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Highest priority zones for tree planting within New York City were selected by using a planting priority

index developed combining three main indicators: pollution concentration, population density and low

canopy cover. This new tree population was projected through time to estimate potential air quality and

carbon benefits. Those trees will likely remove more than 10 000 tons of air pollutants and a maximum

of 1500 tons of carbon over the next 100 years given a 4% annual mortality rate. Cumulative carbon

storage will be reduced through time as carbon loss through tree mortality outweighs carbon accu-

mulation through tree growth. Model projections are strongly affected by mortality rate whose uncer-

tainties limit estimations accuracy. Increasing mortality rate from 4 to 8% per year produce a significant

decrease in the total pollution removal over a 100 year period from 11 000 tons to 3000 tons.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

MillionTreesNYC is a citywide, public-private program with

a goal to plant and care for one million new trees across the City’s

five boroughs (MillionTreesNYC’s Official website). Planting one

million trees will increase the city’s tree population of 5.2 million

trees (Nowak et al., 2007) by about 20%, potentially increasing the

environmental benefits from the city’s urban forest. The environ-

mental benefits from these new trees will vary through space,

depending upon where they are planted, and through time as the

trees grow in stature and eventually die.

Some of the environmental benefits that can be increased by the

new trees are air pollution removal and carbon storage (McPherson

et al., 1994). Trees, through their growth process, store carbon

within their tissue and reduce concentrations of carbon dioxide e

the dominant gas contributing to climate change (Nowak and

Crane, 2002; Nowak et al., 2002a,b; IPCC, 2006). Trees also

remove air pollutants by absorbing gaseous pollutants via leaf

stomata and by intercepting and retaining airborne particles on the

plant surface (Beckett et al., 2000; Nowak et al., 2000, 2006). As air

pollution affects human health, it is important to target tree

planting in areas with relatively high human populations to help

reduce air pollution concentrations in populated areas. As

numerous environmental benefits are associated with and prox-

imal to tree locations, planting trees near human populations can

lead to improved environmental quality and human health and

well-being (e.g., Nowak and Dwyer, 2007).

Recommendationsof locations for new treeplantings inNewYork

City have been made based on various indicators such as hospitali-

zation and asthma rates (Grove et al., 2006). This paper intends to

expand on this work by developing more specific location recom-

mendations for tree planting related to air quality to help guide

decisions onplanting locations to improve environmental qualityand

human health. Potential locations to plant trees for air quality are

developed based on an index that spatially considers local estimated

air pollution levels, human population density, and tree cover.

In addition, the planted trees will annually accumulate carbon

and remove air pollution at differing rates as the trees grow

through time. Another goal of this paper is to estimate the annual

and cumulative amounts of carbon stored and air pollution

removed by the one million trees over a 100 year period given

varying average annual mortality rates. Finally, this paper will

discuss potential limitations of using urban trees to improve air

quality and store carbon, and potential limitations of the analysis.

2. Material and methods

To determine the best locations in New York City to enhance pollution removal

relative to human populations, three Geographic Information System (GIS) data
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bases were used: 1) human population density, 2) tree cover, and 3) estimated

pollution concentration. Population density estimates derived for each census

blocks from 2000 U.S. Census data (U.S. Census Bureau’s official website http://www.

census.gov/).

2.1. Tree cover estimates

Tree cover datawere derived from a high-resolution cover map of New York City

developed from 2001 color infra-red digital images (0.9 m ground-resolution) based

on methods described in Myeong et al. (2001). Each pixel was classified as to either

tree, grass, impervious, shadow or water. The accuracy of the map classification was

assessed by comparing photo interpretation of randomly located points on the

image against the cover type predicted by the cover map for the same point. A total

of 1600 points were assessed with an overall user’s accuracy of 86%. The user’s

accuracy for tree cover was 76%. The land cover map was used to determine the

amount of tree cover in each census block.

2.2. Pollution concentration estimates

A computer program was developed (Hirabayashi, 2009) to estimate locations

with relatively high pollution concentrations by modeling emission dispersion from

Gaussian dispersion equations for local point and line (road) source emissions. Air

pollutant concentrations were estimated for carbon monoxides (CO), nitrogen

dioxide (NO2), sulfur dioxide (SO2), and particulate matter with the diameter of 10

micrometers or smaller (PM10).

Pollutants emitted from a point source were modeled to disperse in the three-

dimensional field based on a Gaussian dispersion equation (Zannetti, 1990):
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where C¼ air pollutant concentration at a receptor (g/m3), Q¼ pollutant emission

rate from a source facility (g/s), u¼wind speed (m/s), sy¼ Standard deviation of

lateral concentration distribution (m), sz¼ standard deviation of vertical concen-

tration distribution (m), yr¼ crosswind distance between receptor and source (m),

Dh¼ emission plume rise (m), hs¼ height of the source (stack height) (m), and

zr¼height of the receptor (¼1.5 m).

Pollutant emission rate and stack height were derived from the US EPA’s

National Emission Inventory (NEI) database for 2002e the latest year available (NEI,

2008), with annual emissions converted to average emissions per second. Wind

speed and other meteorological variables were derived from the National Oceanic

and Atmospheric Administration (NOAA)’s National Climate Data Center (NCDC) for

2005 (NCDC, 2008).

sy and sz in Equation (1) were calculated as (Green et al., 1980):
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where ki¼ constants defined for the Pasquill stability categories, and xr¼ downwind

distance between receptor and source (m).

The effective stack height is the sum of the actual stack height hs and the plume

rise Dh. The buoyancy flux was calculated (Seinfeld and Pandis, 2006) to determine

emission plume rise for each hour based on equations from Briggs (1969,1971,1974).

The downwind and crosswind distances between the source and the receptor, xr, yr,

respectively can be calculated as:

xr ¼ easting$ sin qþ northing$ cos q (4)

yr ¼ northing$ sin q" easting$ cos q (5)

where q¼wind direction with respect to North. Equation (1) was applied for

receptors whose downwind distance xr> 0. The grid size used for New York City was

30 m with a 2000 m buffer around points sources to estimate dispersion.

2.2.1. Air pollutant estimation for line sources

Air pollutant dispersion from roads was estimated based on a) emissions from

automobiles, which were based on traffic volume and emission factors, and b)

pollutant dispersion, which was estimated with the Gaussian dispersion equation.

Topologically Integrated Geographic Encoding and Referencing (TIGER, 2008) road

network data were used to calculate length of road segments within each cell. Four

road types, interstate highway (A1), other freeway and expressway (A2), other

principal arterial (A3), and local road (A4) from these data were used to estimate air

pollutant dispersion. U.S. Department of Transportation (2008) were used to

determine the total length and daily vehicle-miles of travel (VMT) for the four road

types in New York City.

The source emission rate per unit length of road was calculated for each of the

four road types. First, the daily VMTwas converted to VMT per second. This VMTwas

then divided by total length of the road type to derive VMT per unit length. Finally,

this VMT was converted to the source emission rate per unit length by multiplying

emission factors.

Qi ¼ VMTi
Li

fi (6)

where Qi¼ emission rate per unit length for the road type i (g/s/mile), VMTi¼ total

vehicle-miles of travel for the road type i (mile/s), Li¼ total length for the road type

i (mile), and fi¼ emission factor for the road type i (g/mile).

Emission factors were obtained from emission sensitivity tables issued by U.S.

Environmental Protection Agency (US EPA, 1998) for CO and NOx, and frommodeled

results by PART5 (US EPA, 2009a) for PM10 and SO2. Based on the combination of

altitude, calendar year, ambient temperature, cold/hot start VMT weighting, and

average vehicle speed (Table 1), an emission factor for all mobile sources combined

for CO and NOx can be retrieved from the emission sensitivity tables. A combination

of the low altitude, the year of 2005, 20.6% cold start, 52.1% stabilized, and 27.3% hot

start, and 75 F were used for both CO and NOx emission factors. For the road type A1,

A2 and A3, and A4, 55.0, 35.0, and 19.6 mph are chosen, respectively. Similar

conditions are defined to run PART5 to obtain emission factors for PM10 and SO2

(Table 2).

Air pollutant dispersions are separately estimated for each road type based on

a modified General Finite Line Source Model (GFLSM) (Luhar and Patil, 1989;

McHugh and Thomson, 2003)
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where Ci¼ air pollutant concentration for the road type i (g/m3), Qi¼ pollutant

emission rate per unit length for the road type i (g/s/m), u¼wind speed (m/s),

sy¼ standard deviation of lateral concentration distribution (m), sz¼ standard

deviation of vertical concentration distribution (m), yr¼ crosswind distance

between receptor and source (m), Li¼ in-cell road length for the road type i (m),

Zs¼ height of the source (¼0.5 m), and Zr¼height of the receptor (¼1.5 m).

The GFLSM employs a single straight road segment and estimates air pollutant

concentration at a neighboring receptor with the Gaussian dispersion equation. To

estimate the spatial distribution of the concentration, this process is often repeated

for multiple receptor locations. As the model domain in this study contained

thousands of straight road segments, it was impractical to apply the GFLSM for each

of these road segments. To handle this situation more efficiently with the raster-

based GIS analysis, an approximation was made. The whole urban area of interest

was represented with 30-meter grid cells and each cell may have contained road

segments of the four road types. For a given cell, the road length of each road type

included in that cell was calculated and the GFLSMwas applied to that cell assuming

that road segments were a single straight road that ran perpendicular to the wind

direction. The dispersion from roads in each cell was limited with a 40 m buffer

around the cell.

2.2.2. Model adjustment

For a given hour, hourly air pollutant concentration maps separately created for

facility stacks and the four road types were merged into one map by taking

summation of values in each of corresponding cells. Due to many factors, including

background concentrations, the cell value and measured value at a monitor site may

not have exhibited a good agreement. To ensure that the estimated concentration

was identical to the measured value at a monitor site, an adjustment was performed

using measured air pollution concentration data obtained from U.S. Environmental

Protection Agency (EPA)’s Air Quality System (AQS) (US EPA, 2009b).

If multiple monitor sites existed in the area of interest, the areawas divided into

Thiessen (Voronoi) polygons that define individual areas of influence around each of

Table 1

Possible values for Parameters determining emission factors used in the pollutant

dispersion model.

Parameter Values

Altitude High, low

Calendar year 1990, 1995, 2000, 2005, 2010, and 2020

Ambient temperature 0, 25, 50, 75 and 100 F

Cold/hot start VMT

weighting

100% stabilized

100% hot start

100% cold start

50% cold start, 50% stabilized

50% hot start, 50% stabilized

50% cold start, 50% hot start

20.6% cold start, 52.1% stabilized, and 27.3% hot start

Average vehicle speed 2.5, 5.0, 10.0, 19.6, 35.0, 55.0, and 65.0 mph
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monitor sites. Thiessen polygons are mathematically defined by the perpendicular

bisectors of the lines between all points. Within each Thiessen polygon, the back-

ground concentration was determined as a difference between the measured

concentration and the value of the cell on which the monitor points resides:

BC ¼ MC" Ci;j (8)

where BC¼ air pollutant background concentration (g/m3), MC¼measured air

pollutant concentration (g/m3), and Ci,j¼ estimated air pollutant concentration at

(i, j) where monitor site resides (g/m3). Values of all cells in that Thiessen polygon

were then adjusted with this background concentration:

CCi;j ¼ BCþ Ci;j (9)

where CCi,j¼ adjusted air pollutant at (i, j) (g/m3) and Ci,j¼ estimated air pollutant

concentration at (i, j) (g/m3). If only one monitor site existed in the area, the same

procedure was applied to the whole area.

2.3. Planting index values

Three indicators (population density, % tree cover, and pollution concentration)

were used to develop an index (modified from Nowak and Greenfield, 2008) that

prioritizes tree planting locations with larger index values indicating higher priority

for planting. The index assumes higher priority areas for planting are in areas with

higher population densities, higher pollution concentration, and lower percent tree

cover values. The final index value integrates all three factors in determining the

index value for the highest priority for tree planting. Thus the index value integrates

factors related to risk (pollution concentration and population density exposed to

pollutants) and areas under-served with tree cover (low tree cover and high pop-

ulation density).

To combine these three indicators, each indicator was standardized on a scale of

0 to 1 and combined the indicators for the final index value based on aweighting of:

I ¼ ðPD$ 30Þ þ ðPOLL $ 40Þ þ ðLTC$ 30Þ

where I is the combined index score, PD is the standardized value for population

density, POLL is the standardized value for air pollutants, and LTC is the standardized

value for low tree cover.

The combined index score (I) was standardized again and multiplied by 100 to

produce a planting priority index (PPI) that ranges between 0 and 100. Air pollution

concentration was weighted slightly more than population density and low canopy

cover because it is the dominant indicator in relation to human health.

The standardized value for population density (PD) was calculated (Nowak and

Greenfield, 2008) as PD¼ ((n"min)/r), where PD is the value between 0 and 1, n is

the value for population density (population km"2) in each census block, min is the

minimum among all population density values and r is the range of density values.

To prevent a limited number of small census tracts with abnormally high population

densities from dominating the density part of the index, all tracts with a population

density of 100 000 were considered to be the maximum value. This adjustment

prevented outliers from skewing the range of index values.

As there were four different pollution concentrations estimated for each census

tract, a combined base air pollutant concentration valuewas calculated byweighting

the estimated concentration of each of the four pollutants by the California Ambient

Air Quality Standards for the pollutant 2005 (Table 3) (Nowak et al., 2008).

The base pollution value (BPV) was calculated as:

BPV ¼
'

PM10mgm
"31:00

(

þ
'

NO2 mgm"30:66
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þ
'

SO2 mgm"30:47
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þ
'
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(

The standardized value for air pollution concentration (POLL) was then calcu-

lated as POLL¼ ((n"min)/r), where n is the BPV for each census block, min is the

minimum among all base pollution concentration values and r is the range of

pollution concentration.

The standardized values for low tree cover were calculated using a reverse index

of tree canopy cover where the lower the tree cover, the higher the standardized

value. The standardized value for low tree cover (LTC) was calculated as LTC¼
((max" n)/r) where n is the percentage of canopy cover in each block, max is the

maximum among all values for tree canopy cover and r is the range of canopy cover

values.

As the pollution concentration layer does not overlay the census blocks layer

perfectly, blocks on the edge of water bodies do not have pollution concentration

data and therefore do not have PPI value assigned.

2.4. Projecting future pollution and carbon removal

A population projector model was used to analyze future dynamics of the new

trees that are to be planted in New York City. This model uses modeled field data

from New York City (Nowak et al., 2007) to annually project the number of trees,

percent canopy cover, annual carbon sequestration, and air pollution (O3, PM10, SO2,

NO2, CO) removal based on growth rates and user inputs of annual tree planting and

annual mortality rates (Nowak et al., 2004). In this study, the annual growth rate in

tree diameter was set at 0.61 cmyr"1. This default value is based on length of

growing season, an estimated crown competition and tree conditions for New York

City trees (Nowak et al., 2007, 2008). The projection model was run just for the new

million tree population with 100 000 trees being planted annually for 10 years. Of

these 100 000 trees, 62 000 were assumed to have a diameter at breast height

(1.37 m) of 2.54 cm. The remaining 38 000 trees per year were planted as seedlings

in parks (http://www.milliontreesnyc.org). These seedlings were assumed to take 5

years to reach 2.54 cm in diameter (minimum model diameter) and that 20% of the

seedlings would die by year 5.

Trees were entered in the model in the year of planting (year 1 to 10) and tree

growthwas simulated using the average growth rate. As the populationwill not only

grow through time, but also a certain percentage of the populationwill die each year,

a mortality rate is used in the model to remove trees annually based on tree

mortality. In Baltimore, the average annual mortality of the tree populationwas 6.6%

between 1999 and 2001. As the mortality rate for the tree planting in New York City

is unknown, average annual mortality rates of 4, 6 and 8% were used. As mortality

rates vary by diameter class, the overall average annual mortality rate for the pop-

ulationwas based on the existing tree population in New York City. That is, mortality

rates for each diameter class varied such that the overall population mortality rate

was the assigned mortality value (4, 6, or 8%). The assignment of the diameter class

specific mortality rates were based on diameter mortality distribution from street

trees in Syracuse (Nowak, 1986): 2.9% for trees 0 to 7 cm in diameter; 8 to

15 cm¼ 2.2%; 16 to 46 cm¼ 2.1%; 47 to 61 cm¼ 2.9%; 62 to 76 cm¼ 3.0%; and 77þ
cm¼ 5.4%. The proportional change among these classes was held constant as the

overall mortality rate varied (Fig. 1). As trees grow within the model between years,

Table 3

California Ambient Air Quality Standards. Weight was based on referencing against

the 24-hour PM10 standard.

Standards Particulate

Matter (PM10)

Nitrogen

Dioxide (NO2)

Sulfur

Dioxide (SO2)

Carbon

Monoxide (CO)

1-hour 470 mg/m3 655 mg/m3 23 000 mg/m3

24-hour 50 mg/m3 105 mg/m3

Weight* 1 0.66 0.47 0.02
Fig. 1. Variations of the mortality rates of 4, 6 and 8% per year used for the different

DBH classes.

Table 2

Emission factors employed in the pollutant dispersion model from line sources.

Road type Emission factor (g/mile)

CO NOx SO2 PM10

A1 7.4 2.58 0.113 0.096

A2 10.58 2.02 0.113 0.096

A3 10.58 2.02 0.113 0.096

A4 20.52 2.02 0.113 0.095
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themortality rate of the tree population class would change as trees grow into a new

diameter class.

The tree populationwas run for a 100 year period by entering the trees at time of

planting and simulating growth, mortality and air pollution removal and carbon

storage for each year of the simulation period. For each year, the number of trees

surviving and the tree size were passed to the next simulation year for calculations

of benefits. Air pollution removal was calculated each year using average pollutant

flux rates per unit of canopy derived from the i-Tree Eco (formerly UFORE) model

(USDA Forest Service, i-Tree Eco manual) for New York City (Nowak et al., 2006,

2007, 2008), and projection model estimates of canopy cover based on crown

width e dbh relations for the million trees (Frelich, 1992; Nowak et al., 2004).

Annual benefits were summed to estimate the cumulative effects over the 100 year

period. Carbon storage estimates were based on tree dbh using formulas from

Jenkins et al. (2003). The formula for sprucewas used to estimate urban tree biomass

for New York City as this formula produced a carbon estimate closest to the original

estimate for the i-Tree Eco model (Nowak et al., 2007). The spruce formula estimates

were multiplied by 1.03 to adjust for the differences between the model estimates

for New York.

3. Results

3.1. The planting priority index map

The planting priority index map (Fig. 2) indicates that the areas

of highest priority for planting based on the index are generally in

Middle and Lower Manhattan and few blocks in Brooklyn and

Queens. The middle and lower areas of Manhattan are character-

ized by blocks with high population density, high base pollution

values (BPVs) and low canopy cover. Some of the blocks with the

highest PPI values (colored in dark red on Fig. 2) have a population

density of about 80 000 people per km2, a BPV of about 68 and

a canopy cover of 2%. Staten Island is characterized by medium low

(21e40) and medium (41e60) PPI values. The Bronx is defined

mostly by low (0e20), medium low (21e40) and medium (41e60)

PPI values.

Lower and Middle Manhattan and part of Brooklyn and west

Queens have many areas considered with the highest priority for

the planting campaign. They have high population density, high

pollution values and low canopy cover. Nevertheless, those blocks

are mostly characterized by impervious surfaces where there is not

much suitable space for trees, but where there are many people

living. Parks and cemeteries scattered among the five boroughs

tend to have low (0e20) and medium low (21e40) PPI values

(colored in yellow and light orange on Fig. 2). These low values are

a consequence of low population density values and high canopy

cover percentage. The BPV varies among boroughs, with higher

values in Staten Island, Manhattan and most of Brooklyn and

relatively low values in Queens and the Bronx. Central Park, situ-

ated in the core of Manhattan, is characterized by PPI values in the

range 21e40, even with low population density values. In this case,

the medium low PPI values are due to the high base pollution

values (BPV) in the park. Staten Island is the borough with the

lowest population density in the city of New Yorkwith PPI values in

the range 21e40 and 41e60. These relatively low values are mostly

driven by population density values, despite relatively high pollu-

tion values and medium-high percentage of canopy cover.

3.2. The population projector model

The million tree population will vary in the future depending

upon mortality rate with the new tree population peaking at

714000, 598 000 and 518000 trees for the 4, 6 and 8 % mortality

rates, respectively (Fig. 3). After 100 years, the tree population

would be 46000, 9200, ad 1900 trees for the 4, 6 and 8 % mortality

rates, respectively.

The amount of additional tree cover added due to the new tree

population also varies with peak increases in city tree cover of 6.5%,

3.9% and 2.4% for the 4, 6 and 8 % mortality rates, respectively

occurring between 30 and 50 years after planting (Fig. 4). After 100

years, the percent tree cover from the new trees would drop to

about 3.3%, 0.8% and 0.2% for the 4, 6 and 8 % mortality rates,

respectively.

Annual pollution removal peaks at 153, 93 and 58 tons, with

removal at year 100 at 79, 18 and 4 tons for the 4, 6 and 8 %

mortality rates, respectively (Fig. 5). Total pollution removal over

a 100 year period is estimated at 11000 tons, 6000 tons, and 3000

tons with mortality rates of 4, 6 and 8%, respectively.

Fig. 2. Planting Priority Index (PPI) map for block subdivisions. The blocks with higher

values indicate higher priority for planting.

Fig. 3. Projected tree population totals over the next 100 years with varying mortality

rates. Mortality4¼ 4% average annual mortality rate, Mortality6¼ 6% average annual

mortality rate, Mortality8¼ 8% average annual mortality rate.
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Cumulative carbon storage in the planted trees will increase

through time and then start to decline as loss of carbon from trees

dying exceeds the carbon gained through the growth of existing

trees. Peak carbon storage is estimated at 60 000, 23 000 and 11000

tons for the 4, 6 and 8% mortality rates, respectively (Fig. 6).

4. Discussion

The planting priority index map is an attempt to illustrate

potential areas to target to remove air pollution relative to areas

with relatively high human populations and low tree cover. It is just

one of several types of decisions that can be used to guide the

determination of tree planting locations (e.g., Grove et al., 2006)

and has uncertainties and limitations that need to be discussed.

One is related to the estimation of pollutant concentrationwhich is

one of the factors driving the PPI.

Ozone and PM2.5 were not taken into account among air

pollutants even though they are of major concerns for human

health and despite several cities like New York City are not in

compliance with the EPA standards for those pollutants (US EPA

http://www.epa.gov/airquality/greenbk.). Ozone is not directly

emitted from facilities or automobiles but formed through chemical

reactions with volatile organic compounds (VOC) and NOx under

sunlight. For this reason the dispersion model should have been

coupled with a chemical-atmospheric model which was not avail-

able for this study. Additionally, when the dispersion model was

developed it accounted only for PM10 which at that time was

considered a proxy for particulate.

It should be considered that estimating pollutant concentrations

at the local scale is technically difficult because it requires knowl-

edge of spatial and temporal variability of pollutant concentrations

at a small area (Jerrett et al., 2007). Methods for estimating urban

pollution concentration patterns involve the interpolation of

concentration taken from existing monitoring networks (Wong

et al., 2004), statistical regressions of observed concentrations

with surrounding land-use, traffic characteristics (Brauer et al.,

2003; Briggs et al., 1997; Ollinger et al., 1993; Ross et al., 2006),

and meteorological processes (Jerrett et al., 2007; Ainslie et al.,

2008). However, due to the insufficient density of the monitoring

network, small scale concentration variability cannot be resolved

with these methods. In this study, therefore, dispersion modeling

techniques were employed. One major drawback of this technique

is its reliance on detailed spatial and temporal emissions invento-

ries that are known to have large uncertainties (Hanna et al., 2001).

In this study, the temporal resolutions of the road and facility

emission data employed were originally annual and downscaled to

per-second values to be incorporated in the dispersion equations.

Since weekly or diurnal variations of emissions due to driving and

facility operational patterns were not taken into consideration in

the downscaling process, the air pollutant concentrations may have

larger uncertainties. In addition, street canyon effects (Wang et al.,

2008) were ignored and background concentrations (Jensen et al.,

2001) were not fully addressed in the model, which could imply

that air pollutant concentrations could be underestimated.

Besides to pollutant concentration the planting priority index

considers areaswith lowcanopy cover as underserved so in need for

planting, while impervious surfaces are not taken into account

because of the great difficulties in distinguishing buildings from

streets, street sidewalks, parking lots and school playgrounds,

although theycan be considered locations for tree planting. It occurs

often, such as in the MillionTreesNYC initiative, that many trees are

being planted on sidewalks, parking lots and school playgrounds

that are currently impervious cover.Whereas the final prioritization

map is an important product of analysis and tool for guiding the

planting campaign, field validation of the results cannot be avoided.

Moreover, the PPI developed in this study is limited by the fact that

in several cities, the areaswhere trees aremore needed are the ones

with few space available for trees to live as often the areas with the

highest priority are heavily populated areas with large amounts of

impervious surfaces. Halverson and Rowntree (1986) showed an

inverse relationship between tree crown cover percentage and

Fig. 4. Projected tree canopy cover of three different mortality rates. Mortality4¼ 4%

average annual mortality rate, Mortality6¼ 6% average annual mortality rate, Mor-

tality8¼ 8% average annual mortality rate.

Fig. 5. Projected annual pollution removal graph for three different mortality rates.

Mortality4¼ 4% average annual mortality rate, Mortality6¼ 6% average annual

mortality rate, Mortality8¼ 8% average annual mortality rate.

Fig. 6. Projected total carbon storage for three different mortality rates. Mortal-

ity4¼ 4% average annual mortality rate, Mortality6¼ 6% average annual mortality rate,

Mortality8¼ 8% average annual mortality rate.
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population density in eight U.S. cities, whereas treeswould bemore

needed where people live, not only for health but also for psycho-

logical issues. Ulrich (1986) presented a study showing how natural

landscapes have positive influence on emotional and psychological

states and how those benefits produced by trees and vegetation

increased in case of individuals experiencing anxiety and stress.

O’Brien and Murray in 2007 showed how forest school had positive

impacts on children in terms of confidence, social skills, language

and communication, motivation and concentration, physical skills

and knowledge and understanding. Moreover, as showed by

Mitchell and Popham in 2008, green space has effects on health and

health-related behaviors.

Though this map mainly targeted pollution levels, there are

numerous other aspects that need to be considered in making

planting decisions (Wu et al., 2008). The indicators taken into

account to develop the planting priority index, i.e. pollution

concentration, population density and low canopy cover could be

used with other indicators such as the social acceptability of new

tree plantings, community preferences, aesthetic values, runoff

reduction, water remediation and so on. Thus, it is necessary to

choose the most suitable indicators according to planning targets

and urban manager goals. A Possible Urban Tree Canopy (PUTC)

index was developed by Grove et al. (2006) that considers asthma

and hospitalization rates as the main indicators to prioritize

planting locations. The highest PUTC values were in an area of the

Bronx due to high asthma rates whereas the main goal of the PPI

was improving air quality and that is why we focused on those

areas that were highly polluted and populated.

If planting trees for air quality improvement is a goal of the tree

planting program, the negative attributes of trees in relation to air

quality also need to be considered. Pollution removal and reduction

in air temperatures, which can consequently reduce pollutant

concentrations and emissions, are positive benefits from trees that

should most likely be concentrated near human populations to

enhance human health. However, on the negative side, design of

treesnearhumanpopulations need tobe considered. Asmanyurban

emissions come from automobiles with emissions at the ground

level, increasing canopy cover in populated areas with automobile

emissions could potentially trap these emissions near the ground

and increase pollutant concentrations. The dispersion of pollutants

is an important process in reducing concentrations, and although

increased canopy cover would enhance removal of pollution from

the atmosphere, it could potentially increase local pollutant

concentrations in some instances. Gross (1987) and Ries and

Eichhorn (2001) found that tree planting in street canyons reduces

wind flow velocity, thus increasing pollutants concentration.

In addition to design, species and site issues also need to be

considered. Tree species emit in varying amounts biogenic volatile

organic compounds (BVOC) (Owen et al., 2003), which play an

important role in the formation of photochemical smog in the

troposphere, leading to the formation of ozone (O3) and other

secondary pollutants (Fehsenfeld et al., 1992; Fuentes et al., 2000).

Therefore, species selection in citieswith ozone air quality problems

should consider species composition relative to BVOC emissions to

potentially reduce ozone concentrations. Though urban trees can

contribute to ozone formation due to BVOC emissions (e.g., Taha,

1996), in a study that included the New York City region, changes

in urban tree species composition had no detectable effect on ozone

concentrations (Nowak et al., 1998). In this region urban tree VOC

emissions were relatively small compared with anthropogenic and

non-urban hydrocarbon emissions, that high or low VOC emitting

species in urban areas had no effect on model estimates. Rather it

was the physical processes associated with increased urban tree

cover that tended to lead to lower ozone concentrations in the urban

areas. Changes in pollution removal rates and meteorology,

particularly air temperatures, wind fields, andmixing-layer heights,

affected ozone concentrations. Tree effects were both positive in

terms of pollutant uptake and negative in terms of biogenic emis-

sion and lead to an overall reduction in model estimates of ozone

concentrations. As an example of negative effects, Liquidambar

styraciflua andQuercus coccinea are high-BVOCemitting species that

are among the species to be planted in the MillionTreesNYC initia-

tive (Benjamin and Winer, 1998). Another factor which should be

taken into account when choosing tree species is pollen production

since it can have quite severe health effects as hay-fever and it is also

a source of particles. Species and site selection can also be important

in termof enhancing survival rates of newly planted trees.Matching

tree species to sites where they can survive and thrive is important

for reducing tree mortality rates whose uncertainty however is the

main limit for the population projector. Though the actual mortality

rates for trees in New York are not known, model projections of tree

population and benefits clearly indicate how tree mortality affects

long tree population benefits. Due to the limitations of model

projections, the model estimates should only be considered gross

estimates of potential effects as mortality and growth rates are

estimated and can significantly influence model outputs. However,

the projection results give a general indication of themagnitude and

trends of effects through time. They also show how benefits from

trees go far beyond the length of the MillionTreesNYC initiative

being maximized many years later the end of the initiative. As

expected from the projections, the tree population declines through

time, but the tree cover and benefits increase for a period of time,

and then decrease as the addition of canopy cover associated with

tree growth is more than offset by canopy losses due to tree

mortality. Thus, even though tree population can decrease in

numbers, benefits can still increase depending upon the growth of

the surviving tree population. Urban tree populations are dynamic.

The key to sustaining or enhancing the ecosystem services from

urban trees is understand the local population structure through

field measurements and developing management plans that

enhance tree population through planting or natural regeneration

while reducing treemortality. Numerous factorswill affect planting,

regeneration andmortality through time, somanagement plans and

urban forests need to be monitored to adjust plans as needed to

ensure localmanagement goals aremet.Monitoring of urban forests

will also provide critical base line data needed tomake better urban

forest projections in the future (e.g., mortality rates).

Results of the population projector reveal the magnitude that

canopy cover, and consequently uptake of pollutants and carbon,

can increase due to the tree growth, but also the magnitude of the

decrease over time due to mortality. Comparing different mortality

rates, it is clear how projected tree cover and the air pollution

removal curves have similar patterns and howmortality affects the

magnitude of tree cover and benefits. Reducing mortality rates

increases both total and peak benefits and shifts the peak effects to

later time periods.

The new tree population planted in New York City will sequester

an average of 7000 metric tons of carbon per year and remove

around10 grams of air pollutants (O3, PM10, SO2, NO2, CO) per square

meter of canopy cover (gm"2) per year with a mortality rate of 4%.

The benefits and canopy cover produced by the newly planted

trees can be maximized by ensuring long-term survival (reducing

mortality rates), enhancing growth rates, and utilizing species that

produce maximum size and benefits. Reducing mortality can also

be accomplished by choosing tree species that are well adapted to

the urban environment. Tree adapted to local sites may also reduce

long-term maintenance needs and costs. Trees remove pollutants

but can also be affected by high levels of pollution. Normal pollu-

tion level does not adversely affect most trees, but for areas with

high pollutant levels, tree species should be selected that are
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resistant to acute and chronic exposure to pollutants. Trees should

be also resistant to pathogens and insects attacks. Healthy trees

with high leaf surface areas and transpiration rates can enhance

pollution removal (Nowak et al., 2002a,b), unless water limitation

becomes an issue.

Planting campaigns, thus decisions on species selection and

planting design, are more likely to be successful if they have a well

defined goal, such as maximizing one or several of the benefits

produced by trees. Management plans should focus on optimizing,

in a certain area, those benefits that are considered having the

highest priority to optimize benefits for society (Nowak et al., 2007).

5. Conclusions

Trees in urban environment improve air quality and conse-

quently human health through pollution removal. In massive tree

planting campaigns, as the MillionTreesNYC initiative, planting site

selection is crucial to maximize tree benefits. Planting design, site

and species selection, tree protection and maintenance are funda-

mental to ensure survival and tree benefits. The planting priority

index developed in this paper is unique because it considers

pollution concentration as the main indicator for driving decisions

on planting sites. However, spatially distributed pollutant concen-

trations are still hard to obtain through dispersionmodel, especially

for pollutants such as ozone that are highly reactive and not directly

emitted. Moreover, more accurate data on PM2.5 concentration are

needed because of its extreme hazard for human health. The

planting priority index is also innovative but could be integrated by

other indicators that should be taken into account tomake decisions

on planting locations. Selecting one indicator instead of another is

strictly related to stakeholders and planners needs.

In our study it emerged that the population projector is a valu-

able tool to quantify pollution and carbon uptake by trees over

time, estimating future tree dynamics and proving how the benefits

produced by trees last much longer than planting campaigns.

However, those estimates are strongly dependent on mortality rate

whose information is still scarce enabling accuracy of the estimates.

Besides, social acceptance of the new tree population should be

investigated and communities involved in order to reduce the

dramatic phenomenon of vandalism that is often the first cause of

mortality for trees in urban environment.
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