fir 8.47 0.92 0.82 1.03 0.68
White cedar 26.16 0.95 0.85 1.05 0.89
Eastern larch 23.88 1.00 0.97 1.03 0.99
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predictor over +R26, +PHM, +LC, +PVM, and −R23, respectively
(Fig. 7).

3.2.2. Conifer component loadings
Landsat variables also generally outweighed SAR and SPOT vari-

ables for estimating conifer relative BA. However, PALSAR and SPOT-
based structure variables (Wolter et al., 2009) were loaded more
strongly for conifer than for hardwoods, while Radarsat-1 loading
magnitudes were similar for hardwoods and conifers (Fig. 7). Among
the Landsat variables, greater emphasis was placed on SVR, MSI, and
greenness-related indices compared to the hardwood component
loadings for relative BA (Fig. 7). Landsat variables used to estimate red
and white pine relative BA had a lower, more homogenous range of
loading magnitudes compared to other conifer species. Overall, top
ranked loadings for red pine were +AI_S, −SAVI_O, and +SR_O,
while white pine's top loadings were +LC, +GEMI_A, and June
wetness (−J9). Thewhite pinemodel was unique among the 12 forest
types in that it was the only case where a SPOT-based variable (+LC)
was strongest overall for estimating relative BA. Moreover, +LC was a
full order of magnitude greater than any other SPOT or SAR variable
for estimatingwhite pine relative BA (Fig. 7). For red pine, SPOT-based
basal area (+BA),−R6M (leaf-off),−PHM,+HT, and−CDIAwere all
approximately one half the magnitude shown for −LC. For jack pine,
the two dominant variables overall were −A7 and SR_O, while
−CDIA, −PHM, −R6M and +HT were dominant among the SAR and
SPOT variables.

Top ranked component loadings for white spruce (+M7, +SAVI_S,
+T9, and+MSI_J), black spruce (−SAVI_J,−SR_O, +J8, and−J9), and
balsam fir (−J6, +R8, +SVR_T, and +SVR7_J) were dominated by
Landsat greenness-related and SWIR-based indices and bands, with
balsam fir showing lower overall component magnitudes (Fig. 7).
Moreover, black spruce component loadings were generally negative
while white spruce and balsam fir were positive. Among the SAR and
SPOT loadings, PALSAR PVM was among the top two variables for
estimating balsam fir (+LC, −PVM, +CDIA, and −CC), black spruce
(−PVM, +PHM, +CC, and +R6M), and white spruce (+R23, +PVM,
−CC, −PLF) relative BA.

Lastly, the strongest four component loadings for estimating white
cedar (−AI_S, −M7, +A7, and −SAVI_S) and eastern larch (−M7,
+SAVI_S, +A7, +MSI_R) relative BA were similar in that they shared
three variables. SAR and SPOT-based variables−HT, +PVM, and−BA
were ranked highest for white cedar, while −CC, −PVM, and +PLF
were salient for eastern larch (Fig. 7), where PLF is a shaded relief
image variable derived using a 30 m digital elevation model and
PALSAR's orbital position and overpass time parameters (Table 3).

3.3. Receiver operating characteristic (ROC) curve analysis

We used ROC curves to identify the best lower limit of relative BA
per species type for successful detection using PLS regression. In
general, the ROC curves suggested higher limits for detection of
hardwood species than conifers (Table 7). Paper birch was the ex-
ception in this regard with a best lower limit at 8.73% relative BA. As a
result, paper birch had the lowest over all Youden's Index (YI) and
AUC values indicating that birch is more difficult to accurately
distinguish than other forest species. In contrast, black ash had the
highest cut-off value at 39.41% RBA, which is consistent with the
ground data in which very few plots had intermediate abundance of
black ash (Fig. 5). As a result, the AUC and YI values were among the
highest observed for all species. Maple was similar to black ash in this
regard with a best cut-off value of 24.65%. However, the error rate for
maple detection was slightly higher than black ash with a YI value
of 0.86. On the other hand, estimates of aspen were more evenly
distributed between the extremes. The best cut-off value of 22.05%
for aspen indicates that values below this level are unreliable.
Like black ash and maple, white cedar and eastern larch occur in
stands in which they are often the sole canopy species present. The
disconnect between low and high estimates of relative BA for these
species was closely linked to their optimal cut-off values from the ROC
relative BA curve (Figs. 5, 6, 7, Table 7). Thiswas not the case for the other
conifer species. Cut-off values for balsamfir andwhitepinewere8.47 and
8.49%, respectively.However, theYI value for balsamfirwas the lowest of
the conifers at 0.68 which indicates detection error rates remain high. YI
values among the remaining conifer species were similar with values
between 0.85 and 0.89 indicating good detection ability. Although the
ability to detect jack pine stands was good, relative BA estimates fell
below observed values at higher jack pine abundance levels (Fig. 6).

Application of cut-off values derived from ROC curves prior to map-
ping effectively excluded estimates that would otherwise be problem-
atic. The resulting maps of relative BA for hardwoods (Fig. 8) and
conifers (Figs. 9, 10) give an indication of the pattern and abundance of
species occurrence across the study area.

3.4. Forest cover type accuracy assessment

Based on independent field data, the overall accuracy of themap of
dominant forest cover typeswas 78.0% (Khat 0.75, Table 7). Aspen and
birch separated fairly well with user's accuracy of approximately 81%,
but a lower producer's accuracy for birch (64%). Pine species were
distinguished from spruce and fir with moderate to high user's
accuracy (53–92%), while producer's accuracies were between 69%
and 83%. Cedar and larch were distinguished from spruces and fir
fairly well with user's accuracies of 80% and 58% while producer's
accuracies were 89 and 88%, respectively. The accuracies for black ash
and maple were among the highest reported with user's accuracies of
92% and 87% and producer's accuracies of 79% and 93%, respectively.

Much of the error reported above is linked to confusion between
the two spruce species and between white spruce and white pine.
Also, while only a limited number of dominant balsam fir plots were
available, the only confusion with fir was white pine.

4. Discussion

4.1. Important image predictor variables

The use of PLS regression analysis to integrate data from multiple
large-footprint sensors to estimate forest composition and structure is
a novel approach that has been successfully tested in two other
studies (Wolter et al., 2008, 2009). In this study, fusion of C-band and
L-band SAR data with Landsat optical and SPOT-based structure data
was unique. The potential of SAR backscatter data for characterizing



Fig. 8. Study-wide estimates for relative basal area (RBA) for four hardwood species. Aspen and birch show distinct patterns of high abundance, but at very low RBA the two species
are ubiquitous on the landscape. Maple shows high abundance in the southeast along Lake Superior, while black ash abundance and distribution aremore limited. Coordinates on the
map axes are UTM zone 15 in meters.
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forest structure in the U.S. Lake States is well known (Ahern et al.,
1991, 1993, 1995; Dobson et al., 1992a,b, 1995). However, integration
of fine scale, spatially explicit forest structure information (Wolter
et al., 2009) with optical and SAR sensor data—specifically PALSAR—
has not been demonstrated for mapping forest species composition.

4.1.1. Synthetic aperture radar—hardwoods
Of the 63 out of 147 variables selected under the best sensor

combination for estimating forest composition, 11 were SAR variables
(Fig. 7, eight Radarsat-1 and three PALSAR). In general, multi-season
Radarsat-1amplitude data were moderately important for estimating
relative BA for most species, while PALSAR variables were more
strongly loaded for four of the conifer species (black spruce, white
spruce, jack pine, and white cedar). Most of the species’ relative BA
models reported relatively strong loadings on SAR variables, with
maple being the exception (Fig. 7). SAR variables were generally of
less importance compared to the multi-temporal Landsat variables.
Nevertheless, it may be worthwhile adding C-band data from spring
when branch dielectric constants and radar interactions are high to
improve species-level discrimination (Rignot et al., 1994).

C-band SAR data R3M and R3S from the coldest winter date
(Table 2, −11.1 °C) were almost entirely excluded (used only in one
leaf-on/off ratio, R23) from the best combined sensor models. Several
factors could have contributed to the low overall relative sensitivity of
the December Radarsat-1 data to forest composition differences.
Extreme cold conditions, for one, are known to decreased the
dielectric constant of canopy constituents enough, compared to
partially frozen branches from warmer days (≥−5° to −7 °C), to
retard C-band interactions with small branches (Lin, 1967). Such
diminished C-band interaction can enhance penetration of the signal
through the forest canopies (Kwok et al., 1994) whereby decreasing
sensitivity to species-level differences. On warmer dates where
temperatures were only a few degrees below freezing (Table 2), the
forest floor could have remained fully frozen while branches were
only partially frozen (see Lin, 1967). Moreover, thoroughly frozen
snow cover behaves like dry soil (Pulliainen et al., 2003), which has
little effect on microwave backscatter (Wegmuller, 1990). Under such
conditions, the forest floor produces a lower overall contribution to
backscatter than the stem and canopy (Koskinen et al., 2001), which
may explain why Radarsat-1 imagery from warmer sub-zero dates
were stronger factors than the much colder 12/18/2006 image date
for discriminating forest species (Fig. 7).

Itwasencouraging that several Radarsat-1variables (leaf-on, leaf-off,
and leaf-on/off ratios) were ranked relatively strongly for mapping
aspen and paper birch abundance (often with opposite magnitude).
Maple andblack ash showed far less dependenceonRadarsat-1variables
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Fig. 9. Study-wide relative basal area (RBA) estimates for pines and eastern larch.White pine extent increases from south to north while highest RBA is west of the center of the study
area and to the northwest. Red pine is more homogenous across the landscape with highest levels near the center of the study area. Jack pine distribution is distinct from the other
pines showing highest RBA from south central to the north and northeast. Coordinates on the map axes are UTM zone 15 in meters.
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(Fig. 7). Of note,−R23 and+R26 (both leaf-on/off ratios) were equally
important for distinguishing black ash and paper birch. Each of these
species has a unique variation in the allocation of biomass to stems,
branches (very thick versus very fine twigs, respectively), and leaves
that differs substantially from either aspen or maple. Even if total above
ground biomass is similar, the known differences in biomass allocation
between these hardwood species (Perala & Alban, 1994) can affect
C-band backscatter (Imhoff, 1995), while branch-bole intersection
geometry (i.e., corner reflectors, Sader, 1987) and leaf clumping
difference (e.g., Chen et al., 1997) may also be diagnostic.

Predictor variables from seasonal Radarsat-1 imagery (Table 3)were
employed specifically to examine whether C-band SAR imagery of
hardwood foliage plus branching structure (leaf-on) and/or branching
structure alone (leaf-off)might lendpredictive power for distinguishing
hardwood species. The elevated loadings onC- and L-bandSARvariables
for aspen (quaking and bigtooth) and paper birch are notable as these
species have been difficult to discriminate using optical imagery (Shen
et al., 1985; Wolter et al., 1995; Moore & Bauer, 1990; Franco-Lopez
et al., 2001). Our results indicate that canopy-level differences such as
leaf and fine branch structure (Perala & Alban, 1994; Ranson & Sun,
1994; Dobson et al., 1995) as well as bole arrangement and orientation
(Cooper, 1913; Buell & Niering1957) are likely characteristics that
facilitate discrimination of these species (e.g., Sader, 1987; Townsend,
2002). Similarly, maple (sugar and red) and black ash stands, like paper
birch, differ structurally from aspen stands. Aspen is themost abundant
hardwoodspecies in this region andmuchofnorthernMinnesota (Reich
et al., 2001;Wolter &White, 2002; Pastor et al., 2005). Hence, it follows
that any reduction in confusion between aspen and other forest types,
especially paper birch, can result in substantial improvements to overall
accuracy, especially when aspen occurs in mixtures that include conifer
species (Wolter et al., 1995; Wolter & White, 2002).

Black ash and paper birch models also weighted L-band PALSAR
variables PHM and PVM (neighborhood mean amplitude for HH and
HV, respectively) equally strong but with opposite signs (Fig. 7).
Return energy for L-band HH polarization has been linked to trunk-
ground terms in backscatter models and to a much lesser degree
canopy volume scattering (Wang et al., 1995). L-band HV cross po-
larization return energy is known to be affected principally by lower
canopy elements andmuch less by other upper canopy elements (Pope
et al., 1994; Ranson & Sun, 1994; Ahern et al., 1995;Wang et al., 1995;
Dobson et al., 1995). In our study area, paper birch trees frequently
occur in clumps (Cooper, 1913; Buell & Niering1957) that may pro-
duce a unique double bounce signature (e.g., Imhoff, 1995; Townsend,
2002). On the other hand, both PHM and PVM are positively loaded on
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Fig. 10. Study-wide relative basal area (RBA) estimates for spruce, fir, and cedar. Black spruce distribution is greatest within the peatlands to the southwest and in the BWCA
wilderness to the north. White spruce is more ubiquitous with highest RBA in the south. While balsam fir is ubiquitous, it rarely has RBA values above 20%. On the other hand, white
cedar shows distinct patches of high RBA along the southern portion of the study area. Coordinates on the map axes are UTM zone 15 in meters.

684 P.T. Wolter, P.A. Townsend / Remote Sensing of Environment 115 (2011) 671–691
ash and negatively loaded on paper birch. Black ash stands in this
region of Minnesota are almost exclusively lowland species where
copious areas of standing water are common. Though black ash stands
were not totally flooded when PALSAR imaged this area (Table 2), it is
conceivable that any standing water in these stands could enhance
double bounce characteristics (e.g. Townsend, 2002).
4.1.2. Synthetic aperture radar—conifers
Overall, loading magnitudes for Radarsat-1variables were slightly

stronger for conifers than hardwoods, while PALSAR variables were
clearly stronger for conifers (Fig. 7),whichwas similar toprevious studies
(see Sader, 1987). For C-band, this is logical since conifers (except eastern
larch) generally lack unique phenological cues that are typical of many
hardwood species. Rather, conifers in this study have substantial
differences in needle size, needle clumping, branching arrangement,
and canopy architecture compared to their hardwood counterparts,
whichC-bandSAR isparticularly sensitive to (Dobsonet al., 1992b;Ahern
et al., 1993). As a result, the subtle optical differences between conifer
species (e.g., white and red pine or white spruce and balsam fir) were
complemented by SAR's sensitivity to structural differences as well as
tree physiognomic differences (Rignot et al., 1994).
Among the three host tree species for spruce budworm (balsam fir
and the two spruces), balsam andwhite spruce stands have both strong
optical similarities and strong structural differences (Appendix A). Only
one Radarsat-1 variable (+R6M, mean neighborhood amplitude 2/28/
2007) showed relatively strong loading for balsam fir. Black and white
spruce showed equally strong loadings on four (−R5S, +R6M, −R23,
and +R26) and five (−R2S, +R4S, +R15, +R23, and −R26) of the
Radarsat-1 variables, respectively (Fig. 7). Apparent sensitivity to
structural and physiognomic differences, and not underlying soil
moisture differences (black spruce stands generally occupy much
wetter sites), may have also been facilitated, in part, by the presence
of snow cover and frozen soil (Wegmuller, 1990; Pulliainen et al., 1999;
Franssonet al., 2001). Radarsat-1winter image variables and summer to
winter ratio variables generally had stronger loadings for conifers
(including fir and spruce) than summer C-band image variables (Fig. 7).

The Radarsat-1 variable R6M was the only neighborhood mean
amplitude variable selected for use in the best combined sensor model
(Table 4, Fig. 7). Moderate loadings on this variable for jack pine
(−R6M), balsam fir (+R6M), black spruce (+R6M), and white cedar
(+R6M) emphasizes the importance of including leaf-off SAR data
when conifers occur in mixture with hardwoods. Balsam fir, the
preferred host for spruce budworm in this region (Batzer, 1969), is a
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prime example in that it frequently exists as an understory component
in aspen-fir associations and rarely formspure stands.Wherefir is found
in the overstory it usually shares the position with white spruce and
aspen. In either case, the absence of hardwood foliage in the winter
months, that would otherwise affect C-band backscatter (Rignot et al.,
1994), affords a less obstructed view of this species in terms of optical
satellite data (Wolter et al., 2008) and C-band SAR data.

Black spruce stands (least preferred spruce budworm host species
in this region) have frequently been confused with jack pine stands in
Landsat-based classifications (Shen et al., 1985; Hall et al., 1991;
Wolter et al., 1995; Peddle et al., 2004). While black spruce typically
forms pure stands on lowland sites, pure jack pine stands in this region
and elsewhere (see Saatchi & Rignot, 1997) frequently occurs on
upland sites where the ground is relatively smooth and dry compared
black spruce sites. It is important to note that these species coexist on
upland and lowland sites (more so farther north) which has limited
the use of ancillarywetlands data for reconciling such confusion in this
region (Wolter &White, 2002). Structurally, black spruce stands (with
the strongest overall −PHV loading) were shorter than jack pines
(mean HT=12.8 m versus 15.1 m), had smaller diameter trunks and
crowns (mean DBH=16.1 cm versus 22.8 cm andmean CDIA=2.3 m
versus 3.9 m), and had lower crown closure than jack pine stands
(mean CC=52% versus 85%) (Appendix A), characteristics known to
effect HV backscatter (Sader, 1987). Saatchi and Rignot (1997) also
noted greater height of jack pine over black spruce stands, but that
foliar biomass of jack pine was lower than black spruce. We did not
quantify foliar biomass, but is interesting that the L-band HH
polarization variable was more strongly loaded for jack pine
(−PHM) than black spruce stands (+PHM) given the known strong
influences of these collective stand attributes on HH double bounce
returns (Le Toan et al., 1992;Wang et al., 1993;Moghaddam& Saatchi,
1995). For other SAR variables, loadings for jack pinewere generally of
similar (but opposite) magnitude compared to L- and C-band loadings
that were important for black spruce (Fig. 7).

L-band HV backscatter, on the other hand, is typically stronger over
forests and more sensitive to differences in above ground biomass than
HH backscatter (Sader, 1987; Le Toan et al., 1992; Rignot et al., 1994;
Ranson & Sun, 1994; Imhoff, 1995; Wang et al., 1995; Almeida-Filho
et al., 2007). In this study, HV crosspolarization dataweremore strongly
loaded for black spruce (−PVM), white cedar (+PVM), and white
spruce (+PVM), respectively, than for any other hardwood or conifer
species (Fig. 7). In terms of Landsat data, white cedar is optically similar
towhite spruce, redpine, andwhite pine (Wolter et al., 1995). However,
white cedar is structurally unique in that very old trees tend to be
relatively short and stout (e.g., mean height 11.9 m and DBH 28.7 cm)
withvertical length of live crown (LC) values (mean=7.2 m,σ=2.9 m)
similar to much taller pine trees. Cedar stands also had high basal area
(range 44–80 m2 ha−1) with numerous trees that leaned 20–40° from
vertical. This leaning tendency and high basal area may explain why
within stand abundance of cedars was underestimated (Fig. 6) andwhy
+PVM was a strong predictor over all other SAR variables (Fig. 7).
Relatively strong loadings on two C-band neighborhood standard
deviation variables (−R4S and +R5S) may also be indicative of the
chaotic canopy structure observed within white cedar stands.

In contrast, white pine stands in our study area contained the largest
conifers with tree heights often in excess of 26 m (max.=31.3 m).
However, models of both white pine and eastern larch generally relied
less on SAR variables compared to the other conifers, but showed
moderate dependence on one L-band variable (−PVM). For these
species, unique structure identified among the SPOT-based variables
(i.e., LC for white pine) or unique phenological cues (i.e., leaf-off eastern
larch) captured in Landsat imagery (Table 3, Fig. 7) were strong
compliments to the structural differences that C- and L-band SAR
data are known to be sensitive to (Rignot et al., 1994).

With specific reference to spruce budworm host species, L-band
cross polarization variables (PVM and PVS) were unique (Fig. 7). For
PVM, the combination of relatively strong magnitudes with opposite
loadings for black and white spruce distinguished these species from
each other and balsam fir (lower −PVM magnitude), as well as from
other conifer species. Perhaps more important, balsam fir had the
strongest −PVS loading of any other forest species analyzed (Fig. 7).
Neighborhood variability in HV backscatter at L-band for stands
containing balsam fir may be linked to this specie's frequent subcanopy
position under a hardwood overstory, as discussed above. Such stands
where larger aspen (or aspen and white spruce) boles occur in
combination with smaller, more densely spaced balsam fir boles, is
distinctive in this region, but how this may relate to HV neighborhood
backscatter variability remains unclear. Whether L-band signatures
observed for spruces and balsam fir in this study are regionally robust is
not known. However, the fact that balsam fir is detectable with any
degree of acceptable accuracy under these conditions is remarkable
since it had been common practice until recently (e.g., Wolter et al.,
2008) to combine balsam fir with either black spruce (Beaubien, 1979),
white spruce (Bauer et al., 1994; Wolter & White, 2002; Bauer et al.,
2009), or more general conifer categories (Reese et al., 2002) to avoid
optical discrimination errors among satellite-based forest classification
efforts. Hence, the use of PALSAR data in combination with C-band SAR
and optical remote sensing data is recommended for distinguishing
spruce budworm host tree species in northeastern Minnesota.

Extraction of SAR amplitude statistics (C- and L-band), according
to pixel-wise, optical, Euclidean neighborhoods (see Wolter et al.,
2009), provides a context within which otherwise noisy SAR data
(Dell'Acqua et al., 2006) can be used in conjunction with optical data
(via PLS regression) to distinguish different species and facilitate
estimation of their relative abundance. While results (Fig. 7) seem to
suggest leaf-off Radarsat-1 data (three variables selected) are more
useful than leaf-on data in this regard (two variables selected), ratios
of summer to winter (leaf-on/off) Radarsat-1 data were clearly
important for reconciling relative BA for several optically similar
conifer species, especially spruce budworm host tree species (Fig. 7).

4.1.3. Spot-based forest structure
Maps of forest structure derived from SPOT imagery (Wolter et al.,

2009) were moderately strong predictors of relative BA for species
lacking unique and/or temporally divergent phenological signatures
such as conifers, but also aspen and paper birch (Fig. 7). A salient
example of this is white pine and red pine, which are optically similar in
Landsat imagery. As a result, white pine has commonly been pooled
with red pine or less specific categories (Bauer et al., 1994;Wolter et al.,
1995; Wolter & White, 2002; Reese et al., 2002; Bauer et al., 2009) to
reduce error sincewhite pine is generally less abundant than red pine in
this region (Nichols, 1935;Moore&Bauer, 1990). Structurally, however,
white pine trees are unique in that they attain greater height (mean
HT=25.8 m), have broader (mean CDIA=7.1 m), deeper canopies
(mean LC=13.7 m), and larger boles (meanDBH=46.9 cm) compared
to the other conifer stands measured (Appendix A). White pine is
known to rapidly attain dominant canopy position (Frothingham,
1914), often towering over associated tree species (Nichols, 1935) as
super-dominants. Given this capacity, one would have expected the
SPOT-based height (HT) variable to be a stronger predictor ofwhite pine
relative BA. Rather, the SPOT-based length of live crown (LC) variable
eclipsed all other image variables in this capacity (Fig. 7).

On average, white pine live crownswere 5 to 7 m longer than that of
other conifer species measured in this study (Appendix 1) regardless of
canopy position.Whether these dimensions are unique to white pine is
unclear. Published equations for determining leaf and live branch
biomass allocations (Perala & Alban, 1994; Jenkins et al., 2003) are
generally insufficient for determining species-specific LC trends.
Moreover, while crown properties including LC and live crown ratio
(HT/LC) are used to gauge growth of white pine saplings (O'Connell &
Kelty, 1994) or calculate optimum stocking levels amongmature stands
(Bechtold, 2003; Jordan & Ducey, 2007), LC as uniquely large for white
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pine is notmentioned. It is, therefore, uncertainwhether SPOT structure
data of this nature would produce similar results if applied across the
range of white pine where it co-occurs with conifer species not found
(or rare) in northern Minnesota, such as eastern hemlock (Tsuga
canadensis). The ability to more accurately map white pine distribution
and abundance offers substantial potential for ecological management
to identify and preserve critical habitat for a variety of forest bird species
(Green, 1992; Niemi et al., 1997; Schulte et al., 2005) and large
mammals (Rogers & Lindquist, 1992).

White cedar stands also exhibited unique structural characteristics,
having high basal area (mean 63.7 m2 ha−1, σ=17.2 m2 ha−1), moder-
ate trunk diameter (mean=28.7 cm), but relatively short trees
(mean=11.9 m) (Appendix A). Thus, it is reasonable that SPOT-based
measures of tree height (−HT) and basal area (−BA) were relatively
strongpredictors of abundance, followedbymoderate loading on+CDIA
and −LC. Likewise, black spruce stands (optically similar to jack pine,
white spruce, balsam fir, andwhite cedar) are typically shorter andmore
open compared to other conifer species (Appendix A). SPOT-based+HT
and+CC were moderate compliments to the higher ranked−PVM and
Landsat variables for estimating black spruce relative abundance (Fig. 7).
We should note that interpretation of SPOT-based structure estimate
loadings for balsam fir is confounded by the fact that these estimates
were based solely on summer (leaf-on) imagery (seeWolter et al., 2009).
As previously discussed, balsam fir is frequently, but not always, an
understory component of mixed aspen/fir/spruce stands in the study
area. Therefore, SPOT-based structure estimates for such stands
represent the dominant overstory species—typically combinations of
aspen and white spruce.

Lower overall use of the SPOT-base structure data among hardwood
species compared to the conifers was expected given the distinct,
interspecific hardwood phenology cues in the study area (Wolter et al.,
1995). However, several of the loading results on these structure data
validated ground observations among hardwood stands. For instance,
maple and paper birch (each posting moderate +CDIA loading) had
similarly sized canopy diameters that were larger on average than that
of either aspen or black ash (Appendix A). Average live crown lengths
for paper birch (moderate −LC loading) were approximately 2 m
greater than that of aspen (weak+LC loading), but similar to black ash
(moderate+LC loading). While many of the SPOT-based structure
loadings seem reasonable when compared with field measurements,
several do not, and hence, are more difficult to explain, especially when
evaluated in context with the full complement of SAR and Landsat
variables (63 total). Nevertheless, the fact thatfive of the six SPOT-based
structure variables (DBH excluded) emerged from the automatic
variable selection routine (for the best combined sensor model) is a
testament to the importance of such data for reconciling species
differences as well as variability in abundance. This is particularly
importantwhere keydiagnostic properties for a species (e.g.,white pine
LC) are not adequately captured, due to suboptimal spatial or spectral
resolution,when using conventional satellite sensor data (e.g., Landsat).

4.1.4. Landsat predictor variables
The fact that SWIR-related variables (SWIR5, SWIR7, SVR, SVR7,

MSI, and Tasseled Cap wetness) and greenness-related variables (NIR,
SR, SAVI, GEMI, and Tasseled Cap greenness) comprised over 57% of
the 63 image variables retained by the best PLS model (Figs. 4, 7) was
not surprising. SWIR-based Landsat variables have been shown to be
sensitive to forest basal area and density in other studies (Horler &
Ahern, 1986; Ahern et al., 1991; Brockhaus & Khorram, 1992; Ardö,
1992; Franklin et al., 2000; Wolter et al., 2008), while the importance
of greenness indices among forest studies is well documented. In
particular, the Landsat-based SWIR/visible ratio (SVR) is known to be
more sensitive to conifer and hardwood relative basal area than other
SWIR-based variables (Wolter et al., 2008), while NDVI and similar
ratios are especially useful for distinguishing unique tree species
phenology (Wolter et al., 1995).
With regard to phenology, 20 out of the 46 Landsat variables retained
by the best PLS model were from the autumn images (Table 2, Fig. 7).
Image variables from early leaf-flush (6/9/1997) were also important for
quantifying relativeBA fordeciduous tree species in this region (Fig. 7), as
the spectral properties among many forest species are more distinct
during early-stages of leaf development than later in the growing season
(Badhwar et al., 1986; Miller et al., 1991; Schriever & Congalton, 1995).
Several of the Landsat variables (e.g., SVR, SR, SAVI, MSI, and wetness)
from the autumn images (Table 2) were stronger for paper birch and
aspen than for maple. Because the SWIR-base variables (SVR, MSI, and
wetness) are not known to be sensitive to autumn leaf pigmentation
differences and because leaf-off timing was not a factor (these species
were all leaf-on in September and Leaf-off in October), we suspect a
combination of forest type-specific differences such as crown closure
(maple 95% vs. birch and aspen 75–76%, Appendix A) coupled with
visibility of understory vegetation (Badhwar et al., 1986; Spanner et al.,
1990; Wolter et al., 2008) and autumn shadow geometry (Wolter et al.,
2009) were likely factors that contributed to the observed loadings.

In addition to observed sensitivities of autumn SAVI and SR to aspen
and paper birch abundance, the 9/24/2001 autumn index (AI_S) also
emerged as a moderately strong predictor of maple (+AI_S) and paper
birch (−AI_S) relative BA, with weaker AI loading for aspen. AI was
designed specifically for use with Landsat data (J. Vogelmann pers.
com.) to enhance the collective increases in carotinoid (orange toyellow
coloring), anthocyanin (scarlet to red coloring), and xanthophyll
(yellow coloring) pigmentation among senescent maple stands (Acer
rubrum and A. saccharum) with respect to the relative insensitivity of
visible blue to these autumn pigmentation differences. The AI loadings
formaple and paper birch are logical becausemaple (sugar and red) leaf
pigmentation is typically orange to red in this region (i.e., stronger AI)
and senescent paper birch leaves (reaching peak color a few days after
maple, Ahlgren, 1957) are yellow (Sayn-Wittgenstein, 1961). Aspen
(quaking and bigtooth) leaves also turn yellow but are typically still
greenwhilemaple and paper birch are at their peak autumn color (Eder,
1989). Visual assessment of hardwood stands in the September images
confirmed that aspen foliage was, indeed, green on both dates. It should
also be noted that black ash stands had shed leaves prior to theses dates
explaining the weaker −AI_S loading for this species.

Explanationof the strongAI loadings for redpine (+AI_S, top ranked
variable), jack pine (+AI_S), and white cedar (−AI_S, top ranked
variable) is not as straight forward. Differences in visible red reflectance
between conifer stands have been linked to leaf area index (Spanner
et al., 1990) and basal area (Franklin, 1986), while differences in visible
blue reflectance have been attributed to conifer canopy condition
(Nelson et al., 1984). However, there are differences in visible spectral
properties of conifer foliage (Pinard & Bannari, 2003) that can be
substantially altered in autumn as second and third year needles
become senescent (Santos et al., 2010). For red pine, jack pine, and
cedar, the combination of autumn-specific variance in visible spectral
properties (especially red) and species-specific structural differences
(Appendix A)may explain elevated loading on AI_S, aswell as the other
strong autumn variable loadings for other conifer species (Fig. 7).

In addition to phenology, strong loadings on older June (1997)
and October (1985) Landsat variables may also indicate use of gross
spectral differences related to forest age. Clear-cutting is the primary
mode of wood removal in this region (Wolter & White, 2002), which
allows forest age to be easily tracked using time-series Landsat
imagery (James et al., in revision; Huang et al., 2009; Pastor et al.,
2005). It was apparent from inspection of these older images
(particularly 1985) thatmany relativelymature forest stands observed
in this study were clearly distinguishable as even-aged regeneration
ca. 20 years earlier. Thus, abundance estimation for species almost
exclusively under even-aged management (e.g., jack pine, red pine,
and aspen)were readily distinguished fromslower growing, spectrally
similar species that are rarely managed this way (e.g., black spruce,
white cedar, and maple).



Fig. 11. Forest cover type map derived from the species-wise relative basal area (RBA)
estimates for the study area. Though this map depicts pixel-wise species dominance,
the RBA estimates for individual forest species can be combined in many different ways
depending on specific needs. Coordinates on the map axes are UTM zone 15 in meters.
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As anticipated, 3 March (R) 2008 (leaf-off with snow cover) and 4
May (M) 2007 (leaf-off) Landsat images were strong predictors for
estimating total BA as well as relative BA for aspen, paper birch, black
ash, andmost conifers (Fig. 7). As noted for SAR, the combination of the
leaf-off image data (onewith snow cover and one without) and leaf-on
imagery is especially important where conifers (especially balsam fir)
and hardwoods grow in association with each other (Sayn-Wittgen-
stein, 1961;Wolter et al., 2008). Leaf-off optical imagery allows a clearer
view of both understory and overstory conifers in mixed stands while
snow cover provides a uniformly bright background that enhances tree
canopies and their shadows (Seely, 1949) as well as spectral factors
related to forest density and age (Horler & Ahern, 1986). Moreover, the
snow cover effectively obscures spectrally variable forest floor targets
that can confound species-specific structural signatures (Brown et al.,
2000; Chen & Cihlar, 1996; White et al., 1995).

4.2. Forest composition estimation and mapping

4.2.1. Species distributions
The spatial distribution and abundance of forest species within the

study area highlight some obvious and interesting patterns (Figs. 8–10).
While aspen and birch are both ubiquitous on this landscape, there are
some clear differences. At higher relative BA values the two species
generally occupy the same locations on the landscape, running east and
west through themiddle latitudes andmuch of the northeast. Paper birch
is generally less abundant through most of this area, but tends to
dominate the region between the maximum dominance of maple on the
ridges of the north shore highlands and the Lake Superior shore to the
southeast (Fig. 8). On the other hand, black ash is generally of low
abundance across the entire study area, but is slightly more prevalent
fromnorthwest to southeast,where several large, pure stands are located.

Eastern larch is also of lowabundance throughout the study areawith
locally vast stands occurring in the southwest (Fig. 9),which is part of the
Tamarack Lowlands Ecological Subsection (Minnesota Department of
Natural Resources, 1999). Among the pines, white pine is much more
prevalent in the northern half of the study area where much of the
landscape is within protected wilderness. However, there is a small
regionof high relative BAwhite pinenear Isabella,MNat the center of the
study area. This area also contains a high dominance of red pine in
addition to a few high relative BA red pine patches to the south and
southeast (Fig. 9). Jack pine occurs over large areas (mostly in south
central and the northeast)where it represents 20 to 40% of the total basal
area. Interestingly, balsam fir is ubiquitous on the landscape, but never
at high relative BA (usually b10–20%). This is consistent with field
observations showing that balsam fir rarely dominates the overstory in
stands where is occurs (see Wolter et al., 2008).

In contrast to balsam fir, black spruce, white spruce, and white
cedar each occupies very distinct positions on the landscape (Fig. 10).
While black spruce attains greatest relative BA in the southwest
peatlands region and in the north as an associate with jack pine, white
spruce is most dominant in the south central and western portions of
the study area. On the other hand, white cedar, while fairly ubiquitous
at low relative BA, frequently occurs in large pure patches in the
southern portion of the study area.

Tree species distribution and abundance estimates such as these are
invaluable for modeling disturbance dynamics at the large landscape
scale (James et al. in revision). Detailed spatial information about the
abundance of spruces and balsam fir is a benefit to the study of spruce
budworm dynamics in this region, whereas being able to distinguish
pines, especially jack pine, from spruce and fir benefits the study of both
spruce budworm and jack pine budworm (Choristoneura pinus) by
providing increased spatial precision among species distribution esti-
mates that were previously lacking in studies of disturbance dynamics.
The discrimination of aspen from birch is crucial for the study of forest
tent caterpillar dynamics, as remote determination of the spatial
distributions of these two ubiquitous hardwood types has generally
beenunsatisfactory in the past (Moore&Bauer, 1990;Wolter et al., 1995;
Franco-Lopez et al., 2001;Wolter &White, 2002).Whilewe demonstrate
the utility of including pixel-wise forest structure information for
estimating species-wise relative BA, we suspect satisfactory results may
be attained using SAR and Landsat data exclusively (Fig. 4).

4.2.2. Dominant forest type mapping and accuracy
While our species-specific estimates of forest relative BA are very

useful as separate information layers, it is commonplace to attempt to
produce a single layer that encompasses information on dominant cover
types (Moore & Bauer, 1990; Schriever & Congalton, 1995; Wolter et al.,
1995; Reese et al., 2002; Bauer et al., 2009).Many possible strategiesmay
be used to accomplish this, but we chose to compile simple dominant
forest species using a method that ignores species with slightly lower
abundance values. Approximately one third (67) of the 205 ground data
plots used for assessing the accuracy of the dominant species map were
designed specifically for integrationwith 30 msatellite data (see Fig. 2A).
The remaining plot datawere not designed for such use, and consisted of
three rather than five subplots per plot separate by 50 m rather than
30 m (Fig. 2B). Such differences in subplot arrangement and number
could have resulted in disparities when determining a single dominant
species. Also, there were concerns over the positional accuracy of these
supplemental ground data points as their GPS locations were not
differentially corrected (standard positioning service horizontal
error≤15 m). Thus, the overall accuracy of 78% (Khat=0.75) could be
substantially understated. In any event, based on forest classification
work the author performed in previous studies (Wolter &White, 2002),
the resulting dominancemapproducedhere (Fig. 11) appears to bemore
accurate than past efforts using Landsat data alone.

It should also be noted that while ROC curve analysis performed on
individual species was an excellent way to reliably determine presence
or absence of a species for a given pixel, it does provide information on
species co-occurrence or dominance. Thus, alternative approaches to
accuracy assessment suchas using fuzzy sets (Gopal &Woodcock, 1994;
Foody, 1995; Townsend, 2000) may be warranted (Table 8).

5. Conclusions

In addition to being the first demonstration of the use of PALSAR data
with other imagery to map forest species distribution and abundance,
fivemajor conclusions emerged from this study. First, PLS regression is a
powerful tool for integrating or fusing satellite data from different

image of Fig.�11
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ccuracy assessment for the dominant species cover type map of the study area that was derived from species-wise relative basal area estimates. See Table 4 for descriptions
f the abbreviated forest species row and column headings.
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T
A
o

sensors for the purpose of estimating forest composition. Second, the use
of SPOT-based spectral neighborhoods for extracting C- and L-band
amplitude statistic from inherently noisy radar data were invaluable for
distinguishing several forest species. SAR's unique sensitivity to species-
specific structural differences (branching, bole shape, or leaf arrange-
ment) among otherwise optically similar forest species was the key to
discriminatingmany forest species and estimating respective abundance,
especially for spruce budworm and forest tent caterpillar host species.
Third, pixel-wise forest structure information derived from 5 and 10 m
SPOT-5 satellite data was especially important for estimating conifer
forest composition (particularlywhite pine andwhite cedar).We suspect
phenological differences among the hardwood species eclipsed subtle
structural differences, whereas conifer species have stronger structural
differences and only slight phenology differences (except eastern larch).
Fourth, receiver operating characteristic (ROC) curve analysis was very
useful for identifying the optimal lower limits among relative BA
estimates for determining species presence or absence. However, the
modest overall accuracy (78% correct, Khat 0.75) reported for the
dominant speciesmap is likely understated due to positional uncertainty
and suboptimal design of a portion (ca. 66%) of the validation data set
used, while our simple methods for determining dominant species
ASP BIR MPL ASH WP

HT (m) Mean 16.86 16.19 18.46 13.63 25.81
Std. dev 3.57 3.16 4.36 2.15 3.80

DBH (cm) Mean 20.29 21.57 28.18 20.67 46.93
Std. dev 6.88 6.64 8.68 4.43 13.68

CDIA (m) Mean 4.40 5.17 5.31 3.91 7.08
Std. dev 0.98 0.81 1.62 0.50 1.71

LC (m) Mean 5.42 7.69 8.60 7.02 13.73
Std. dev 1.57 2.22 2.45 1.94 3.37

CC (%) Mean 0.76 0.75 0.95 0.76 0.76
Std. dev 0.08 0.13 0.05 0.08 0.08

BA (m2 ha−1) Mean 29.31 28.20 35.20 32.12 34.80
Std. dev 7.21 4.34 4.17 4.63 6.26
among both ground and satellite-based relative BA estimates ignored
secondary specieswith only slightly lower abundance. In the future,more
elaborate iterative approaches to accuracy assessment of these dynamic
data such as using fuzzy sets are probably more appropriate. Finally,
partial least squares regression and a multi-sensor approach, when
combined with both composition and structure data, provide a unique,
powerful approach to mapping forest type and species abundance for
regions that are both spatially and compositionally heterogeneous.
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Appendix A
Mean and standard deviation for stand height (HT), bole diameter at breast height (DBH), canopy diameter (CDIA), vertical length of live crown
(LC), canopy closure (CC), and total basal area (BA) for the 12 forest species studied. See Table 4 for descriptions of the abbreviated forest species
column headings.
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3.86 3.85 3.19 3.42 4.10 2.32 2.69
1.32 0.61 0.72 0.43 0.76 0.47 0.68
7.29 6.32 7.18 8.36 8.54 7.53 7.88
2.14 1.16 2.90 1.78 2.50 2.41 1.91
0.78 0.85 0.78 0.26 0.82 0.52 0.63
0.10 0.01 0.08 0.18 0.11 0.20 0.13
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