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a b s t r a c t

A major challenge in modeling the carbon dynamics of vegetation communities is the proper parame-
terization and calibration of eco-physiological variables that are critical determinants of the ecosystem
process-based model behavior. In this study, we improved and calibrated a biochemical process-based
WxBGC model by using in situ AmeriFlux eddy covariance tower observations. We simulated carbon
dynamics of fire-dominated forests at tower sites and upscaled the tower site-based simulations to
regional scale for the New Jersey Pinelands using LANDSAT-ETM land cover and DAYMET climate data.
The Extended Fourier Amplitude Sensitivity Test approach was used to assess the higher-order sensitivity
of model to critical eco-physiological parameters. The model predictions of CO2 net ecosystem exchange
(NEE) and gross ecosystem production (GEP) were in agreement with the eddy covariance measurements
at the three tower sites in 2005. However, the model showed poor fit in 2006, grossly overestimating
NEE and the ratio of ecosystem respiration to GEP because the model did not reflect the carbon loss
caused by severe defoliation related to an outbreak of gypsy moths in that year. The model simulations
indicated that wildfire reduced annual NEE in pine/scrub oak forest, while prescribed burning in oak/
pine and pine/oak stands led to temporary increase in NEE for a period 1e2 years post burning. The
uncertainty and sensitivity of the model carbon simulations were mainly attributable to the 2nd- and
higher-order interactions between carbon allocation parameters, specific leaf area and fire mortality
intensity.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Terrestrial ecosystems can serve as either a net carbon sink or
a net source, and play an important role in determining carbon
storage and fluxes at regional and global levels (Aber and Driscoll,
1997; Law et al., 2001; Walther et al., 2002; Sitch et al., 2003;
Wang et al., 2010). In the past decade, the rate of sequestration by
North American forests has been estimated at 0.23 petagrams of
carbon per year (Goward et al., 2008). This offsets about 13% of the
fossil fuel emissions from the continent. However, the uncertainty
about the estimate of forest carbon flux is as high as nearly 50%
(Goward et al., 2008). Part of this uncertainty in quantifying carbon
flux is due to carbon dynamics of landscape or regional forest
ecosystems in response to natural and anthropogenic disturbances
(Lane et al., 2010; Wang et al., 2010).
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In recent years, great strides have been made through the
integration of spatially-explicit ecosystem models, remote sensing
derived land cover, eddy covariance measurements and environ-
mental variables to quantify carbon cycling dynamics across
multiple spatial and temporal scales (Keane et al., 2002; Rollins
et al., 2006; Updegraff et al., 2010). As conventional forest inven-
tory techniques and eddy covariance measurements are useful
benchmarks to determine carbon sequestration for a specific
vegetation types in certain landscape settings, ecosystem process
models provide an important means of estimating the spatial and
temporal details of changes in carbon storage and fluxes (White
et al., 2000; Law et al., 2001; Thornton et al., 2002; Pan et al.,
2006; Updegraff et al., 2010). Previous literature suggested that
spatially explicit ecosystem models should not only capture the
most critical interactions between environmental drivers and
ecosystem processes, but also accurately convey the impact of
natural and human disturbances on the processes of CO2 uptake,
storage and emission (White et al., 2000; Thornton et al., 2002;
Lane et al., 2010; Updegraff et al., 2010). A critical evaluation of
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a model’s ability to explain the within-site and between-site vari-
ability in forest inventory data or flux measurements is essential
before broader scale applications of the model can be pursued (Law
et al., 2001; Thornton et al., 2002; Pan et al., 2006). Thus, there is
a growing need for coupled observational and modeling strategies
to simulate and map response of carbon storage and cycling to
natural and human disturbances for particular regions of concern.

A key determinant of a model’s utility for specific landscapes or
regions is the proper calibration of the model’s driving variables
with locally-applicable parameterization and sensitivity of the
model’s input parameters (Aber et al., 1997; White et al., 2000;
Gertner, 2003; Matsushita et al., 2004; Miao et al., 2004, 2009;
Makler-Pick et al., 2011). To examine the applicability of the
Biome-BGC model across a range of conditions, for example,
White et al. (2000) collected highly site- and species-specific eco-
physiological parameters for major temperate biomes and
assessed the factorial sensitivity of NPP (net primary productivity)
for five critical parameters. For a given species or biomes, vari-
ances of many eco-physiological parameters are high enough to
significantly influence prediction quality. For instance, the allo-
cation ratio of new stem carbon to new leaf carbon of pitch pine
(Pinus rigida Mill.) and white oak (Quercus alba L.) ranged from
1.28 to 1.99 and from 0.80 to 1.36, respectively (Olsvig, 1980;
White et al., 2000). Specific leaf area of the evergreen needle
leaf (ENF) biome varied from 2.8 m2 kgC�1 for Pinus resinosa to
11.5 m2 kgC�1 for Pinus taeda of the eastern US forests (Scherzer
and Hom, 2008). Thus in approaching a finer scale application of
a broadly parameterized ecosystem process model, careful
attention must be paid to examining this uncertainty. Further, the
specific form and coefficients of the biogeochemical model
equations are generally based on empirical laboratory and/or field
observations, and thus are not always applicable under all
conditions. Accordingly, sensitivity analyses are prerequisites for
model building and application in any setting, be they diagnostic
or prognostic (White et al., 2000; Saltelli, 2002; Saltelli et al.,
2000; Miao et al., 2004; Miao and Li, 2007, 2010; Saltelli and
Annoni, 2010).

The objective of this study is (i) to improve and calibrate the
WxBGC model tool, a coupled Biome-BGC and WxFIRE model, by
using locally-derived eco-physiological parameters and historical
fire records; (ii) to make higher-order sensitivity and uncertainty
analysis of the model carbon simulations to eco-physiological
parameters; and (iii) to simulate andmap carbon storage and fluxes
of the US New Jersey Pinelands region. In this study, the WxBGC
model was modified and validated against AmeriFlux (Long-term
flux measurement network of the Americas) eddy covariance
measurements in representative uplands forests that spanned the
gradient from oak/pine to pine/oak to even more heavily fire
disturbed pine/scrub oak during the years of 2005 and 2006
(Clark et al., 2004, 2009). Sensitivity analysis was carried out
through the Extended Fourier Amplitude Sensitivity Test (EFAST)
approach to examine the main effects and higher-order interac-
tions between the eco-physiological input parameters and their
contribution to the uncertainty of carbon dynamic predictions. The
validatedWxBGCmodel was then applied across a longer time span
to examine model behavior in relation to fire disturbance and
across the broader New Jersey Pinelands region to predict and map
carbon dynamics and distribution at the regional scale.

2. Materials and methods

2.1. Model description

The WxBGC model was developed by the USDA Forest Service National
LANDFIRE project (Steinwand and Nelson, 2005; personal communication) to
generate consistent and comprehensive spatially explicit biophysical layers
containing vegetation, litter, soil carbon, water vapor, fire disturbances, etc. of
Multi-Resolution Land Characterization (MRLC) zones, in support of the US
national LANDFIRE prototype and vegetation mapping. The WxBGC model inte-
grate the WxFIRE and Biome-BGC models and is able to implement parallel
simulations for large-scale landscape ecosystems at a finer resolution on a Linux
(Red Hat 8.0)-based multiple-node cluster. As a widely calibrated model, the
Biome-BGC model seeks to mechanistically represent ecosystem cycles of carbon,
water, and nutrients through an integrated consideration of biology and
geochemistry (Running and Gower, 1991; White et al., 2000; Thornton et al., 2002).
The WxFIRE model is used to map vegetation, fuels, fire regimes and fire condition
classes in the LANDFIRE project, and computes climate-based biophysical variables
at any landscape scale or resolution using daily weather data, topography and soil
parameters, and a diverse set of integrated environmental functions (Keane et al.,
2002). Detailed descriptions of the Biome-BGC and WxFIRE models can be found
in Running and Gower (1991), Thornton et al. (2002) and Keane and Holsinger
(2005), respectively.

In the current study, we modified the WxBGC model to simulate carbon storage
and dynamics of the New Jersey Pinelands. The model improvements are summa-
rized as follows:

(i) Combination of random and spatially heterogeneous fire disturbances into the
model. Inherited from the Biome-BGC model, the original WxBGC model set
disturbance intensity (i.e., the whole-plant mortality rate parameters)
through plant eco-physiological parameter input files and considered distur-
bance as a continuous and spatially homogenous disturbance. In other words,
disturbance occurs at every pixel every time step with a constant intensity.
The assumption may be true for chronic harvest cutting, herbivory and insect
defoliation within large areas, but may not be applicable to episodic and
spatially heterogeneous disturbances such as wildfire and windfall. Based on
our review of historical fire occurrence records of the New Jersey Pinelands for
the years between 1924 and 2007, we improved the model to randomly
generate fire events between March and April for spring prescribed burning
by using uniform random distribution and stochastically initiate wildfire
event dates using a Gaussian distribution. In this study, we set April 20 as the
mean and 40 days as the standard deviation of Gaussian distribution for New
Jersey pinelands wildfire disturbance events, respectively. Therefore, our
modified WxBGC version includes stochastic rather than deterministic fire
disturbance. We empirically classified fire intensity (i.e., fire mortality rate)
into five levels: no fire, prescribed burning (we assumed prescribed fire
burned 30% of dead stem, litter and coarsewoody debris, and 5% of live carbon
which represents burned shrub and grass), moderate non-replacement
wildfire (35% of all carbon to be burned), heavy non-replacement wildfire
(50% of all carbon to be burned) and replacement wildfire (>60% of all carbon
to be burned) (Little, 1979; Boerner, 1981; Boerner et al., 1988). We set fire
disturbance to directly reduce a proportion of the initial values of all plant and
fine litter state variables immediately before the disturbance as did Thornton
et al. (2002). The affected proportions of the leaf, fine root, live wood, and fine
litter C and N pools are assumed to be lost to the atmosphere.

(ii) Combination of remote sensing land cover data into the model. In order to
generate consistent and comprehensive biophysical layers of carbon and
water dynamics of MRLC zones, the original WxBGC model hypothetically
assumes a spatially homogeneous land cover (i.e., evergreen needle leaf or
grass) for given landscape or region. We coupled remote sensing-derived land
cover mosaics into the model to spatially explicitly simulate comprehensive
biophysical layers of real heterogeneous ecosystem mosaics. Except for
meteorological data, the improved version includes 11-layers of geo-reference
spatial inputs such as elevation (m), aspect (�), slope (%), hillshade (dimen-
sionless), soil depth (m), sand percent, silt percent, clay percent, land cover
type, fire time and intensity (percent of tree fire mortality). We set other
geographic or environmental variables (e.g., albedo, N-deposition, etc.) to
Biome-BGC default values (White et al., 2000; Thornton et al., 2002).

(iii) Improvements of output functions. The original WxBGC model does not output
monthly and annual predictions but the 18-yr average predictions of 42
variables. We restructured the output functions of the WxBGC model into
timely and spatially explicit variable-oriented output functions, i.e., 42
monthly and annual biophysical variables including transpiration, actual
evapotranspiration, leaf area index, net ecosystem exchange of CO2, gross
primary productivity (GPP), soil carbon, etc. The internal time step of the
model is still daily. Theoretically, themodel could output daily predictions, but
output file sizes would be as high as over hundreds gigabytes for the New
Jersey Pineland at finer resolution (say less than 100-m resolution), therefore
the daily output function was inactivated.

It is worth noting that the original model classified DEM and DEM derivatives
into several group levels and aggregated some similar neighbor pixels into one map
unit to reduce total pixel numbers and computations due to the large spatial scale of
MRLC zone 60. The improved version is straight up the original pixels of land cover
and geo-referenced environmental variables.
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2.2. Study area

The study was conducted in the New Jersey Pinelands, which consists of
approximately 1.1 million acres in southern New Jersey. The New Jersey Pinelands
was the first US National Reserve designated as such and a U.S. Biosphere Reserve of
the Man and the Biosphere Program. Two relatively distinct floristic complexes are
present in the Pinelands, a lowland complex (wetland) and an upland complex. The
wetlands are composed principally of white cedar (Chamaecyparis thyoides (L.)
B.S.P.), trident red maple (Acer rubrum L.), and black gum (Nyssa sylvatica Marsh.).
The uplands comprise approximately 62% of the Pine Barrens, and are dominated by
three major forest communities: black oak/pine forest types, pine/black oak, and
pine/scrub oak in the understory (McCormick and Jones, 1973; McCormick, 1979;
Forman, 1979; Lathrop and Kaplan, 2004; Skowronski et al., 2007). All stands have
ericaceous shrubs in the understory, primarily huckleberry (Gaylussacia baccata
(Wangenh.) K. Koch, G. frondosa) and blueberry species (Vaccinium spp.)
(Skowronski et al., 2007). In the New Jersey Pinelands, fire and human disturbances
are considered as secondary environmental factors in determining vegetation
community composition following soil texture and nutrients. Fire frequency is fairly
high (e.g., 5e15 yrs for dwarf pine plains and 15e25 years for pitch pine-scrub oak
barrens) and fire disturbances can apparently affect the current process and future
direction of carbon flux for some forest community types (Boerner, 1981; Forman
and Boerner, 1981; Buchholz and Zampella, 1987; Boerner et al., 1988).

In the Pinelands, in winter, a strong northwesterly flow of cold, dry air masses
from Canada predominates, and temperatures average 0e2 �C (32e36 �F). In
summer, a southwesterly flow of warm, humid air, around the Bermuda high-
pressure area dominates the Pinelands, with temperatures averaging 22e24 �C
(72e75 �F). Average annual precipitation throughout the Pinelands is
1067e1168 mm. Both precipitation and temperatures are highly variable from year
to year (Havens, 1979).

Three upland AmeriFlux eddy tower sites operated by the U.S. Forest Service out
of the Silas Little Experimental Forest were used as calibration/validation sites.
These sites consisted of a mixed oak and pitch pine stand (oak dominated) (Silas
Little, 39.9161 �N, 74.5986 �W), a mixed pine/oak stand (pine dominated) (Fort Dix,
39.9731�N, 74.4341�W), and a pitch pine overstory/scrub Oak dominated understory
stand (Cedar Bridge, 39.8302 �N, 74.3403 �W) (Skowronski et al., 2007) (Fig. 1). The
climate of three sites is cool temperate, with mean monthly temperatures of 0.3 and
23.8 �C in January and June (1930e2004), respectively. Mean annual precipitation is
1123�182 mm. Soils are derived from the Cohansey and Kirkwood Formations
(Lakewood and Sassafras soils), and are coarse-textured, sandy, acidic, and have
extremely low cation exchange capacity and nutrient status (Tedrow, 1986).
A wildfire event occurred in 1995 at the Cedar Bridge tower site. Two prescribed
burning events occurred in 2002 and 2003 at the Fort Dix tower site. Four prescribed
fire events occurred in 1980, 1981, 1982 and 1997 at the Silas Little tower site.

2.3. Remote sensing derived land covers and eco-physiological parameterizations

We used New Jersey 2001 Landsat-7.0þ ETM (Enhanced Thematic Mapper)
level-3 land cover data set (Lathrop and Kaplan, 2004) as the basis for land cover for
the New Jersey Pinelands study area (Fig. 2). The Level 3 data was aggregated to ten
categories: grassland, scrub/shrub (including upland/wetland shrub), upland oak
Fig. 1. The US New Jersey Pinelands
forest (oak> 75%), upland oak-pine (oak: 50e75%), upland pine-oak, upland pine,
hardwood swamp, pine wetland, mixed hardwood/white cedar-pine-holly wetland,
and white cedar swamp. To reduce model computation time, we masked out
developed land (>25% impervious surface), cultivated land, barren soil/rock, water
and marine coast/estuarine area (21.99% of total area). In this study, regional
simulations were implemented at a 100-m resolution by using parallel simulation
technology on a LINUX-based cluster with 12 nodes.

We parameterized eco-physiological input parameters for the ten categories of
2001 Landsat-7 level 3 land cover of the New Jersey Pinelands based on information
available in the literature and the USDA Forest Service physiological database
(Scherzer and Hom, 2008). If regionally relevant information on trees and shrubs
derived for either the New Jersey Pinelands (Little, 1979; Ehrenfeld and Gulick, 1981;
Wang, 1984; Ehrenfeld and Schneider, 1991) or the New York Long Island Pine
Barrens (Whittaker and Woodwell, 1968) were not available, we relied on
White et al. (2000) (Table 1). The upland forests generally represent a gradient from
pitch pine dominated to mixed oak (Quercus spp.) dominated, so eco-physiological
parameters of oak-pine and pine-oak were used in a weighted average of individual
oak and pine parameters based on the component percentage in the land cover
mapping. For example, for the upland oak-pine, the eco-physiological parameters
were the weighted mean of oak and pine parameters based on the component
percentage of 50w75% of oak and 25%w50% of pine. The parameters of wetland pine
were nearly identical to upland pine, but the C:N ratio of leaves, fine roots, and
environmental variables were specific for the wetlands. We used the mean of Vcmax

gas-exchange measurements of four shrub species to calculate fraction of shrub leaf
N in Rubisco (Miao et al., 2009). Most of grass parameters were directly cited from
White et al. (2000).

2.4. Meteorological data

For three tower sites, eddy covariance meteorological data (2004e2006) were
provided by Silas Little Experimental Forest, USDA Forest Services. Continuous
meteorological measurements were conducted at each flux tower from 2004 to
2006 (Clark et al., 2004, 2009, 2010). Incoming shortwave radiation (LI-200, Li-Cor,
Inc.), photosynthetically active radiation (PPFD; LI-190, Li-Cor, Inc.), net radiation
(NRLite, Kipp and Zonen, Inc.), air temperature and relative humidity (#HMP45,
Vaisala, Inc.), windspeed and direction (05013-5, R. M. Young Co.), and precipitation
(TE525, Texas Electronics, Inc.) were measured above the canopy at 15e20 meter
height. Barometric pressure (PTB 100A, Vaisala, Inc.) was measured from the tower
at the Silas Little Experimental Forest. Meteorological data were recorded with
automated data loggers (CR23x, Campbell Scientific) every 30 min. We determined
maximum, minimum and daily mean temperature, daily precipitation and solar
radiation based on sunrise and sunset time of three tower sites. Vapor pressure was
calculated with the MTCLIM43 model based on daily tower temperature and
precipitation (Thornton et al., 1997). To lengthen the period of record for the tower
site scale simulations, 24 years of DAYMET (1980e2003) were employed as well.

For the New Jersey Pinelands-wide simulations, we employed DAYMET data for
an 18 year time period (1980e1997). DAYMET is a collection of algorithms and
computer software designed to interpolate and extrapolate from daily meteoro-
logical observations to produce gridded estimates of daily weather parameters over
large regions (www.daymet.org). The DAYMET data includes daily weather
and eddy covariance tower sites.

http://www.daymet.org
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parameters such as temperature, precipitation, solar radiation, vapor pressure
deficit and day length, and it was produced on a 1 kilometer grid over the entire
conterminous United States for the period of record 1980e1997. The daily obser-
vations used to produce the gridded surfaces came from approximately 6000
stations in the U.S. National Weather Service Co-op network and the Natural
Resources Conservation Service SNOTEL network (automated stations in moun-
tainous terrain) (Thornton et al., 1997, 2000; Thornton and Running, 1999).

2.5. Geo-referenced environmental gradients

We used the USDA Natural Resources Conservation Service SSURGO (Soil Survey
Geographic) database (http://soildatamart.nrcs.usda.gov/) to derive soil texture
(sand, clay and silt percent) and soil profile depth (soil depth in m) maps for the NJ
Pinelands study area. Elevation (m) and slope (%), aspect (degree) and topographic
shade (hillshade) maps were developed from a seamless DEM mosaic of the USGS
National Elevation Database (NED) (http://edc2.usgs.gov/geodata/index.php).

2.6. Eddy covariance towers and NEE measurements

We used closed-path eddy covariance (EC) measurements from the U.S. Forest
Service’s three eddy tower sites to evaluate the model predictions of net ecosystem
exchange (NEE). EC systems were composed of a 3-dimensional sonic anemometer
(Windmaster Pro or R3A, Gill Instruments Ltd., Lymington, UK, or RM 80001V, R.M.
Young, Inc.) mounted approximately 4 m above the canopy on an antenna tower at
each site, a closed-path infrared gas analyzer (LI-7000, Li-Cor Inc., Lincoln, Nebraska)
in an enclosure on the tower, a 5 m long, 0.4 cm ID teflon coated tube and an air pump
sampling 8 lmin�1, and a lap-top PC to collect data (Moncrieff et al., 1997; Clark et al.,
2004). The LI-7000s were calibrated every 2e7 days using CO2 tanks that were
traceable to primary standards. Net CO2 exchange was then calculated at half-hour
intervals using EdiRe software. The flux associated with the change in storage of CO2

in the air column beneath the inlet was estimated using top of tower and 2-m height
measurements or a profile systemwith inlets at 0.2, 2, 5, 10, 15 and 20 m height.

Annual NEE estimates require continuous values of half-hourly CO2 exchange. To
estimate daytime net CO2 exchange (NEEday) for periods when we did not have
measurements (due to precipitation, low windspeed conditions, instrument failure,
etc.), a rectangular hyperbola to the relationship between PPFD and NEEday were
fitted (Ruimy et al., 1995; Clark et al., 2004). To estimate nighttime net CO2 exchange
(NEEnight), half-hourly net exchange rates were regressed on air or soil temperature
using an exponential function. We then used modeled data calculated from the
continuous meteorological data for periods when we did not have measured fluxes
to estimate daily to annual NEE for each site. Annual ecosystem respiration (Reco)
was calculated for each site using continuous half-hourly air or soil temperature.
Annual NEE and Reco were summed to estimate gross ecosystem productivity (GEP)
(Reichstein et al., 2005; Clark et al., 2009) (Table 2). GPP and GEP are often inter-
changeable in the field of ecological modeling, but GEP contains a photorespiratory
component that GPP does not (Law et al., 2001; Clark et al., 2004, 2009; Reichstein
et al., 2005).

2.7. Sensitivity and uncertainty analysis

We employed the EFAST approach to analyze the sensitivity of the carbon
storage and flux predictions to 11 crucial eco-physiological input parameters. As
a procedure widely used for uncertainty and sensitivity analysis, the Fourier
Amplitude Sensitivity Test (FAST) method is more efficient than the Monte Carlo
approach and used to estimate the expected value and variance of the output and
the contribution of individual inputs to uncertainty and sensitivity of the outputs
(Saltelli, 2002; Frey and Patil, 2002; Saltelli and Annoni, 2010; Yang, 2011). The
EFAST method developed by Saltelli et al. (2000) was used to address higher order
interactions between the inputs. The EFAST method used a decomposition of the
Fourier series representation to obtain the fractional contribution of the individual
input variables to the variance of the model predictions (Saltelli and Bolado, 1998;
Saltelli et al., 2000; Saltelli, 2002; Frey and Patil, 2002). The total variances of the
model output can be described as:

VðYÞ ¼
Xk

i¼1

Vi þ
Xk

i¼1

Xk

j>i

Vij þ
Xk

i¼1

Xk

j>i

Xk

m>j

Vijm þ/þ V12/k

where V(Y) is total unconditional variance of the model output (Y) with k input
variables, Vi is the first-order conditional variance of the model output (Y) when
input variable Xi ¼ x*i , i.e., Vi ¼ VðEðYjXi ¼ x*i ÞÞ, x*i is untrue or random value of
Xi, Vij is the second-order variance when Xi ¼ x*i and Xj ¼ x*j , i.e., the variance of

the interaction between variables i and j, Vij ¼ VðEðYjXi ¼ x*i ;Xi ¼ x*j ÞÞ � Vi � Vj ,

Vijm and V12/:k are the higher order variance of interaction among multiple (�3)
variables i, j, m.k.

The first-order sensitivity index (S) is: Si ¼ Vi=VðYÞ, i.e., the contribution of
individual parameter to the model performance. Similarly, the second- and higher-
order sensitivity index are: Sij ¼ Vij=VðYÞ, Sijm ¼ Vijm=VðYÞ. The total order

http://soildatamart.nrcs.usda.gov/
http://edc2.usgs.gov/geodata/index.php


Table 1
The crucial eco-physiological parameters used in the current study.

Name Unit Description Silas Little Fort Dix Cedar Bridge Sources

leafturnover 1/yr Annual leaf and fine root
turnover fraction

0.8933 0.5735 0.4609 Whittaker, 1962; Olsvig, 1980;
White et al., 2000

NFRC:NLC DIMa (ALLOCATION) new fine root C:
new leaf C

1.4173 1.3810 1.3695 Whittaker and Woodwell, 1968;
White et al., 2000

NSC:NLC DIM (ALLOCATION) new stem C: new leaf C 1.3501 2.1594 2.1482 Whittaker and Woodwell, 1968
NLWC:NWC DIM (ALLOCATION) new live wood C: new

total wood C
0.1463 0.1072 0.1674 White et al., 2000

NCRC:NSC DIM (ALLOCATION) new croot C: new stem C 0.3014 0.2187 0.1947 Whittaker and Woodwell, 1968
C:Nleaf kgC/kgN C:N of leaves 29.9708 40.0872 42.9395 Ehrenfeld, 1981; Wang, 1984
C:Nlitter kgC/kgN C:N of leaf litter, after retranslocation 76.4527 100.0945 103.8611 Melin, 1930; White et al., 2000
C:Nfroot kgC/kgN C:N of fine roots 61.9475 57.5269 55.7099 White et al., 2000
C:Nlwood kgC/kgN C:N of live wood 88.6978 87.0239 81.7630 Ehrenfeld, 1981; Wang, 1984
C:Ndwood kgC/kgN C:N of dead wood 557.6741 608.9501 637.5739 Wang, 1984; Woodwell et al., 1975
leaflabile DIM Leaf litter labile proportion 0.3522 0.3871 0.4141 Aber et al., 1990; Melin, 1930
leafcellulose DIM Leaf litter cellulose proportion 0.4502 0.3826 0.3505 Aber et al., 1990; Melin, 1930;

White et al., 2000
leaflignin DIM Leaf litter lignin proportion 0.1975 0.2303 0.2355 Melin, 1930
dwoodcellulose DIM Dead wood cellulose proportion 0.7438 0.7263 0.7185 White et al., 2000
dwoodlignin DIM Dead wood lignin proportion 0.2562 0.2738 0.2815 White et al., 2000
CLEC DIM Canopy light extinction coefficient 0.5354 0.4024 0.4024 Wood, 1937; Whittaker and Woodwell, 1969;

Collins and Good, 1987
LAratio DIM All-sided to projected leaf area ratio 2.0926 2.3563 2.4469 White et al., 2000
SLA m2/kgC Canopy average specific leaf area

(projected area basis)
20.5545 16.0334 15.3131 Scherzer and Hom, 2008; White et al., 2000

PLNR DIM Fraction of leaf N in Rubisco 0.0520 0.0383 0.0333 Wullschleger, 1993; Reich et al., 1995;
White et al., 2000; Scherzer and Hom, 2008;
Miao and Li, 2010

Boundcond m/s Boundary layer conductance
(projected area basis)

0.0223 0.0575 0.0671 White et al., 2000

LWP:scond MPa Leaf water potential: start of
conductance reduction

�0.2694 �0.4672 �0.5014 Xu et al., 2007; White et al., 2000

LWP:fcond MPa Leaf water potential: complete
conductance reduction

�1.8657 �2.1953 �2.4898 Xu et al., 2007; White et al., 2000

VPF:scond Pa Vapor pressure deficit: start of
conductance reduction

1024.3827 809.0625 744.6355 White et al., 2000

VPF:ccond Pa Vapor pressure deficit: complete
conductance reduction

3522.8395 3303.1250 3290.1040 White et al., 2000

a Dimensionless.
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sensitivity index for variable i (STi ) is defined as the sum of all above index, that is:
STi ¼ ðVðYÞ � VðEðYjX�iÞÞÞ=VðYÞ ¼ ðEðVðYjX�iÞÞÞ=VðYÞ ¼ Si þ Sij þ Sijm þ Sijm/k . In
other words, the total order sensitivity includes not only the contribution of
individual parameter but also the contributions of two- and multi-dimensional
interactions between a specific parameter and all other parameters. If there are no
interactions among the variables in the model, the terms of Sij , Sijm and Sijm/k equal
zero, and the total variances of the model output can be described as:
VðYÞ ¼ Pk

i¼1 Vi , which can be addressed by OAT (test one parameter at a time) or
multivariate regression methods (Saltelli et al., 2000; Saltelli, 2002; Matsushita
et al., 2004; Miao et al., 2004; Yang, 2011).

In the current study, using the EFAST approach (SimLab version 2.2, 2003), we
generated 7000 pseudo values for each input parameter sets (Table 3). In actual, we
simulated 6943 iterations for oak/pine at Silas Little site and 6923 iterations for pine/
oak at Fort Dix site and pine/scrub oak at Cedar Bridge site, respectively, because
some pseudo values do not meet the WxBGC model requirements that the C:N ratio
Table 2
The model predictions and eddy covariance measurements of NEE (net ecosystem exchan
three tower sites (gCm�2 yr�1).

Site Years Stand age (yrs) NEE

Observed

Oak/Pine (Silas Little) 2005 ca. 90 187
2006 ca. 91 122

Pine/Mixed Oak (Fort Dix) 2005 ca. 74 137
2006 ca. 75 �103

Pine/Scrub Oak 2005 ca. 81 222
(Cedar Bridge) 2006 ca. 82 161

a The model prediction was GPP, which approximated to GEP here.
b Significant at the confidence level of 95% by t-test.
of leaves> C:N of livewood> C:N of deadwood.We undertook a total of 20,789 runs
for the sensitivity analysis of the three vegetation types for the three validation sites.
We used the contributions of 11 eco-physiological parameters to the 27-yr averages
and coefficient of variations of NEE, GPP and total carbon to measure sensitivity of
model to critical parameters.

2.8. Model spin-up and simulation

A steady state of soil organic matter (SOM) pools and nitrogen variables was
attained under the specified vegetation ecophysiology for three tower sites and each
pixel for New Jersey Pinelands by performing precursor (spin-up) simulations. The
precursor simulations were run with the respect to 27-yr climate data (observed
2004e2006 tower weather data plus 1980e2003 DAYMET) for three tower sites and
18-yr DAYMET (1980e1997) data for the regional New Jersey Pinelands, respectively.
The spin-up simulations begin with no SOM and are driven by repeated use of the
ge of CO2) and GEP (gross ecosystem production) of naturally-regenerated stands at

GEP (or GPP)a Reco/GEP(%)

Predicted Observed Predicted Observed Predicted

208 1133 866 79.1 76.0
218b 1167 913 89.5 76.1

170 876 1012 84.4 83.2
249b 784 1090b 113.1 77.2

234 1388 1098 84.0 78.8
250b 1403 1160 88.5 78.4



Table 3
Distribution and initial values of key parameters for EFAST analysis.

Code Description Unit Distribution/parametersa

Oak/pine at Silas
Little site

Pine/oak at Fort
Dix site

Pine/scrub oak at
Cedar Bridge

Plantmortality Annual whole-plant mortality fraction 1/yr U (0, 0.020) U (0, 0.020) U (0, 0.020)
Firemortality Annual fire mortality fraction 1/yr U (0, 0.050) U (0, 0.050) U (0, 0.050)
NFRC:NLC (ALLOCATION) new fine root C: new leaf C Dimensionless U (0.545, 1.590) U (0.347, 12.700) U (0.347, 12.700)
NSC:NLC (ALLOCATION) new stem C: new leaf C Dimensionless U (0.533, 5.280) U (0.596, 5.320) U (0.596, 5.320)
NLWC:NWC (ALLOCATION) new live wood C: new total wood C Dimensionless U (0.006, 0.279) U (0.056, 0.100) U (0.056, 0.100)
NCRC:NSC (ALLOCATION) new croot C: new stem C Dimensionless U (0.077, 0.563) U (0.151, 0.841) U (0.151, 0.841)
RatioCNleaf C:N of leaves kgC/kgN N (25.000, 5.400) N (42.000, 8.000) N (42.000, 8.000)
RatioCNlitter C:N of leaf litter, after retranslocation kgC/kgN N (55.00, 16.00) N (93.00, 19.00) N (93.00, 19.00)
RatioCNfroot C:N of fine roots kgC/kgN N (48.00, 15.00) N (58.00, 16.00) N (58.00, 16.00)
SLA Canopy average specific leaf area (projected area basis) m2/kgC U (16.300, 66.700) U (2.010, 28.200) U (2.010, 28.200)
PLNR Fraction of leaf N in Rubisco Dimensionless U (0.0001, 0.300) U (0.0001, 0.300) U (0.0001, 0.300)

a U(Min., Max.)¼ uniform distribution, N(Mean, S.D.)¼ normal distribution. The mean for Gaussian distribution, minimum and maximum for uniform distribution were all
cited from White et al. (2000)’s Biome-BGC ENF and DBF parameters, respectively. Standard deviations for Gaussian distribution were arbitrarily reduced according to White
et al. (2000).
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above surface weather records, and in most cases, more than thousand model years
elapse before reaching this steady state, the length of time controlled largely by rates
of nutrient input and loss, which together with climate and vegetation physiology
control the accumulation and loss of slowly responding soil organic matter pools
(Law et al., 2001). The endpoint of the spin-up run was used as initial condition for
normal simulation of carbon dynamics with specific fire disturbance for a givenpixel
(e.g., tower sites). To investigate the relationships between land cover vegetation
and climate variables, we simulated annual NEE and GEP with pure pine and oak
land cover scenarios, based on Cedar Bridge site climate and environmental
variables.
3. Results

3.1. Estimating NEE, GEP and the ratios of ecosystem respiration to
GEPof the New Jersey Pinelands

Comparison of the locally parameterized WxBGC model simu-
lations with the flux tower eddy covariance measurements
revealed that the model annual NEE estimates were within
a confidence level of 95% in 2005 by Student’s t-test but signifi-
cantly overestimated in 2006. This overestimate was especially
apparent for the pine/oak forest at Fort Dix site where the observed
annual NEE was negative (a carbon source). Differences in the 2-yr
GEPs (or GPPs) between the predictions and measurements were
not significant at the confidence level of 95% by t-test for the three
sites in 2005 and 2006, though the GEP predictions were higher
than themeasurements for pine/oak at the Fort Dix site in 2005 and
2006. The predicted ratios of ecosystem respiration to GEP were
significantly lower than the eddy measurements for all three tower
sites at the confidence level of 95% in 2006 but not in 2005,
particularly for pine/oak at the Fort Dix site (Table 2). It should be
noted that both the pine and oak overstory as well as the oak
understory in the Pinelands study area, and in particular the Ft. Dix
tower site, underwent severe defoliation by a major infestation of
gypsy moth (Lymantria dispar L.) in 2006.

Both prescribed burning and wildfire disturbance had a large
impact on the model estimates of NEE. While cool season
prescribed burning increased NEE estimates for 1e2 years after the
event, wildfire disturbance greatly reduced the estimated NEE. For
example, after spring prescribed burning at the Ft. Dix pine/oak site
in 2002 and 2003, annual NEE estimates in 2002, 2003 and 2004
were approximately 25e50% higher than the corresponding NEE
estimates for no-fire scenarios (prescribed burning: 174, 323 and
416 gCm�2 yr�1, vs. no fire: 131, 211 and 335 gCm�2 yr�1) (Fig. 3).
Likewise, similar patterns were observed at the Silas Little oak/pine
site after prescribed burning in 1980, 1981, 1982 and 1997. The
impact of wildfire disturbance was simulated at the Cedar Bridge
pine/scrub oak site under several different scenarios subsequent to
awildfire in 1995. Estimates of annual NEE decreased from a high of
230 gCm�2 yr�1 for the no-fire scenario to �26 gCm�2 yr�1 where
the wildfire mortality rate of 50% was assumed (Fig. 3).
3.2. Estimating the NPP of the New Jersey Pinelands

Using the locally-derived parameters, the WxBGC model NPP
predictions were closely aligned with the Pinelands region-wide
estimate made by Pan et al. (2006) based on USDA Forest Service
FIA (forest inventory and analysis) data (Fig. 4). The NPP predictions
based on White et al. (2000)’s Biome-BGC eco-physiological
parameterization were from 25 to 35% higher than the WxBGC
simulations with the locally-derived parameters as well as Pan et al.
(2006) (Fig. 4).

Wildfire disturbance considerably reduced the NPP estimates
while the prescribed burning increased the NPP estimates. For
instance, the NPP predictions with and without prescribed fires
were 567 and 496 gCm�2 yr�1 for oak/pine at Silas Little site in
1981, 351 and 314 gCm�2 yr�1 for pine/oak at Fort Dix site in 2003,
respectively. For pine/scrub oak at Cedar Bridge site, NPP estimates
reduced from 543 gCm�2 yr�1 of no wildfire to 249 gCm�2 yr�1

with wildfire disturbance (50% of mortality rate) in 1996
(unshown).
3.3. Correlation between the carbon flux simulations and
meteorological driving variables

Annual NEE estimates of the model for pine-dominated
community were more related to precipitation than that of oak-
dominated community (Fig. 5a). Without considering fire
disturbance, for example, the correlations between annual NEE
predictions and annual precipitation were 0.2850 for pine/scrub
oak at Cedar Bridge site and 0.0351 for pine/oak at Fort Dix site,
respectively, because vegetation cover at Cedar Bridge site has
more pine components than that at Fort Dix site. We simulated
annual NEE with hypothetical vegetation scenarios, pure pine or
pure oak scenarios, based on Cedar Bridge site (not shown). The
correlation coefficient between annual NEE predictions and
precipitation increased to 0.5727, while the correlation coefficient
between annual precipitation and annual NEE predictions for
hypothetical pure oak scenario was �0.22.

For three vegetations types, monthly mean NEE predictions
were all significantly associated with temperature. In 2005,
correlation coefficients between monthly NEE predictions and
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temperature were 0.8969 for oak/pine at the Silas Little site, 0.4606
for pine/oak at the Fort Dix site, and 0.7449 for pine/scrub oak at the
Cedar Bridge site, respectively, which were close to that between
eddy covariance measured NEE and temperature, 0.8386 for oak/
pine at Silas Little site, 0.7472 for pine/oak at Fort Dix site and
0.8725 for pine/scrub oak at Cedar Bridge site, respectively (Fig. 5b).
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3.4. Contribution of eco-physiological parameters to prediction of
carbon storage and flux

Examination of the results from the EFAST sensitivity analysis
revealed that total order sensitivity indexes were higher than the
1st order indices across all the parameters including fire mortality
(Fig. 6). In other words, the contributions of interactions among the
11 eco-physiological input parameters were much more significant
to themodel predictions of carbon storage and flux than that of each
individual input parameter (Fig. 6). For example, the 3-site average
of total order sensitivity index for the 27-yr mean NEE predictions
ranged from 0.0476 for the carbon allocation ratio of new coarse
root to new stem (NCRC:NSC) to 0.5884 for the allocation ratio of
fine root carbon to leaf carbon (NFRC:NLC),while the 1st order index
varied from 0.0004 for PLNR (fraction of leaf N in Rubisco) to 0.0741
for NFRC:NLC (new fine root carbon:new leaf carbon).

As fire mortality rate strongly affected the GPP and total carbon
predictions, the allocation ratio of NFRC:NLC and specific leaf area
(SLA) were the most important eco-physiological contributors to the
NEE and GPP predictions. For example, for the 3-site mean total
carbon prediction, the contributions of NFRC:NLC, annual fire
mortality rate and specific leaf area were 0.5386, 0.4210 and 0.3058,
whichwere significantly higher than that of other parameters (Fig. 6).
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Fig. 6. The 1st and total order contributions of eco-physiological input parameters to ann
abbreviation can be found in Tables 1 and 3.
Except for meteorological variables, the eco-physiological inputs
played an important role in the inter-annual variations of the
carbon storage and flux predictions (i.e., the model inter-annual
uncertainty). For example, for the inter-annual coefficient of vari-
ations of the 3-site GPP predictions, the contributions of
eco-physiological parameters varied from 0.0612 for PLNR to
0.5903 for NFRC:NLC.

3.5. NEE predictions and mapping on the scale of the US New Jersey
Pinelands

Fig. 7 displays the NEE distribution in 1997 (DAYMET climate
year) across the New Jersey Pinelands. For upland forests of the
Pinelands, the 18-yr mean NEE estimate for the pine community
was 215 gCm�2 yr�1. This was higher than the measurements of
201 gCm�2 yr�1 for upland oak, 194 gCm�2 yr�1 for upland oak/
pine and 207 gCm�2 yr�1for upland pine/oak community, respec-
tively. For the wetlands, the mean NEE estimate of cedar swamp
was 256 gCm�2 yr�1, which was higher than that of hardwood
swamp, mixed and pine vegetation types, respectively. In the
New Jersey Pinelands, annual total NEE predictions were mainly
dependent upon the land use area, i.e., the bigger area for a specific
vegetation type, the higher total NEE for the vegetation type.
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Fig. 7. NEE simulation and mapping on the scale of the New Jersey Pinelands
(gCm�2 yr�1).
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4. Discussion and conclusions

4.1. Sensitivity of the model carbon dynamics predictions to eco-
physiological parameters

As White et al. (2000) pointed out, research on the multi-
dimensional interactions among input parameters on the biogeo-
chemical model performance and prediction quality is critically
needed. Our results suggest that interactions among the crucial
eco-physiological parameters are the major contributors to uncer-
tainty of the WxBGC model carbon simulations. In other words,
apart from influences of individual parameters on the carbon
dynamic simulations, one parameter may enlarge the contributions
of other parameters. Using the EFAST approach to sensitivity anal-
ysis, results suggested that the 2nd- and higher-order interactions
among the 11 key eco-physiological parameters had much higher
contributions to the NEP, GPP and total carbon predictions than the
1st-order (i.e., effects of individual parameter) for the three tower
sites (Fig. 6). For example, for the allocation ratio of new fine root
carbon to new leaf carbon, the 2nd- and higher-order sensitivity
index (i.e., STi (total order sensitivity index)� Si (the 1st order
sensitivity index)) was 0.5143 for the 27-yr mean of NEP, while the
1st order sensitivity index was just 0.0741. These results do not
conform to White et al. (2000) study of Biome-BGC which found
that main effects (1st order) of individual parameters were statis-
tically more significant than two-way interaction effects (2nd
order). Our higher-order sensitivity index were the sum of all
sensitivity effects including two- and multiple-way interactions
between a specific variable and other variables rather than the
mere two-way interactions effects between every pair of five
parameters as in White et al. (2000). Therefore, the total interplay
between interactions of 11 parameters, which includes the 2nd and
higher order contributions, should be higher than contributions of
two-way interactions (merely 2nd order contribution) of five
parameters in White et al. (2000). In the New Jersey Pine Barrens
area, for instance, the one- or two-growing season’s recovery of
forest structure dynamics following wildfire showed that the
interactions of multiple variables (e.g., forest succession, carbon
allocation ratio and soil variables) may have higher impacts on
forest ecosystems than the only fire mortality rate (Boerner, 1981;
Boerner et al., 1988). In our sensitivity analysis, we did not
include maximum stomatal conductance (gsmax) as White et al.
(2000) did, since stomatal conductance does not play a very
significant role in the model simulations as determined by our OAT
test of the individual parameters.

As illustrated by our results, there is a great need for locally-
relevant parameterizations of the eco-physiological inputs to
ecosystem models to reduce the uncertainty in simulating
landscape scale carbon dynamics. Several of the crucial eco-
physiological parameters are especially problematic as they are
difficult and laborious to measure in field or laboratory and are
rarely reported in forest literature. In parameterizing carbon
allocation, the literature can be mined for information on the
distribution of carbon (or biomass) between root, stem, branch
and leaf partitions. However, much more difficult to obtain but
more relevant is the information on new fine root, new coarse
root, new stem, new live wood and new leaf carbon. For example,
the NEE and NPP simulations using White et al. (2000)’s Biome-
BGC parameters for evergreen needleleaf and deciduous broadleaf
forests (ENF and DBF) were significantly higher than the simula-
tions with our locally-derived parameters and eddy covariance
measurements (Fig. 4). We attribute this difference in model
estimates to the difference in the allocation ratio of new fine root
carbon to new leaf carbon and configuration of fire disturbances.
We parameterized the allocation ratio of new fine root carbon to
new leaf carbon to 1.43 for oak type, while White et al. (2000)’s
value is 1.20 for the DBF biome.

Our results from the sensitivity analysis, as well as the model
simulations, suggest that the WxBGC forest ecosystem model is
very sensitive to specific leaf area. The model simulations showed
a big gap between the predicted and measured NEE and the ratios
of ecosystem respirations to gross ecosystem productions in 2006,
whichwe attribute to defoliation of both the pine and oak overstory
as well as the oak understory, by a major infestation of gypsy moth.
Those differences were especially evident at the Fort Dix site which
underwent a nearly complete defoliation in 2006 (Table 2)
(Clark et al., 2010). Asmight be expected because the presentmodel
simulation did not incorporate temporal dynamic data on leaf area,
instead relying on periodic land cover maps, it completely missed
the 2006 defoliation event.

4.2. Impacts of fire disturbance on carbon storage and fluxes in the
New Jersey Pinelands

The New Jersey Pinelands has long been noted as a fire-
dominated landscape with fire frequencies ranging from 5e25 yrs
in some of its most fire-prone forest community types (e.g., the
dwarf pine plains and pitch pine-scrub oak barrens) (Little, 1979).
In such a fire dominated system, fire disturbance could have
a major impact on the current and future direction of the forest
carbon dynamics through the: (i) combustion of vegetation and
soil biomass and release of carbon to atmosphere, (ii) modifying
forest stand age distribution and ecosystem succession direction
and speed, and (iii) modifying the rate of CO2 release from soil
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microbial decomposition. In this present study, we concentrated
on fire direct impacts on forest carbon storage and flux (Law et al.,
2001; Thornton et al., 2002) and ignored fire effects on ecosystem
succession and soil microbial activity.

The WxBGC simulations demonstrate that wildfire disturbance
temporarily reduces both NEE and NPP, while spring prescribed
burnings increased NPP and NEE. For example, for oak/pine at Silas
Little site where prescribed fire occurred in 1980, 1981, 1982 and
1997, annual NEE predictions are increased by 21%, 56%, 45% and
20% than that of no prescribed fires, respectively. After prescribed
burning, it usually takes 1e2 years for themodel estimates of annual
NEE to gradually decline to those where no prescribed burning has
occurred. Hood et al. (2007) and Battaglia et al. (2008) also reported
that the success of using prescribed fire to control regeneration
density in fuel treatments is strongly dependent upon the frequency
and initial time of burning in ponderosa pine (Pinus ponderosa
(Dougl.) Laws.). An increase of NEE for post prescribed fire has not
been observed in the eddy covariance measurements of carbon
dynamics pre- vs. post-prescribed fire (Clark et al., 2009). Our
modeled increase is mainly due to the assumption that prescribed
fires merely burn litter and coarse woody debris (CWD) while only
slightly impacting the shrub layer, thus autotrophic and heterotro-
phic respiration contributed by litter and CWD is greatly reduced
while the GPP (from the shrub layer) is only slightly reduced. With
a wildfire carbon burning ratio of 35%, annual NEE predictions for
the pine/scrub oak community were decreased by 80% and 41% at
the first two years after wildfire burning (Fig. 4). Provided that
a replacement wildfire disturbance occurred for pine/scrub oak at
Cedar Bridge in 1995 with carbon burning proportion of above 60%
(i.e.,fire carbonburning rate), annualNEEpredictionswere negative
from 1995 to 2006. In other words, if vegetation canopy is
completely burned by replacement wildfire, therewill be no carbon
assimilation rather respiration from coarse woody debris, litter and
soil will continues and annual NEE will be less than or equal to zero
in the terrestrial ecosystems until newplants sprout and re-grow. In
this study, we fixed a wildfire carbon combustion loss rate for all
forest carbon components and did not take into account different
combustion rates for different forest components (i.e., foliage, stem,
litter, CWD, root, etc.). The model did not consider the change in
plant carbon allocation ratio after fire either. In reality, wildfires are
known to burn different forest components unevenly as well as
change plant carbon allocation ratio post-burning (Little, 1979;
Clark et al., 2009). For example, Clark et al. (2009, 2010) noted
that during the Warren Grove wildfire in our New Jersey Pinelands
study area, the combustion loss rate of understory carbon was
significantly higher than that of the overstory carbon. To improve
the accuracy and reliability of post-fire simulation of Pinelands
carbon dynamics, improved parameterization based on a wider
range of field measured fire disturbance intensity impacts, e.g.,
carbon combustion loss rate of different forest components and fire
effects on forest carbon allocation ratio, are needed. Further model
improvement and simulations of the long-term effects of fire
disturbance on soil microbial activity and ecosystem successions
should be addressed in the future.

Comparing the improved WxBGC model tool to Biome-BGC
version 4.1.2 for ENF and DBF (White et al., 2000), we found that the
way the Biome-BGC model included continuous and homogenous
prescribed or wildfire disturbance led to significantly reduced
annual NEE estimates. These lower NEE estimates are due to the
way the model burns carbon at every time step at every pixel with
a specific disturbance intensity, even when the fire intensity
parameter is set to a small value. In lieu of this approach, we
coupled stochastic and spatially heterogeneous fire disturbances
into the model for improved treatment at the landscape level. Our
WxBGC model result corroborates previous studies which have
suggested that disturbance type, intensity, frequency and time
since disturbance all exert significant impacts on the net ecosystem
exchange of forest carbon and that a forest stand will commonly act
as a source of carbon to the atmosphere until respiration from
decomposers become less than photosynthetic uptake from
regrowing vegetation (Law et al., 2001; Thornton et al., 2002;
Goward et al., 2008; Zinck et al., 2010).

4.3. NEE prediction gradients of the US New Jersey Pinelands

The WxBGC model was used to predict and map NEE across the
entire Pinelands study area (Fig. 7). Visual examination reveals
a high degree of spatial heterogeneity in NEE which are driven by
land cover, soil properties and climate of the Pinelands. NEE was
estimated to be generally higher for wetland as compared to upland
forest community types. In addition to the fine scale upland vs.
wetland variation, there was subtler between-community differ-
ences. Uplands NEE predictions were ranked with pine> pine/
oak> oak/pine> oak> shrub> grass. Wetlands NEE predictions
were generally ranked with cedar swamp> lowland pine>mixed
hardwood community (white cedar/pine/American holly)> hard-
wood swamp. Further field eddy covariance measurements of
wetlands forests are required to better calibrate the model
prediction of wetlands carbon dynamics. Coarser scale geographic
gradients are also evident as a result of regional scale trends in soil
characteristics and climate that also interact with vegetation
community composition differences. For example, the northeastern
quadrant of the study area is largely dominated by pine and the
model suggests that the pine-dominated community is sensitive to
annual precipitation. Higher soil moisture and precipitation in this
portion of the study area result in a higher estimate of NEE. Further
field measurements are needed to validate these results.
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