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Element Cycling in Upland/
Peatland Watersheds

Noel Urban, Elon S. Verry, Steven Eisenreich, 
David F. Grigal, and Stephen D. Sebestyen

Introduction

Studies at the Marcell Experimental Forest (MEF) have measured the pools, 
cycling, and transport of a variety of elements in both the upland and peat-
land components of the landscape. Peatlands are important zones of element 
retention and biogeochemical reactions that greatly influence the chemistry 
of surface water. In this chapter, we summarize findings on nitrogen (N), sul-
fur (S), carbon (C), major cations, and other biogeochemically important ele-
ments in uplands and peatlands. We have organized this chapter to describe 
processes that affect the transport and storage of elements in watersheds. 
First, we address a primary route for entry into ecosystems, atmospheric 
deposition. We then describe compositional changes as water passes through 
canopies in upland forests before water and solutes infiltrate soils. We also 
track changes in chemistry as precipitation infiltrates organic soils in bogs, 
upland runoff passes into the laggs that surround bogs, and groundwater 
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214 Peatland Biogeochemistry and Watershed Hydrology

passes through fens. We then examine solute concentrations and yields as 
waters exit watersheds at the downstream end. Finally, we summarize the 
cycling of elements within the watersheds.

Atmospheric Deposition

Monitoring of atmospheric deposition at the MEF began in the early 1970s 
with measurements of bulk deposition in open sites and measurement of 
throughfall and stemflow in forested sites (Verry and Timmons, 1977). The 
MEF was one of the original sites of the National Atmospheric Deposition 
Program (NADP). The chemistry of wet-only precipitation has been moni-
tored continuously there since 1978. This long record of atmospheric inputs 
has been invaluable in formulating budgets and informing process studies. 
Verry (1983) was the first to summarize the solute composition of wet-only 
precipitation at the MEF. The dominant cations were ammonium (NH4

+), cal-
cium (Ca2+), and hydrogen ion (H+), and the dominant anions were nitrate 
(NO3

−) and sulfate (SO4
2−; Figure 8.1). The mean pH from 1978 through 1980 

was 4.9, and variability in H+ concentration most closely tracked variations 
in NO3

− concentrations. The nearly equal concentrations of NH4
+ and NO3

− 
reflect the remote, rural location distant from both industrial and agricul-
tural sources. Little of the SO4

2− is associated with sea salt at this site, but 
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FIGURE 8.1
Average (volume-weighted mean) ionic composition of wet-only precipitation as measured at 
the MEF for 1978–1980, Verry, 1983). Concentrations are expressed as charge equivalents. The 
Na+ concentration reported by Verry was reduced because it was more than 50% higher than 
the 3-year mean of values now reported by the NADP for 1978–1980.
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Element Cycling in Upland/Peatland Watersheds 215

Verry reported that SO4
2− concentrations were not correlated with H+ con-

centration and hence probably not derived only from sulfur dioxide (SOx) 
emissions.

There have been significant changes in precipitation chemistry during the 
NADP monitoring (1978 to present). Volume-weighted mean annual concen-
trations of SO4

2− have declined, closely paralleling a decline in chloride (Cl−) 
concentrations (Figure 8.2). The pH has increased by about 0.3 units, but this 
decrease in H+ concentration is five times smaller than the decrease in SO4

2− 
concentration on an equivalent basis. The decrease in SO4

2− concentration is 
most strongly correlated with decreases in sodium (Na+) and Cl− concentra-
tions, though significant correlations are also observed among SO4

2−, Ca2+, 
and magnesium (Mg2+) concentrations (Table 8.1). These correlations support 
the contention that soil dust is a significant source of the SO4

2− deposited at 
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FIGURE 8.2
Historical changes in precipitation at the MEF. Volume-weighted mean concentrations of Cl− 
and SO4

2− were normalized to the maximum value in the period of record to put both on the 
same scale. Solid lines show the least-squares regression; the upper line is for SO4

2−, and the 
lower is for Cl−. Both regressions are statistically significant (p < 10−6).

TABLE 8.1

Correlation Coefficients for Volume-Weighted Mean Nutrient 
Concentrations in Wet-Only Precipitation Collected at the MEF 
NADP Station (1978–2008)

Ca2+ Mg2+ K+ NH4
+ NO3

− Cl− SO4
2− pH

Ca2+ 1
Mg2+ 0.89a 1
K+ 0.68a 0.64a 1
NH4

+ 0.38a 0.17 0.19 1
NO3

− 0.60a 0.45a 0.48a 0.43a 1
Cl− 0.52a 0.51a 0.38a −0.06 0.71a 1
SO4

2− 0.66a 0.68a 0.42a 0.17 0.75a 0.80a 1
pH 0.10 −0.02 0.01 0.43a −0.32 −0.58a −0.55a 1

a Significant at p < .05. Na+ was excluded due to significant skew and lack of 
normality in the distribution.
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216 Peatland Biogeochemistry and Watershed Hydrology

this site (Urban et al., 1989c); agricultural lands are several hundred kilome-
ters to the south and southwest. During this period, a trend toward decreas-
ing deposition of NO3–N (Figure 2.3b) at the MEF and elsewhere throughout 
the upper Midwest is consistent with a decrease in N oxide emissions 
(McDonald et al., 2010).

Comparison of bulk precipitation (wet plus dry deposition) collected in the 
open and below canopies of aspen on uplands and black spruce in peatland 
showed that some elements increased in concentration and others decreased 
while passing through the canopy. Inorganic N is taken up by the canopy 
while phosphorus (P), organic N, Ca2+, Mg2+, K+, and Na+ are enriched in 
throughfall (Verry and Timmons, 1977). Some of this enrichment results 
from washoff of dry deposition from the canopy, but, for K+, the increased 
fluxes in throughfall represent leaching from plant foliage. For N, there may 
be conversion of inorganic N to organic N by epiphytic bacteria, lichens, or 
algae; in the black spruce stand, there was no enrichment in total N after 
passing through the canopy. Collection of dry deposition by foliage and 
subsequent washoff by precipitation has been reported for other substances, 
including SO4

2− (Verry, 1986), mercury (Hg) (Kolka et al., 1999b), and trace 
metals (e.g., Lindberg et al., 1986). Because of the greater leaf area index of 
conifers (dominant in the peatlands), the enrichment of these substances in 
throughfall into the peatlands is greater than in the uplands that are charac-
terized by hardwood (aspen) stands (Kolka et al., 1999b). That deposition of 
most cations increased more upon passage through the aspen canopy com-
pared to the black spruce canopy suggests that much of the increase results 
from leaching from deciduous vegetation.

Atmospheric deposition of organic carbon has been poorly characterized 
(e.g., Willey et al., 2000). Studies at the MEF have provided some of the 
few measurements in the region. Results showed that wet deposition of 
organic carbon is about seven times less than the yield of organic carbon 
from the MEF watersheds. Kolka et al. (1999b) reported an organic carbon 
flux in bulk precipitation of 1.2 g C m−2 year−1 for 1995. This flux is within 
the range (0.2–1.7 g m−2 year−1) reported from other locations (Dillon and 
Molot, 1997; Willey et al., 2000). Considerable organic carbon is leached 
from tree canopies; the flux (throughfall and stemflow) below aspen cano-
pies was 7.6 g C m−2 year−1 vs. 8.5 g C m−2 year−1 below a spruce canopy. 
Whether this organic matter is exported, respired, or stored within the 
ecosystems is not known.

The measurements of wet-only deposition and bulk deposition at the MEF 
provide some of the few data available to estimate atmospheric deposition 
of organic N (cf. Neff et al., 2002). Verry and Timmons (1977) reported bulk 
deposition in the open of 0.23 g organic N m−2 year−1 for a typical year; Urban 
(1983) reported wet-only deposition of organic N of 0.05 g m−2 year−1 in 1982. 
The discrepancy suggests that dry deposition of organic N is much larger 
than wet deposition, perhaps on the order of 0.2 g N m−2 year−1.
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Element Cycling in Upland/Peatland Watersheds 217

Throughfall studies generally focus on the overstory, but shrubs, her-
baceous species, and bryophytes likely modify precipitation chemistry. 
To determine the significance of denitrification in the S2 wetland (Figure 
8.3), Urban et al. (1989b) measured NO3

− at successive depths below the 
moss surface. They observed that NO3

− was essentially removed from the 
percolating rain water, leaving little to be denitrified in anaerobic regions 
of the peat.

Processing of Elements in the Uplands of the MEF Watersheds

The bogs within the MEF are perched rather than raised, so laggs receive 
runoff from the surrounding mineral-soil uplands (Chapter 7). The uplands 
support mixed hardwood forests in various stages of succession (Chapters 
2 and 12). Timmons et al. (1977) reported on water and element fluxes in 
runoff from the upland of the S2 watershed from 1971 to 1973. Runoff from 
the upland in this watershed occurs as surface runoff (primarily within the 
organic O horizon) and as interflow in mineral soil horizons above the less 
permeable B2t horizon due to clay. The composition of the runoff entering 
the wetlands is determined by the flow path.

Water flowpaths in the uplands vary seasonally. Surface runoff is confined 
largely to snowmelt. From 1971 to 1973, snowmelt accounted for 46%–68% 
of total annual water loss from the S2 upland, but it supplied 93%–100% of 
the total annual runoff. Some surface runoff occurs in response to large rain 
events but does not usually contribute a significant amount to the annual 
surface runoff.

Elements can be placed in four categories based on the manner in which 
they cycle within and pass through the uplands (Figure 8.4). Category 1 
elements (e.g., Na+) include substances that pass largely unaltered through 
the upland; bars showing flux ratios in Figure 8.4 are small, because the 
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FIGURE 8.3
Schematic of the S2 watershed. The uplands 
comprise two-thirds of the watershed. (Adapted 
from Kolka, R.K. et al., J. Environ. Qual., 28, 766, 
1999a.)
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218 Peatland Biogeochemistry and Watershed Hydrology

ratio of fluxes remains close to 1. Category 2 elements are leached from the 
canopy in throughfall and stemflow (large flux ratio shown by the black bar 
in Figure 8.4), but then are strongly retained in the soil (flux ratios less than 
one for remaining three bars). Total P falls into this category; the upland 
is a net sink for this substance. Category 3 substances (e.g., total N) are 
not leached from the aspen canopy (small black bar) and are also strongly 
retained in the soil (all other flux ratios below one), such that the upland 
is a stronger sink than for Category 2 elements. Category 4 elements (e.g., 
K+, Ca2+, and Mg2+) have flux ratios greater than 1; they are highly enriched 
in throughfall and stemflow relative to bulk precipitation. Unlike N and P, 
these elements are also enriched in upland runoff relative to inputs from 
bulk precipitation. The uplands act as a net source for these substances. Part 
of the export of these substances from the uplands is a result of chemical 
weathering of the mineral soils. Plants augment weathering and affect the 
seasonality of the element export. The cations are extracted by plants from 
the mineral soils, and a fraction of the uptake is transported into the foliage; 
the cations are then leached from the canopy and flushed from the uplands 
upon decomposition of the leaf litter. Potassium and Ca2+ are flushed pri-
marily in surface runoff, but Mg2+ also has a large flux in interflow. The 
peatlands receive significant inputs of Category 4 elements in runoff from 
the uplands.
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FIGURE 8.4
Processing of elements within the S2 upland. The y axis shows the ratio of each flux (through-
fall + stemflow, surface runoff, interflow, and surface runoff + interflow) to the flux in bulk 
deposition; values greater than one indicate that this flux is larger than the input to the system 
from atmospheric deposition (i.e., a net release of the element from the catchment occurred); 
values less than one indicate the element was retained in the system. The canopy processing 
bar includes both throughfall and stemflow. Data for interflow and surface runoff represent a 
3 year average (1971–1973; Timmons, et al., 1977). Fluxes in bulk precipitation, throughfall, and 
stemflow are from Verry and Timmons (1977).
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Processing of Elements in the MEF Peatlands

Element Export from the MEF Peatlands

Concentrations in Outflow

Hydrology has a major influence on seasonal patterns in element cycling. 
The major hydrologic event of the year at these sites is snowmelt, which gen-
erates the peak flows for the year (Julian day 125 in Figure 8.5b). During 
snowmelt, water retention time in the wetlands is at an annual minimum, 
and element uptake is correspondingly low. Although most precipitation 
occurs in summer months (Chapter 2), high evapotranspiration rates during 
these months result in little or no runoff to streams. In autumn, streamflow 
increases again as evapotranspiration decreases in response to plant senes-
cence, reduced solar radiation, and falling temperatures.

Element concentrations in the MEF streams reflect this hydrologic 
cycle. Biologically active substances (NH4

+, NO3
−, and SO4

2−) exhibit peak 
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FIGURE 8.5
Concentrations for several solutes including TOC, Fe, Ca2+, and SO4

2−–S for 1981 (a); and sea-
sonal cycle of water flow in 1981 (b).

© 2011 by Taylor and Francis Group, LLC
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concentrations during early snowmelt and minimum concentrations in 
summer (Figure 8.5a). Spring snowmelt generally is the only time of year 
when NO3

− is measurable in the outflow from S2. Concentrations are high-
est in summer for substances generated by peat decomposition or bound to 
the dissolved organic matter (DOM) from peat decomposition (e.g., organic 
C, organic N, organic S, aluminum [Al], and iron [Fe]). Other substances 
exhibit intermediate patterns. As shown in Figure 8.5a, Ca2+ shows high 
concentrations during early snowmelt, but concentrations also increase 
during summer low-flow periods.

Streamflow draining the MEF watersheds reflects processes both in the 
uplands and in the peatlands. For instance, the increase in Ca2+ concentra-
tions in autumn in the S2 stream likely reflects leaching from leaf litter in the 
uplands (Figure 8.5). Comparison of volume-weighted mean annual concen-
trations in streamflow and precipitation (Figure 8.6) shows the net effect of all 
processes in the watershed. Some ions (NO3

−, NH4
+, and SO4

2−) are retained 
by the watershed while others (Ca2+, Mg2+, K+, and H+) are “produced” within 
the watershed. The uptake of Ca2+, Mg2+, and K+ from the mineral soils into 
the upland plants and subsequent litterfall, leaching, and flow into the wet-
land was discussed previously as was the net retention of N by the upland 
(Timmons et al., 1977; Verry and Timmons, 1982). Figure 8.6 also indicates 
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Comparison of volume-weighted mean ion concentrations in atmospheric deposition and 
streamflow (S2) for 1981. Concentrations are expressed in charge equivalents per liter. Because 
much of the precipitation is evapotranspired, solute concentrations are much higher in 
streamflow than in precipitation even for substances with identical fluxes in precipitation and 
streamflow. To facilitate seeing the changes in fluxes, precipitation concentrations have been 
multiplied by 3.98, the quotient of annual precipitation (77.65 cm), and streamflow (19.5 cm) in 
1981. Cationic charges are increased as they pass through the watershed due to the release 
of Ca2+, Mg2+, and K+ from the mineral soils and also due to the generation of free H+ in the 
wetland. Sodium and Cl− pass through the watershed nearly unaltered (export/input = 132% 
for Na+, and 99% for Cl−). Measured anionic charge equivalents are greatly reduced due to 
retention of NO3

− in both the upland and peatland and retention of SO4
2− in the peatland. The 

apparent charge imbalance indicates the quantity of dissociated organic anions (humic and 
fulvic acid anions); organic anions protonated at the pH of the bog water (~50% of total organic 
anions, Urban et al., 1989a) as well as those bound to Fe and Al (~12% of total organic anions) 
do not appear in the charge balance shown.
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the generation of free acidity (H+) by the peatland, and the large imbalance 
in ionic charge in the stream indicates the presence of high concentrations 
of organic anions. High concentrations of DOM generated in the peatlands 
and its associated acidity are important characteristics of streamflow from 
the MEF watersheds.

Research at the MEF has elucidated many features of the export from 
peatlands of DOM, which is generally measured as dissolved organic car-
bon (DOC). DOM is an important water-quality parameter that is intimately 
linked with biogeochemical cycles of several elements and with important 
ecosystem processes. DOM in surface waters affects light penetration (e.g., 
Fee et al., 1996; Jackson and Hecky, 1980), metal speciation and mobility 
(e.g., Lazerte, 1991), nutrient availability (e.g., Jones et al., 1988; Koenings and 
Hooper, 1976), alkalinity and pH (e.g., Oliver et al., 1983; Urban et al., 1989a), 
and toxicity and bioavailability of organic contaminants (e.g., Capel and 
Eisenreich, 1990). Colored organic matter is one of the primary controls on 
the penetration of potentially harmful UV radiation into lakes (e.g., Jerome 
and Bukata, 1998; Schindler et al., 1996; Smith et al., 1998). Carbon and energy 
are moved from terrestrial systems through surface waters in the form of 
DOM. Respiration of DOM in surface waters returns the carbon to the atmo-
sphere (Cole et al., 1994; Kling et al., 1991). Many lakes are net sources of car-
bon dioxide to the atmosphere because of the organic carbon flow from their 
watersheds (Cole et al., 2000; Dillon and Molot, 1997; Schindler et al., 1997a). 
Concentrations of DOM derived from watersheds are high enough to cause 
20%–40% of the lakes in northern Europe, eastern Canada, and the north-
eastern and upper Midwest of the United States to be brown colored, with 
color greater than 50 platinum–cobalt units (Gorham et al., 1986; Lillie and 
Mason, 1983; Overton et al., 1986; Rogalla, 1986; Wright, 1983). Clearly, DOM 
export from the MEF watersheds is important not only within the water-
sheds but also for receiving waters.

Awareness of water color, its association with organic compounds, and its 
production in wetlands predates the MEF and can be traced to at least the 
early nineteenth century (e.g., De Luc, 1810, cited in Garham, 1953). Early 
investigators had no method for measuring concentrations of DOM, and so 
there are few early paradigms for the factors regulating DOM concentrations 
in wetlands (see review in Gorham et al., 1985). De Luc (cited in Gorham, 
1953) noted in 1810 that a “brown peat tint” first appeared in wetland waters 
at the stage when Sphagnum invaded. Methods for quantifying color were 
developed in the late nineteenth century (Hazen, 1892, 1896; Richards and 
Ellis, 1896), and Thompson et al. (1927) noted that the intensity of the yellow 
color in wetland waters increased with the stage of plant development.

Because of the disproportionate contribution of DOM by wetlands relative 
to their surface area, numerous authors have suggested that DOM concen-
trations in rivers and lakes can be predicted on the basis of the percentage 
of the watershed occupied by wetlands. Engstrom (1987) demonstrated 
that the color of Labrador lakes could be explained largely on the basis of 
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the area of wetland in the watershed. Similarly, DOM from wetlands was 
the primary contributor to color and natural acidity in Nova Scotian lakes 
(Gorham et al., 1986) and streams (Gorham et al., 1998). Eckhardt and Moore 
(1990) and Koprivnjak and Moore (1992) found that DOM concentrations in 
Canadian streams can be predicted based on the fraction of the watershed 
occupied by wetlands. Gergel et al. (1999) found that DOM concentrations in 
streams were predicted better by the percentage of watershed in wetlands 
than DOM concentrations in lakes; lakes appeared to be influenced more 
strongly by nearshore wetlands than by wetlands higher in the watershed. It 
is not known whether the predictive relationships in the individual studies 
can be extrapolated to larger geographic areas (cf. Aitkenhead et al., 1999) or 
whether the predictive capabilities can be refined by distinguishing among 
different types of wetlands that have different DOM concentrations (cf. Frost 
et al., 2006).

Work at the MEF helped document the relationship between acidity of 
peatland drainage and DOM. A link between peatland acidity and organic 
acids was hypothesized in the early 1900s (e.g., Ramaut, 1954; Skene, 1915; 
Thompson et al., 1927). In 1980, Hemond (1980) showed that the acidity of 
one bog was due to dissolved humic and fulvic acids (see also McKnight 
et al., 1985). The generality of this conclusion was demonstrated by Gorham 
et al. (1985) and Urban et al. (1987a) in a survey of North American peatlands, 
among which the S2 bog featured prominently. The buffering capacity and 
acidity of DOM have been characterized in several studies (e.g., Oliver et al., 
1983; Tipping et al., 1988); titrations of waters from the S2 watershed were 
consistent with the model proposed by Oliver (Urban, 1987; Urban et al., 
1989). The pH of individual peatlands results from the titration of the humic 
and fulvic acids generated in the peatlands by the bases entering peatlands 
from atmospheric deposition, groundwater discharge, upland runoff, or 
anion uptake in the peatland (Urban, 1987; Urban and Bayley, 1986; Urban 
et al., 1987a). Gorham et al. demonstrated the titration of organic acids that 
occurs across the spectrum from bogs to calcareous fens and the bimodal 
distribution of pH in peatlands that results from the low buffer capacity of 
organic acids in the pH range of 4.5–5.5 (e.g., Gorham et al., 1984, 1985; Mullen 
et al., 2000). In many locations, there is a large effect of wetland drainage 
on the alkalinity of receiving waters (e.g., Bishop et al., 2000; Driscoll and 
Bisogni, 1984).

Research at the MEF documented the magnitude of DOC export from 
peatlands (Urban et al., 1989), systematic differences in DOM concentrations 
and export among different types of wetlands (Urban et al., 1989), variations 
in DOM composition, and geographic patterns in DOM concentrations (and 
associated acidity) in peatland waters (Gorham et al., 1985; Urban et al., 1987b). 
From 1981 to 1985, export of DOC ranged from 9 to 28 g C m−2 year−1 for S2 
and 9 to 43 g C m−2 year−1 for S6 (Urban et al., 1989a). The export of DOC repre-
sents 5%–10% of net primary production in the peatlands, a significant com-
ponent of the carbon budget. A similar rate of DOC export (19 g C m−2 year−1) 
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was measured for a bog in watershed 239 of the Experimental Lakes Area 
(ELA) in western Ontario, Canada, and estimated for bogs across northeast-
ern North America ranged from 5 to 20 g C m−2 year−1 (Urban et al., 1987a). 
These rates of DOC export from peatlands are large relative to export rates 
from upland (unsaturated soils) forests in the same area (<1–6 g C m−2 year−1). 
The differences in the export rates among three wetlands, two at the MEF 
and one at ELA, reflected differences in water yields. The high carbon export 
rates from peatlands explain why the areal extent of wetlands is a good pre-
dictor of organic carbon loading to lakes and streams.

Concentrations of DOC in peatland waters range from 5 to more than 
60 mg L–1 (Gorham et al., 1985). The DOC concentrations in outflow from 
both the S2 (flow-weighted means of 31–75 mg L–1 for 1981–2008) and S6 (flow-
weighted means of 31–47 mg L–1) peatlands exceed the mean concentration 
reported for 28 peatlands across northeastern North America (Gorham et al., 
1985). Higher DOC concentrations in midcontinental peatlands reflect the 
higher ratios of evapotranspiration to precipitation that result in lower water 
flow rates and less dilution of DOC by rain (Urban et al., 1987a). Watershed 
studies in Ontario have shown that droughts reduce water and DOC yields 
from the watersheds (D’arcy and Carignan, 1997; Moore et al., 1998; Schiff 
et al., 1998; Schindler et al., 1996).

Research at the MEF also has documented other effects of the export of DOM 
from peatlands. The high concentrations of DOM in bog waters result in a 
large binding capacity of bog waters for minor and trace metals. Binding sites 
on DOM compete with binding sites on the solid phase (peat), and can result 
in significant loss of trace metals from peatlands that experience significant 
water flow out of the system. In the S2 peatland, only about 35% of lead (Pb) 
inputs were retained (Urban et al., 1990). Leaching of 210Pb from peat below the 
water table rendered 210Pb-dating inaccurate at this site as well as at numerous 
other peatlands throughout North America (Urban et al., 1990). Aluminum in 
outflow from the MEF watersheds also is primarily (>85%) organically bound 
(Helmer et al., 1990). There are strong correlations between export of Hg and 
DOC from the MEF watersheds (Chapter 11; Kolka et al., 1999a, 2001), and, 
across the landscape, there is a correlation between the percentage of wet-
lands in watersheds and stream Hg concentrations (Grigal, 2002). Retention of 
Hg in the S2 watershed is only about 80% efficient largely due to the export of 
Hg bound to particulate organic matter and DOM in the outflow (Grigal et al., 
2000). Enrichment of the DOM with organic S may contribute to the loss of Hg 
from the watershed (cf. Drexel et al., 2002; Ravichandran, 2004).

Given the importance of DOM to biogeochemical processes within the 
MEF watersheds as well as in receiving waters, any changes in export 
of DOM over time may have significant biogeochemical repercussions. 
Historical changes in DOC concentrations in lakes, streams, and rivers have 
been reported in several areas of the world and variously attributed to cli-
mate change and changes in acid deposition and land use (Hruska et al., 
2009; Lepisto et al., 2008; Monteith et al., 2007; Schindler et al., 1997b). Data 
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from the S2 watershed also indicate that concentrations of DOC and total 
organic C (TOC) in the outlet stream have increased over the past 30 years 
(Figure 8.7). The statistically significant trendline (linear regression, p < .05) 
suggests that concentrations have increased by more than 50% (15–25 mg L-1) 
since 1980. Although concentrations have increased significantly, fluxes 
have not; the trend toward increasing fluxes over time is not statistically 
significant (linear regression, p = .14), and fluxes in the most recent 10 years 
are not significantly different (t-test, p > .05) than fluxes in the first 10 years 
of the record.

Decreasing inputs of sulfuric acid in rain probably do not cause an 
increase in TOC concentrations in the S2 stream. It is thought that the trend 
in England, Scandinavia, and northeastern North America of increasing 
DOC concentrations in rivers, streams, and lakes over the past 20 years (e.g., 
Lepisto et al., 2008; Worrall and Burt, 2004; Worrall et al., 2003) is due to 
a decrease in atmospheric deposition of sulfuric acid (De Wit et al., 2007; 
Evans et al., 2006; Monteith et al., 2007). This hypothesis reinvokes the 
theory of Krug and Frink (1983) that mineral acid deposition inhibits the 
release of organic acids into surface waters by increasing ionic strength 
and decreasing pH (see Evans et al., 2008). However, at the MEF, there has 
been no significant change in concentrations of SO4

2− or NO3
−, and pH has 

declined in the stream outflow over the 30 year record despite a decrease 
in the atmospheric deposition of both SO4

2− and NO3
−. An increase in DOC 

solubility as a result of higher pH has not occurred here. Because there has 
been no change in SO4

2− or NO3
− concentration in the outflow, the change 

in TOC cannot be attributed to changing ionic strength driven by declines 
in concentrations of acid anions. These two ions are strongly retained by 
the watershed; it is possible that a decrease in retention of these anions has 
caused a decrease in alkalinity generation within the watershed. Such a 
change in alkalinity generation and export, if it has occurred, is hidden in 
the “anion deficit” of the outflow; changes in this unmeasured concentra-
tion of organic anions could cause changes in ionic strength, but such a 
change has not been observed. There has been a slight increase in electrical 
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Historical increase in volume-weighted concentrations of TOC in outflow from the MEF S2.
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conductivity over the 30 year record, which suggests that ionic strength has 
not declined at this site, certainly not by the amount necessary to induce 
an increase in DOC concentrations (cf. Hruska et al., 2009). Concentrations 
and yields of other major ions also are buffered biogeochemically by the 
watershed such that changes in precipitation inputs have minor effects on 
the stream draining the watershed. For instance, the historical reduction 
in Ca2+ deposition in precipitation (14% decrease from 1980 to 2008) has not 
resulted in a decrease in concentrations or fluxes of Ca2+ in the S2 outflow. 
Atmospheric deposition of Na+ and Cl− has declined by 60%–70% over the 
past 30 years; this decline would cause at most a decrease in ionic strength 
of 3% if it was observed in the streamflow. However, there has been no trend 
in streamflow concentrations and yields since 1980. The interquartile ranges 
in annual streamflow, TOC export, and volume-weighted mean concentra-
tions of TOC and several major ions have increased over 30 years. Hence, it 
seems that acid rain is not the causative factor at this site, but it is not clear 
whether the increased variability and increased concentrations of TOC are 
a response to climate change.

Variations among Wetland Types

Studies at the MEF have helped clarify the dependence of dissolved solute 
composition on water flowpaths. There is a large difference in the water 
chemistry of streams draining the two types of wetlands (perched bogs 
and groundwater fens) in the gaged watersheds at the MEF. Although 
both uplands and wetlands comprise the watersheds, streamflow is gener-
ated primarily from the wetland portions of the watersheds (Verry and 
Kolka, 2003). The relative contributions of peatlands and uplands to the 
solutes in the streamflow vary by solute (e.g., Kolka et al., 2001; Verry and 
Timmons, 1982).

A major distinction among the watersheds is that the groundwater fen (S3) 
has high concentrations of solutes derived from mineral dissolution (e.g., 
Ca2+, Mg2+, HCO3

−, and Si) relative to the perched bogs (S1, S2, S4, S5, and S6). 
A longer contact time of the groundwater with soil minerals allows greater 
dissolution than occurs in the upland runoff into the perched bogs. The bogs 
have higher concentrations of organically bound solutes (e.g., DOC, dissolved 
organic N [DON], dissolved organic phosphorus, Al, Fe, and Hg) as a result 
of lower water flow rates (less dilution of substances released from the peat) 
and lower ash content of the peat in the bogs. Higher ash content in fen peat 
implies higher concentrations of base cations, iron oxides, and aluminum 
oxides that would limit the release of organic matter into fen waters. The 
higher concentrations of inorganic ions in fen waters lead to higher conduc-
tivity while the higher organic-matter content of bog waters leads to higher 
color and lower pH. This contrast is illustrated in Table 8.2 with data from 
Verry (1975) and Kolka et al. (1999a).
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Element Budgets

Element budgets have been measured and reported multiple times for 
the MEF watersheds (e.g., Urban and Bayley, 1986; Urban and Eisenreich, 
1988; Urban et al., 1989c, 1990, 1995; Verry, 1975; Verry and Timmons, 1982; 
Verry and Urban, 1992). Budgets for the S2 watershed for the four major 
cations S, P, N, and C are summarized in Table 8.3. Most of these data were 
collected from 1971 to 1973 and from 1981 to 1984. Here, the areal basis 
for these budgets is the wetland (bog plus lagg) portion of the watershed. 
Inputs include atmospheric deposition (bulk deposition or separate esti-
mates of wet and dry) and upland runoff; streamflow is the only output 
considered. These budgets differ from those of Verry and Urban (1992), 
who used throughfall plus stemflow as the measure of atmospheric depo-
sition. For elements not leached from foliage, throughfall may provide a 

TABLE 8.2

Comparison of Fen and Bog Water Solute Concentrationsa

Solute Category 
or Source

Solute Perched 
Bog Streamflow

Groundwater Fen 
Streamflow Fen:Bog

Mineral dissolution
Ca2+ 2.4 mg L−1 16.6 mg L−1 6.9
Mg2+ 0.97 mg L−1 2.88 mg L−1 3.0
Alkalinity ~0 54.2 mg L−1 as CaCO3 >54
Si 2.7 mg L−1 4.9 mg L−1 1.8
Specific 
conductance

51 μS cm−1 (25°C) 125 μS cm−1 (25°C) 2.45

Organically bound
DOCb 46.6 mg L−1 4.2 mg L−1 0.09

0.69 mg L−1 0.33 mg L−1 0.48
TDPc 0.19 mg L−1 0.09 mg L−1 0.47
Al 0.79 mg L−1 0.16 mg L−1 0.20
Fe 1.35 mg L−1 0.98 mg L−1 0.72
Hgb 11.6 ng L−1 1.4 ng L−1 0.12
pH 3.6 6.5
Color 303 100

Atmospherically derived
SO4

2− 4.6 mg L−1 6.0 mg L−1 1.30
NO3

− 0.20 mg L−1 0.10 mg L−1 0.50
Cl− 0.7 mg L−1 0.4 mg L−1 0.57

a All data except DOC and Hg are from Verry (1975). Values represent 
means of concentrations measured from 1968–1972.

b Data from Kolka et al. (1999a) includes the bogs at S1, S2, S4, and S5, and 
the S3 fen. Mean of the volume-weighted means for 1994 and 1995.

c TDP, total dissolved phosphorus.
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better estimate of dry deposition than bulk deposition. For elements with 
gas exchange (C and N), this budget is incomplete and the second value in 
parentheses for percent retention accounts for gas fluxes (Chapter 10) into 
and out of the wetland.

The major conclusion to be drawn from comparison of the element budgets 
is that retention of many of the elements (N, P, S, Ca2+, and Na+) is similar 
(40%–50%), but retention of K+ and Mg2+ is lower by 20%–30%. The macro-
nutrients N, P, and S are all similarly conserved (~40%) while gas emissions 
of C lead to lower retention (25%). Differences among elements are not due 
to the differing importance of inputs from the upland as large interannual 
differences in upland inputs cause little change in the magnitude of element 
export (Urban et al., 1995). The major mechanism for retention of all the ele-
ments is burial of partially decomposed vegetation and, to a lesser extent, 
retention within an aggrading vegetation compartment; differences among 
elements likely reflect differential decomposition rates of different com-
ponents of the organic matter. Greater incorporation of Ca into wood and 
slower decomposition of wood may explain the greater retention of Ca2+ rela-
tive to Mg2+. Magnesium exhibits a net export during the summer months of 
some years (Urban et al., 1995), which is further evidence of low Mg2+ reten-
tion in vegetation. The greater retention of Na+ relative to K+ may reflect the 
rapid release and recycling of K+ within the wetland (Buttleman and Grigal, 
1985); the pool of K+ in living vegetation represents more than 100 years of 
atmospheric inputs while the amount of Na+ in vegetation represents only 
2 years of atmospheric deposition.

TABLE 8.3

Element Budgets for the S2 Watershed (g m−2 Year−1). Accounting for Gas Emissions 
Leads to Lower Retention of C and N (in Parentheses)

Atmospheric 
Depositiona 

(g m−2 Year−1)

Surface 
Runoff 

(g m−2 Year−1)
Interflow 

(g m−2 Year−1)
Outflow 

(g m−2 Year−1)
% Retention 
(g m−2 Year−1)

Carbonb 1.2 0.49 1.75 33.6 −879% (25%)
Nitrogenc 1.04 0.16 0.17 0.6 56% (38%)
Phosphorus 0.048 0.022 0.004 0.046 38%
Sulfur 0.49d 0.3 0.46 42%
Calcium 0.44d 0.88 0.44 0.91 48%
Magnesium 0.08d 0.25 0.14 0.38 19%
Sodium 0.20d 0.09 0.14 0.24 45%
Potassium 0.18d 0.6 0.08 0.61 28%

a Bulk deposition from Verry and Timmons (1977).
b Values from Kolka et al. (1999a) for 1993–1995.
c Values from table 9 in Urban and Eisenreich (1988).
d Values from Urban et al. (1995) for years 1971–1973 and 1981–1984.
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Element Cycling within the MEF Peatlands

Nitrogen

One of the major strengths of the MEF is the length of the historical record. 
This strength is apparent in the 30 year record of atmospheric deposition 
of N. Data from this site document the decrease in atmospheric deposition 
of NO3

− that has occurred over this 30 year period. Deposition of NO3
− has 

decreased at a rate of about 1% per year or 30% over the period of record. The 
decline observed at the MEF (Figure 2.3b) is consistent with that observed 
throughout the upper Midwest (McDonald et al., 2010) and results from 
the decrease in emissions of N oxides over this period (U.S. Environmental 
Protection Agency, 2000). The 30% decrease in wet deposition of NO3

− has 
resulted in about a 7% decrease in the total N deposition.

Earlier studies on N cycling in the MEF watersheds (David et al., 1988; 
Grigal, 1991; Urban and Eisenreich, 1988) allowed predictions of the likely 
effects of this decrease in N deposition. Given that the MEF peatlands are 
N-limited (Bridgham et al., 2001; Urban and Eisenreich, 1988), a decrease in 
N inputs likely leads to a decrease in primary production, litter quality, and 
overall rates of N cycling through these systems. Surveys of peatlands across 
gradients of increasing N deposition have shown these responses to changes 
in N inputs (Turunen et al., 2004). Elevated rates of atmospheric deposition of 
N tend to favor growth of vascular plants over that of bryophytes (Berendse 
et al., 2001; Heijmans et al., 2002a,b; Limpens et al., 2003; Monique et al., 2001). 
High rates of nitric acid deposition in British moors are thought to have con-
tributed to the loss of bryophytes, acidification of the moors, and inhibition of 
microbial enzymes (Lee and Stewart, 1978; Lee and Tallis, 1973; Lee et al., 1987). 
There is some evidence that high N deposition rates may threaten the survival 
of some of the carnivorous plant species characteristic of peatlands (Gotelli 
and Ellison, 2002). Large inputs of the limiting nutrient may cause supplies 
of other nutrients to become inadequate and to switch the limiting nutrient 
from N to either P or K (Hoosbeek et al., 2002). Nitrogen deposition never was 
high enough to observe many of these effects at the MEF; maximum historical 
rates were about 1 g N m−2 year−1. It is not known whether the composition of 
vegetation at the MEF is changing in response to decreased N inputs.

Studies at the MEF showed that NO3
− inputs are unlikely to be denitrified 

and, therefore, are unlikely to affect rates of other forms of anaerobic respira-
tion. In bogs receiving low rates of N deposition, NO3

− is quickly taken up 
by the vegetation and does not reach anaerobic strata where it might be deni-
trified (Heijmans et al., 2002a; Nykanen et al., 2002; Urban and Eisenreich, 
1988; Urban et al., 1989b). Consequently, there is no evidence of inhibition of 
methane emissions or of SO4

2− reduction by elevated inputs of NO3
− (Dise 

and Verry, 2001); in contrast, N inputs appear to stimulate methane emis-
sions from some wetlands (Aerts and De Caluwe, 1999; Nykanen et al., 2002). 
The low pH in bogs inhibits nitrification (Bridgham et al., 2001), and hence 
the internal cycling of N is largely as NH4

+ (Figure 8.8a). The internal cycling 
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FIGURE 8.8
Comparison of N (a) and S (b) cycles in the S2 peatland at the MEF. Both elements are similar 
in having large fluxes into the vegetation, passage of this material to the upper layers of peat, 
and subsequent mineralization of the peat. Because of the inhibition of nitrification at the low 
pH of the bog, N is cycled back to the vegetation in the reduced form while S is first reoxidized 
to SO4

2−. Because the vegetation is very efficient at capturing NO3
− inputs to the bog, very 

little denitrification occurs. By contrast, SO4
2− reduction is considerable. Sulfide generated via 

microbial SO4
2− reduction or mineralization of organic matter is reoxidized, precipitated with 

Fe, or reacted with organic matter. Sulfate reduction inhibits the release of methane, but, in the 
presence of Hg, promotes Hg methylation.
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of NH4
+ in the S2 bog is about eight times larger than the N input from atmo-

spheric deposition (Figure 8.8a). The absence of nitrification and low rates of 
denitrification in bogs suggests that N2O emissions from these ecosystems 
should be low; this hypothesis is supported by measurements by Huttunen 
et al. (2002), Nykanen et al. (2002), and Regina et al. (1996).

Work in the MEF watersheds suggests that peatlands are not unique in 
rates of cycling of N but are unique in exporting considerable organic N. 
Although the high C:N ratios of the peat might be expected to limit N mobil-
ity in peatlands (e.g., Fenn et al., 1998; Lovett et al., 2002), the S2 bog is inef-
ficient at retaining N. Recent studies have suggested that N retention in 
ecosystems can be predicted on the basis of the soil C:N ratio (e.g., Lovett 
et al., 2002). The high C:N ratios in bog peat (30–60, e.g., Malmer and Holm 
1984; Urban and Eisenreich, 1988) lead to efficient retention of inorganic N; 
retention of inorganic N is more than 90% in the S2 watershed. However, the 
low rates of microbial activity in acidic peat may limit the extent to which 
NH4

+ may be immobilized, and the loss of DOM engendered by anaerobic 
decomposition results in a total N retention efficiency of only 45% in the S2 
bog. In bogs with adequate water flow, the export of organic N in the DOM 
offsets the high efficiency with which inorganic N is retained. Export of 
DON by peatlands is important at both the landscape and watershed scales. 
As has been widely reported for DOC (e.g., Engstrom, 1987; Frost et al., 2006; 
Koprivnjak and Moore, 1992), DON concentrations in rivers and streams in 
New England were strongly correlated with the areal extent of wetlands in 
the watershed (Pellerin et al., 2004).

Comparison of the MEF peatland watersheds with raised bogs on the 
extensive blanket peatlands in Minnesota suggests that the perched bogs in 
the MEF are less nutrient stressed than nearby raised bogs (Grigal, 1991). The 
fraction of plant N uptake supplied by atmospheric deposition was higher 
(12% vs. 15%) on raised than on perched bogs. The fraction of plant N uptake 
supplied by mineralization in the acrotelm was correspondingly lower in the 
raised bogs, but the fraction of N mineralized in the acrotelm of each type of 
peatland was similar (1.5% year−1). The turnover time of N in the vegetation, 
about 25% shorter (3.8 vs. 4.8 years) in the raised bogs, is further evidence of 
the greater nutrient stress in these systems.

Sulfur

Studies of the biogeochemistry of S in peatlands at the MEF have provided 
important insights into its cycling and interactions with other elements. 
Sulfur is a macronutrient and the S cycle within peatlands is similar to 
cycling of N in many respects (Figure 8.8b). Research on the characterization 
of S cycling through the vegetation of the S2 watershed (Urban et al., 1989c) 
is among the most thorough for any peatland. Atmospheric deposition (0.4–
0.5 g S m−2 year−1) is less than the annual uptake of S by the vegetation (~1.3 g 
S m−2 year−1) at this site. Thus, there is a large internal cycle of S within the S2 
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wetland. In part because of the large uptake and recycling by the vegetation, 
there is a net retention of S within peatlands; in the S2 peatland, about 40% 
of inputs is retained on an annual basis. Uptake of SO4

2− by the vegetation is 
not as rapid as uptake of NO3

− (Urban and Bayley, 1986; Urban et al., 1989b); 
accordingly, retention of inorganic S inputs (~60%) is not as efficient as reten-
tion of inorganic N (>90%). Export of atmospherically deposited SO4

2− also 
has been observed in other peatlands (Novak et al., 2005b). Because a fraction 
of the organic matter is not decomposed but buried in peat, there is a large 
burial of organic S within peatlands. However, because of significant miner-
alization of organic S and uptake of this mineralized S by vegetation, there 
is significant vertical mobility of S within peat, and accumulation rate pro-
files of S in peat cannot be interpreted as historical records of atmospheric S 
deposition (Novak et al., 2003, 2005a; Urban et al., 1989c). Also, S inventories 
in peat are not proportional to S loadings to the peatland (Novak et al., 2003).

A second cycle of S through the vegetation and shallow peat (Figure 8.8b) 
occurs concurrently with the cycle described previously. As for N, any 
SO4

2− in precipitation that is not taken up by the vegetation may be used 
as an electron acceptor for anaerobic respiration (dissimilatory SO4

2− reduc-
tion). Unlike N, substantial quantities of inorganic sulfur (SO4

2−) penetrate 
through the vegetation to the water table and are available to be reduced 
via dissimilatory SO4

2− reduction in the S2 bog (Urban and Bayley, 1986). In 
many peatlands, high rates of microbial SO4

2− reduction have been measured 
by the addition of SO4

2− or radiolabeled 35SO4
2− (Bayley et al., 1987; Chapman 

and Davidson, 2001; Keller and Bridgham, 2007; Novak et al., 2003; Vile et al., 
2003; Wieder and Lang, 1988; Wieder et al., 1987), including SO4

2− additions 
to the S6 wetland at the MEF (Jeremiason et al., 2006). Sulfate reduction can 
account for 0%–25% of the anaerobic oxidation of organic matter in peat-
lands (Keller and Bridgham, 2007; Vile et al., 2003). The fate of the microbi-
ally produced H2S varies among peatlands. In minerotrophic peatlands or 
those rich in iron, formation of acid-volatile sulfide (FeS) and pyrite (FeS2) is 
considerable (Novak and Wieder, 1992; Novak et al., 2003; Wieder and Lang, 
1986, 1988). In peatlands, low in iron, most of the H2S reacts with the peat and 
DOM to form C-bonded S (Brown, 1986; Keller and Bridgham, 2007; Novak et 
al., 1994; Urban et al., 1989c). Rates of SO4

2− reduction greater than the annual 
deposition of SO4

2− to peat bogs have been documented (Novak et al., 2005b); 
rates of oxidation of sulfide are substantial in peatlands (Bayley et al., 1986; 
Bottrell et al., 2007; Heitmann and Blodau, 2006; Novak et al., 2005b), allowing 
an internal cycle (Figure 8.8) to play a significant role in C oxidation (Keller 
and Bridgham, 2007; Vile et al., 2003). The factors controlling the rates and 
pathways for the reoxidation of sulfide in peatlands are poorly documented. 
Internal cycling of S does not appear to be as significant in upland mineral 
soil systems (Eimers et al., 2004).

A third cycle of S within peatlands about which relatively little is known 
entails the formation and hydrolysis of ester sulfates (Figure 8.8b). Formation 
of ester sulfates upon addition of 35SO4

2− to peat has been documented 
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(Chapman and Davidson, 2001; Novak et al., 2003), and sulfate esters have 
contributed 6%–30% of total S in peat profiles (Novak et al., 2003; Prietzel 
et al., 2007). Aryl sulfatase activity in peat was lower in English peatlands 
receiving high rates of acid and pollutant deposition (Press et al., 1985). 
Research is needed to determine whether this cycle is quantitatively impor-
tant in most peatlands.

Work at the MEF documented the significance of the export of organic S 
from peatlands. DOM in the S2 stream was enriched in S in summer months; 
C:S dropped from 300 in spring to 100 in summer (Urban et al., 1989c). Export 
of organic S accounted for one third of the S exported from the S2 watershed. 
The abiotic formation of dissolved organic S by reaction of H2S with DOC in 
peatlands was documented by Heitmann and Blodau (2006). Spectroscopic 
studies have shown oxidation states of −2 to +6 for S in humic acids from 
peatlands (Morra et al., 1997; Prietzel et al., 2007). Organic S may be impor-
tant for the binding and transport of trace metals including Hg in bog waters 
(Qian et al., 2002; Xia et al., 1999; Yoon et al., 2005).

Interactions of S and Hg cycling have been well documented for the MEF 
wetlands. Wetlands have long been known as significant sources of total 
and methyl Hg to lakes and streams (Dennis et al., 2005; Hurley et al., 1999; 
Shanley et al., 2005). It also is widely recognized that Hg methylation occurs 
in association with SO4

2− reduction (e.g., Goulet et al., 2007; King et al., 2001). 
Postulating a linkage between S transformations in peatlands and Hg export, 
researchers at MEF demonstrated and quantified this linkage. They artifi-
cially applied SO4

2− to a portion of the S6 wetland and compared the concen-
trations of total and methyl Hg between the amended and control portions 
of the wetland (Jeremiason et al., 2006). Results showed that SO4

2− additions 
caused increased concentrations of methyl Hg in porewaters and an increase 
in export of methyl Hg following SO4

2− applications ( Coleman-Wasik, 2008; 
Chapter 11).

Observations at the MEF also pointed to interactions between C and S 
cycling in wetlands. The potential for inhibition of methane production in 
wetlands due to competition for C substrates between methanogenic and 
SO4

2− reducing bacteria had been postulated by Wieder et al. (1990). This 
hypothesis was tested at the Bog Lake peatland, an open, nutrient-poor fen 
within the MEF (Dise and Verry, 2001). Application of NH4SO4 to field plots 
lowered methane emissions by 30%. These results have since been replicated 
at other locations (Gauci and Chapman, 2006; Gauci et al., 2002, 2004). The 
mechanism behind the suppression of methane fluxes remains under inves-
tigation. Although studies have documented a stimulation of SO4

2− reduction 
in response to SO4

2− additions (Gauci and Chapman, 2006), laboratory stud-
ies have not always shown inhibition of methanogenesis by SO4

2− addition 
(Vile et al., 2003). Anaerobic oxidation of methane by SO4

2−-reducing bacteria, 
a phenomenon well documented in marine sediments, does not appear to be 
important in peat bogs (Smemo and Yavitt, 2007).
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