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Abstract. Increases in the extent and severity of spruce budworm (Choristoneura
fumiferana Clem.) outbreaks over the last century are thought to be the result of changes in
forest structure due to forest management. A corollary of this hypothesis is that manipulations
of forest structure and composition can be used to reduce future forest vulnerability. However,
to what extent historical forest management has influenced current spatial patterns of spruce
budworm host species is unknown. To identify landscape-scale spatial legacies of forest
management in patterns of spruce budworm host species (i.e., Abies balsamea and Picea spp.),
we analyzed remotely sensed forest data from the Border Lakes landscape of northern
Minnesota and northwestern Ontario. Our study area contains three regions with different
management histories: (1) fine-scale logging patterns in Minnesota, (2) coarse-scale logging
patterns in Ontario, and (3) very limited logging history in the Boundary Waters Canoe Area
and adjacent Quetico Provincial Park. We analyzed forest basal-area data using wavelets and
null models to identify: (1) at which scales forest basal area is structured, (2) where those scales
of pattern are significantly present, and (3) whether regions of local significance correspond to
regional boundaries that separate the study area. Results indicate that spatial patterns in host
basal area are created by nonstationary processes and that these processes are further
constrained by lakes and wetlands. Wavelet analysis combined with significance testing
revealed a bimodal distribution of scale-specific wavelet variance and separate zones of host
species basal area that partially correspond with regional boundaries, particularly between
Minnesota and the Wilderness region. This research represents one of the first comparisons of
forest spatial structure in this region across an international border and presents a novel
method of two-dimensional wavelet analysis that can be used to identify significant scale-
specific structure in spatial data.
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INTRODUCTION

The spruce budworm (Choristoneura fumiferana;

SBW) is an important native defoliator of fir and spruce

forests in Canada and the northeastern United States

(MacLean 1984, Batzer and Popp 1985). Outbreaks of

SBW can affect more area than fire and harvesting

combined (Fleming et al. 2002). Associated losses in

terms of tree growth and vigor, timber and fiber

production, and potential interactions with fire

(McCullough et al. 1998, Fleming et al. 2002) make

minimizing spruce budworm damage an important goal

of forest managers (MacLean et al. 2001).

SBW outbreaks are driven by natural enemies

(Royama 1984), climate (Peltonen et al. 2002), dispersal

(Williams and Liebhold 2000), and the availability and

spatial pattern of susceptible host trees (Cooke et al.

2007). In particular, the basal area of the SBW’s

preferred host species, balsam fir (Abies balsamea) and

white spruce (Picea glauca), often accounts for which

areas sustain the greatest damage (Batzer and Popp

1985, Bouchard et al. 2006). Of the factors that

contribute to outbreaks, the spatial pattern and abun-

dance of host is the one factor over which forest

managers have the greatest control, and the silvicultural

hypothesis suggests that manipulation of forest structure

through management may be an effective means to

reduce forest vulnerability to insects (Miller and

Rusnock 1993).

Over the last century outbreaks of spruce budworm

have become more severe and more extensive, possibly

due to changes in forest composition and configuration

from forest management and fire suppression (Blais
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1983, Cooke et al. 2007). It has been shown that greater

stand and neighborhood-level forest diversity can reduce

damage sustained during a SBW outbreak (Su et al.

1996, Cappuccino et al. 1998, Campbell et al. 2008).

However, the effects of landscape-level forest manage-

ment legacies and the ability of forest managers to

influence SBW outbreak dynamics through manipula-

tions of forest structure remain uncertain (Miller and

Rusnock 1993, Muzika and Liebhold 2000).

Forest spatial structure has also been shown to affect

the extent and severity of outbreaks in other insect

species. Roland and Taylor (1997) demonstrated the

influence of forest structure, and in particular forest

edges, on forest tent caterpillar (Malacosoma disstria)

outbreaks in Ontario. Similarly, Johnson et al. (2004)

showed that landscape geometry can produce complex

spatial outbreak patterns such as travelling waves in the

larch budmoth (Zeiraphera diniana). Furthermore, the

recent outbreak of mountain pine beetle (Dendroctonus

ponderosae) in western Canada is at least in part

attributable to the availability and connectivity of large

tracts of mature lodgepole pine (Pinus contorta) (Raffa

et al. 2008). Examination of the spatial structure of

insects’ preferred hosts and its relationship to forest

management is needed to better understand how human

activities affect outbreak risk, to infer landscape-scale

forest vulnerability, and to inform sustainable manage-

ment practices (Sturtevant et al. 2004).

We investigated whether variation in historical

management practices has affected the spatial structure

of SBW host species in the Border Lakes landscape

(BLL; Fig. 1). The BLL straddles northern Minnesota,

USA, and northwestern Ontario, Canada, and contains

three regions in which forest management and patterns

of land ownership have resulted in important differences

in landscape structure and composition (Wolter and

White 2002, Pastor et al. 2005). In Ontario, forest

management is generally carried out as large-scale

clearcuts, whereas in Minnesota cutblocks (the blocks

of land that are to be cut) are implemented at a finer

scale (Wolter and White 2002). In between these two

regions lies the wilderness zone of the Boundary Waters

Canoe Area and Quetico Provincial Park, which has not

been logged since the early 1970s, hereafter referred to as

‘‘Wilderness’’.

In this study we examined whether spatial legacies of

forest management can be detected in patterns of SBW

host tree species in the BLL using remotely sensed forest

data and two-dimensional wavelet analysis. Wavelet

analysis is an increasingly common tool for the analysis

of spatial and temporal ecological data (Cazelles et al.

2008). However, most ecological applications have been

undertaken using one-dimensional transects or time

series (Keitt and Urban 2005, Keitt and Fisher 2006,

Kembel and Dale 2006, James et al. 2010). There are few

examples of wavelet analysis applied to two-dimensional

(2D) raster data although the utility of such analyses for

remotely sensed data has been described (Falkowski et

al. 2006). Relevant recent applications of 2D wavelets to

remotely sensed data include the analysis of grassland

productivity (Csillag and Kabos 2002) and tree crown

feature identification (Falkowski et al. 2006, Strand et

al. 2006). Here, we expand the methods presented in

James et al. (2010) and demonstrate how wavelets can be

used to identify spatial boundaries in 2D data using

spatially structured null models.

We first characterized the scale of spatial structure of

forest basal area over the entire study area using global

summaries of wavelet variance as a function of scale

(i.e., scalograms). Here, wavelet variance represents the

degree of similarity in shape of the basal-area data and a

scalable and translatable wavelet template that is

designed to identify peaks in spatial data at multiple

scales. Using scalograms we tested whether the different

forest basal area types (i.e., total, fir, spruce, deciduous)

are similarly structured, and assessed the distribution of

spatial variance for each type at different scales relative

to a set of stationary null models. We then compared

scalograms for each basal area type to the distribution of

scalograms produced by a set of null models to

determine at which scales the wavelet variance is within

the range of expectation. If wavelet variance at a specific

scale exceeds the expected range of wavelet variance we

conclude that nonstationary processes are responsible

for variation in forest basal area at that scale.

Following our summary of the global scale-specific

attributes of forest basal area, we used local wavelet

summaries to identify nonstationary subregions (i.e.,

hotspots) in wavelet variance at the significant scales

identified above. These hotspots represent areas of high

forest basal area at particular scales. Hotspots in SBW

host species represent areas of greater potential out-

break risk. We identified hotspots in each forest type

using local summaries of wavelet variance that exceed

the expected distribution of spatially structured null

models (Gardner et al. 1987, Goovaerts and Jacquez

2005, James et al. 2010). Emergent boundaries that

demarcate these hotspots were interpreted in terms of

how much they corresponded to the regional adminis-

trative boundaries that separate the study area.

Emergent boundaries are those not imposed a priori

(e.g., existing regional administrative boundaries) and

are instead objects identified though comparison to our

simulated null model (Jacquez et al. 2000).

Finally, emergent scale-specific patches of high

wavelet variance in SBW host species were used to

identify forest areas of greatest potential vulnerability.

Patches of high basal area in SBW host species indicate

regions that would likely facilitate an outbreak. In

particular, hotspots at coarse scales represent large

regions of connected host and are most likely to support

or sustain an outbreak. We expected that the managed

regions, and in particular, managed regions in Ontario,

would have more large patches of connected SBW host

than the wilderness region.
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METHODS

Study area

The Border Lakes landscape (BLL; Fig. 1) is a

transitional forest region between the Great Lakes–Saint

Lawrence and boreal forest regions that contains a mix

of coniferous and deciduous tree species and is typified

by a high density of lakes and wetlands. Included in the

BLL are private lands and managed forests in

Minnesota (MN; USA), including Superior National

Forest and Kabetogama State Forest, as well as

managed forest in Ontario (ON; Canada). Between

these managed regions lies an approximately 1-million

hectare wilderness and recreation area that includes

Quetico Provincial Park in Ontario and the Boundary

Waters Canoe Area. The wilderness is not managed for

timber and represents a region free from the recent

influence of logging. For the purpose of this analysis, the

three principal regions within the ecoregion (MN, ON,

and Wilderness; Fig. 1B) are surrounded by a 50-km

buffer that comprises the total BLL study area of ;6.4-

million hectares.

Spatial data: forest basal area

Continuous forest basal area, expressed as square

meters per hectare, was used to assess the effects of

management practices on the scale of spatial structure of

budworm host species basal area, to identify emergent

spatial boundaries, and to identify local scale-specific

hotspots in relative forest vulnerability. Species-specific

basal area data were derived from partial least squares

(PLS) regression models using forest plots and multi-

temporal LANDSAT data collected between 2000 and

2005 (Fig. 2; Wolter et al. 2008). PLS regression has

been previously used to model relationships between

remotely sensed data and physical forest conditions

(Ourcival et al. 1999, Smith et al. 2002, Townsend et al.

2003). Wavelet analysis was performed on maps

representing PLS models of total basal area (R2 ¼
0.62), relative basal area of budworm host species (i.e.,

balsam fir with R2¼ 0.88, and spruce species (white and

black spruce) with R2 ¼ 0.64), and relative deciduous

forest cover (R2 ¼ 0.86). Commission errors with non-

host conifers (e.g., Pinus spp.) were corrected by

constructing a non-host conifer mask, defined as

locations where non-host conifers were present and

host-species basal area was ,15 % of the total basal area

(P. Wolter and P. Townsend, unpublished data). Masked

pixels were assumed to contain no host species.

Original basal area data were represented at a

resolution of 30 m. The large extent and fine grain of

these data presented formidable challenges to manipu-

lation and analysis and were therefore aggregated

through summation of all basal area for all pixels within

a 63 6 pixel moving window. This resulted in a data set

with a pixel size of 180 m2 and total extent of

approximately 2000 3 2100 pixels. Following aggrega-

tion, a 5 3 5 ‘‘majority filter’’ was run to smooth patch

edges using ArcInfo 9.2 (ESRI 2008).

Wavelet analysis

Wavelet analysis can be used to identify pattern at

different scales in time series, spatial transects, or two-

dimensional images through the decomposition of signal

variance into separate scale-specific components

(Daubechies 1992, Dale and Mah 1998, Cazelles et al.

2008). Wavelets are similar to localized Fourier analysis

and involve successive passes of a wavelet template of

increasing size over a set of data and assessing the degree

of similarity between the pattern of the data and the

wavelet template at each location (Torrence and Compo

FIG. 1. (A) Location of the Border Lakes Landscape (BLL) study area between Minnesota (MN; USA) and Ontario (ON;
Canada), with inset indicting continental context, and (B) the detailed study area, with management zones outlined (white lines).
Wilderness is composed of Quetico Provincial Park (QPP) and the Boundary Waters Canoe Area (BWCA). VNP refers to the
Voyageurs National Park and was omitted from analysis. The total study area is 6.9 3 106 ha.

September 2011 2199WAVELET ANALYSIS OF SPRUCE BUDWORM HOST



1998). This is similar to a moving-window analysis in

which the moving window is applied repeatedly as it is

increased in size. The values that describe this degree of

fit are referred to as ‘‘wavelet coefficients.’’ The size of

the wavelet template determines the scale of structure

captured and, in the discrete context, increases as powers

of two (i.e., 22, 23, 24) in terms of pixels. At a given

location and template size, the value of the wavelet

coefficient is high when the pattern of the data matches

the template and close to 0 when it does not (Bradshaw

and Spies 1992, Dale and Mah 1998). This comparison

between template and data is repeated at all locations

for multiple template sizes to decompose the data into a

set of new coefficients for each scale. Reducing a data set

into its scale-specific components is called ‘‘multi-

resolution analysis’’ (Mallat 1999). For the purposes of

this analysis, the term scale refers to the different sizes of

wavelet template, and the term level refers to the

separate sets of coefficients produced through variance

decomposition. A given decomposition level represents

the information extracted from a particular scale.

To identify scale-specific structure in the BLL we used

a two-dimensional (2D) maximal-overlap wavelet trans-

form (MODWT; Percival and Walden 2000). The

MODWT, also known as the ‘‘stationary wavelet

transform,’’ or ‘‘translation-invariant wavelet trans-

form,’’ is distinct from the standard discrete wavelet

transform (DWT) in that that resulting levels of the

multi-resolution analysis are not orthogonal, and

contain a high degree of redundant information

(Percival and Walden 2000). The DWT decomposes

2D data such that each level of the decomposition has

(2log2(N )�j)2 coefficients, where N is the number of data

points in the original data, and j is the level of the

decomposition that proceeds from fine ( j¼ 1) to coarse

( j¼ log2(N )�1), assuming originally dyadic dimensions

(Fig. 3). In contrast, the number of coefficients in each

level of the MODWT decomposition is equal to the

original dimensions (N ). The benefit of this redundant

information (the ‘‘overlap’’) among levels and the

conservation of the original resolution is that the

MODWT can be used to produce meaningful images

of the separate levels of the decomposition (Fig. 3).

Furthermore, the MODWT is generally preferable to the

DWT because its assessments of global and local

wavelet variance are more robust (Percival and

Walden 2000) and although the individual levels of the

multi-resolution analysis are not independent, they are

less affected by differences in wavelet template than the

DWT (Percival and Walden 2000). Two-dimensional

MODWT analysis was performed using the Daubechies

4 (D4) wavelet template and the ‘‘waveslim’’ package in

R (Whitcher [2010] R package version 1.6.4, available

online).6 The D4 wavelet is a frequently used wavelet

template that can be used to identify peaks in data in

either one or two dimensions. More details on wavelet

analysis and the calculation of wavelet variance using

the MODWT can be found in Liang and Parks (1994),

Bruce and Gao (1997), Mallat (1999), and Percival and

Walden (2000).

A plot of wavelet coefficients by scale and location is

referred to as a wavelet power spectrum. In the case of

two-dimensional spatial data, the wavelet power spec-

trum can be represented as a three-dimensional cube of

wavelet coefficients with dimensions x, y (i.e., the

dimensions of the original data), and scale. To determine

scale-specific information independent of location, we

examined each level of the decomposition using the

FIG. 2. Forest basal area in the BLL derived from multi-temporal LANDSAT data (2000–2005; Wolter et al. 2008). (A) Total
basal area in m2/ha. (B) Relative basal area of fir as a percentage of the total basal area. The relative basal area of spruce and
deciduous species is not shown. Black lines represent regional divisions of the BLL (Fig. 1B: white lines). Basal area data for the
different forest classes were originally represented in raster format at a resolution of 30 m.

6 hhttp://CRAN.R-project.org/package¼waveslimi
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wavelet variance (Percival 1995). Wavelet variance is the

sum of the squared wavelet coefficients at a particular

level over all locations weighted by the number of

coefficients (Bradshaw and Spies 1992, Percival 1995).

Levels that exhibit high wavelet variance can be

considered scales of interest (Bradshaw and Spies

1992). A plot of wavelet variance vs. scale is called a

scalogram (Fig. 3B) or global wavelet spectrum (GWS;

Percival 1995, Torrence and Compo 1998). Wavelet

coefficients can also be locally summarized to produce

FIG. 3. (A) Simulated autocorrelated spatial data; the x- and y-axes are simply spatial indices of the coefficients. Data were
simulated using a Gaussian random field model (Appendix A). Variogram model parameters are: range¼16, sill¼1, mean¼0, and
nugget¼ 0. (B) Scalogram that describes the distribution of scale-specific variance in the simulated data. The peak is at a wavelet
template size of 24 (16) and corresponds to the input simulated range. (C–H) These panels show the different levels of the
decomposition created by (C, E, G) the MODWT (2-D maximal-overlap wavelet transform) and (D, F, H) the DWT (discrete
wavelet transform) for scales 2, 3, and 4 (arrows in panel B). Note the decreased resolution (fewer coefficients) of each level of the
DWT decomposition, while those produced using the MODWT retain the same resolution as the original simulated data in panel
A. The spatial extent of each panel (A and C–H) is the same.
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maps of average wavelet variance at an individual or at

multiple levels (i.e., averaging in scale; Torrence and

Compo 1998). In combination with a significance testing

procedure, scale-averaged maps that represent different

levels of the basal area data were used to identify

hotspots and emergent spatial boundaries. Here,

‘‘boundaries’’ refers to linear features that delineate

regions that exceed the expected null distribution of

wavelet variance at specific scales.

A null model

A Gaussian random field (GRF) model that simulates

a Gaussian stochastic process using an exponential

variogram model was used as a spatial null model for

each forest type (Diggle and Ribeiro 2006). Multiple

GRF realizations (n ¼ 100) were simulated for each

forest type using estimated parameters to generate a null

reference distribution to determine which scales of

pattern in the basal area were significant, and to identify

scale-specific boundaries. Details of the GRF model and

variogram parameter estimation are described in the

Appendix.

Prior to wavelet analysis, all maps, including null

model simulations, were normalized to a mean of 0 and

unit variance and each dimension was padded with

zeroes to the next highest power of 2 (i.e., dyadic

dimension). Wavelet analysis was performed on each

null realization to generate a distribution of wavelet

power spectra (scalograms) to which the equivalent

spectra of the corresponding basal area maps were

compared (James et al. 2010). Previous work has

demonstrated the importance and utility of using

autocorrelated null models relative to random noise

(Fortin and Jacquez 2000, Goovaerts and Jacquez 2005,

James et al. 2010). Indeed, non-autocorrelated null

models tend to present too ‘‘weak’’ a contrast and result

in false positives (Goovaerts and Jacquez 2005).

Significant scales of pattern

Global scale-specific structure for each forest type was

characterized using scalograms. Significant scales of

pattern were determined through comparison of the

scalogram of each forest type and the 95th percentile of

the associated null scalogram distribution. Scales at

which the empirical scalogram contained higher wavelet

variance than the 95th percentile from the null

distribution were considered significant (Torrence and

Compo 1998, James et al. 2010).

Boundary detection

To identify boundaries and local hotspots in host and

non-host forest basal area we assessed the local

significance of the scale-averaged wavelet variance for

the three coarsest scales (8, 9, and 10). These scales

correspond to wavelet template sizes of 256, 512, and

1024 pixels, respectively, or 46 km, 92 km, and 184 km,

respectively. These scales were chosen because they are

comparable to the spatial scale at which the region is

subdivided by the regional boundaries. Locally signifi-

cant boundaries at finer scales identify locations of small
hotspots that could be useful to local prediction of

probability of outbreak, but are not informative
regarding regional differences in forest structure.

Boundaries were identified at the three coarsest levels
of the wavelet decomposition using the 95th percentile

of the local wavelet variance for each null realization.
The mean value calculated from the set of 95th
percentiles (n ¼ 100) from each simulated realization at

each scale represents the local significance threshold.
Regions where local basal area wavelet variance exceeds

these values represent local, scale-specific regions of
significantly high basal area. These hotspots indicate

patches of high basal area at different spatial scales.
Continuous patches of SBW host-species basal area at

coarse spatial scales may indicate areas of greater
relative vulnerability. Visualization of these regions

was achieved by placing contours onto maps of wavelet
variance such that the contours represent emergent

statistically significant boundaries in forest basal area.

RESULTS

Global wavelet spectra

The scalograms (global wavelet spectra, GWS; Fig. 4)
for all four forest cover types show similar scale-specific

structure. Basal area scalograms show high levels of
wavelet variance at very fine and fine scales, followed by

a reduction in variance at intermediate scales, followed
by an increase in wavelet variance from scales 6 to 10

(Fig. 4). In general, spatial structure is most strongly
present at very fine (scale 2), fine (scale 3), and coarse

scales (scales 8, 9, and 10) for all forest types.
Significant scales of pattern are those that exceed the

null scalogram distribution. In comparing the basal area
scalograms to the null distributions for each forest type

it became obvious that the global and stationary
Gaussian random field models did not fully capture

the scale-specific properties of the basal area data. Each
null distribution contained two scales of pattern: a fine

and a coarse scale pattern indicated by the peak at the
far left of the GWS (scale 2), and the second peak
centered further to the right (Fig. 4A–D, roughly scales

7–9). However, these two dominant scales of pattern do
not correspond well to the GWS calculated from the

four basal area types, indicating that the processes that
influence basal area are not stationary. Additionally,

there was little variability in the distribution of the null
GWS, particularly at fine scales where the mean and

95th percentile were nearly identical, and which indi-
cates very consistent simulation of those particular

scales of pattern and that the MODWT (maximal-
overlap wavelet transform) is a reliable tool to

characterize spatial scale.
Relative to the simulated null distribution, all scales of

pattern in total basal area were significant except scales
2, 6, 7, and 8 (Fig. 4A). For relative deciduous basal

area, the only nonsignificant scale was the finest, but

PATRICK M. A. JAMES ET AL.2202 Ecological Applications
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marginal significance is shown at scales 8 and 9 (Fig.

4B). Relative fir basal area showed patterns very similar

to total basal area and only scales 2, 6, 7, and 8 were not

significantly greater than expected (Fig. 4C). Finally,

relative spruce basal area showed patterns similar to

relative deciduous basal area and only the finest scale of

spatial structure (scale 2) was nonsignificant (Fig. 4D).

Boundary identification

Contours plotted on maps of wavelet variance at three

scales (8, 9, and 10) for the four basal area classes (Figs.

5–8) identify regions that exceed the 95th percentile of

the null distribution of local wavelet variance. The area

within the contours represents significant regions rela-

tive to the null model at a particular scale. We

hypothesized that the boundaries that delineate these

areas would correspond with the regional boundaries in

the Border Lakes landscape (BLL; Fig. 1B).

The pattern of significant basal area in the different

forest types tends to follow that of total basal area,

particularly at coarse scales. At scale 10 (template size

;184 km), large portions of the BLL are significantly

different from the null model to the extent that the 95th

percentile contours appear to enclose regions that are

within the range of expectation rather than those that

exceed it. This is particularly obvious in total basal area

(Fig. 5A) where only a small band in Ontario is not

significantly different from the null model’s 95th

percentile; practically all regions are significant.

Relative fir basal area closely follows the patterns in

total basal area (Fig. 7A), whereas relative deciduous

basal area (Fig. 8A) and relative spruce basal area (Fig.

6A) show unique patterns. Deciduous forest basal area

shows a significant region mainly in Minnesota with a

contour that follows the United States–Canada border

and one that identifies a strong region in the east of the

FIG. 4. Global wavelet spectra (scalograms) of remotely sensed forest basal area (solid black lines) and the corresponding
global wavelet spectra for the mean and 95th percentile (solid gray lines and dashed gray lines, respectively) of the simulated null
models (n¼ 100) for (A) total basal area, (B) relative deciduous basal area, (C) relative fir basal area, and (D) relative spruce basal
area. Average wavelet variance represents the average squared wavelet coefficients over all locations. Scale exponents describe the
dimensions of the wavelet template as a power of 2 (e.g., 22, 24, 28).
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study area (Fig. 8A). Relative spruce basal area shows

most of the south and east of the BLL as significant

(Fig. 6A).

Significant regions are also similar among basal area

types at scale 9 (template size ;92 km; Figs. 5B, 6B, 7B,

and 8B). This scale provides the best and most

meaningful comparison to regional boundaries in the

BLL. Total basal area and relative spruce basal area

both show significant hotspots covering much of

northwestern Ontario (Figs. 5B, 6B). Deciduous and

fir cover identify similar, but smaller and more westerly

patches. Another region that is consistent among all

forest types is a central region in the middle of the

Minnesota managed zone. In maps of wavelet variance

for total, relative fir, and relative deciduous basal areas,

this patch extends along the north shore of Lake

Superior. Relative spruce basal area contains only a

FIG. 5. Total forest basal area. Local wavelet variance for
total forest basal area at (A) scale 8, (B) scale 9, and (C) scale
10, where light shading indicates high wavelet variance, and
dark shading indicates low wavelet variance. Scales refer to the
size of the wavelet template and correspond to template sizes of
46, 92, and 184 km, respectively. Black lines indicate regional
boundaries in the BLL between Ontario managed forest,
Wilderness, and Minnesota managed forest. (A, B) White lines
represent 95th-percentile contours that outline significant
patches of wavelet variance and correspond to scale-specific
patches of high forest basal area for scales 8 and 9. (C) White-
line contours that enclose areas in scale 10 identify nonsignif-
icant regions, as the majority of the study area is significantly
different from the null model at this coarse scale. Significance
was assessed through comparison of wavelet variance to the
95th percentile of 100 simulated replicates of the GRF
(Gaussian random field) using parameters estimated from
original basal area data (Appendix A).

FIG. 6. Relative spruce basal area. Local wavelet variance
for relative spruce forest basal area at (A) scale 8, (B) scale 9,
and (C) scale 10, where light colors shading indicates high
wavelet variance, and dark shading indicates low wavelet
variance. Scales refer to the size of the wavelet template and
correspond to template sizes of 46, 92, and 184 km, respectively.
Other elements are the same as in Fig. 5.
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large central patch (Fig. 6B) whose boundaries follow

the southern boundary of the wilderness zone.

Local significant regions at scale 8 (template size ;46

km) include multiple patches that generally represent

smaller versions of the patches identified at coarser

scales (Figs. 5C, 6C, 7C, and 8C). Here, spruce is

distinct and exhibits a significant region in the central

portion of Ontario (Fig. 6C), and does not share the

significant band along the north shore of Lake Superior

that is found in total, fir, and deciduous basal area (Figs.

5C, 7C, 8C). Although we also identified additional

small patches, we do not report on them here as our

objective was to identify large areas of highly connected

host basal area (coarse-scale patterns) that may indicate

greater vulnerability, as well as significant boundaries

that can be meaningfully compared to the regional

administrative boundaries that divide the region into the

three subregions: MN (Minnesota), ON (Ontario), and

Wilderness.

DISCUSSION

Spatial legacies of forest management can affect forest

ecosystems through feedbacks with selective disturbanc-

FIG. 7. Relative fir basal area. Local wavelet variance for
relative fir forest basal area at (A) scale 8, (B) scale 9, and (C)
scale 10, where light shading indicates high wavelet variance,
and dark shading indicates low wavelet variance. Scales refer to
the size of the wavelet template and correspond to template
sizes of 46, 92, and 184 km, respectively. Other elements are the
same as in Fig. 5.

FIG. 8. Relative deciduous basal area. Local wavelet
variance for relative deciduous forest basal area at (A) scale
8, (B) scale 9, and (C) scale 10, where light shading indicates
high wavelet variance, and dark shading indicates low wavelet
variance. Scales refer to the size of the wavelet template and
correspond to template sizes of 46, 92, and 184 km, respectively.
Other elements are the same as in Fig. 5.
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es such as the spruce budworm (Blais 1983, Cooke et al.

2007). Here, we analyzed forest basal area in the Border

Lakes Landscape to assess whether management legacies

can be detected in forest structure. Using continuous

forest basal area data, we tested for stationarity at

multiple scales and identified emergent boundaries in

host and non-host forest basal area using wavelet

analysis and spatially structured null models.

Wavelet analysis

Global wavelet spectra (GWS) were used to compare

the scale of structure among forest basal area classes.

Unlike wavelet analyses that use normalized wavelets

(e.g., Torrence and Compo 1998), the approach taken in

our study permits one to make direct comparisons

among the wavelet variances summarized at different

scales (Maraun and Kurths 2004), and among the

different basal area classes. Characterization of the

different scales of spatial structure in basal area is a

necessary first step to identifying scale-specific hotspots

of spruce budworm host species.

The global wavelet spectra indicated similar spatial

structure for all forest classes and that basal area is

structured at both very fine and very coarse scales (Fig.

4). Comparison against the null models indicated that

basal area is significantly structured at intermediate and

coarse scales. The differences between the null-model

scalograms and those of basal area (Fig. 4) suggest that

the underlying processes that generate spatial pattern in

basal area are nonstationary (Fortin and Dale 2005).

Because our null model assumed stationarity (i.e., a

single set of parameters was used to summarize the

entire study area), scales at which basal area differs from

the null model indicates the scales at which the

nonstationary processes are operating. If the processes

responsible for patterns in basal area were stationary at

all scales we would expect to see no difference from the

null wavelet spectra of the null models. If that were the

case, and the entire study area had the same scale of

spatial structure (i.e., patchiness) we would conclude

that there were no differences among regions and that

the differences in forest management in the three zones

in the BLL do not contribute to the spatial structure of

basal area. Because we did find differences between

empirical scalograms and the null distributions, we can

conclude that there are likely differences among regions,

and that these differences are at specific spatial scales.

Through our local significance-testing procedure, we

then identified where in the BLL these patterns at

specific scales are most strongly represented.

Although some subtle differences exist, the consistent

shape of the basal area scalograms among forest types

suggests that a feature common to all types dominates

forest structure. Lakes and wetlands are an important

feature in this landscape that could account for the

similarities among forest types by constraining the

extent of the spatial patterns of natural and human

disturbances (logging). The endogenous scale-specific

forcing of the water features may act to obscure the

different processes of forest management. As a result, it

may not be possible to identify specific legacies of

different management processes in the separate regions

of the BLL because of these constraining water features.

Emergent boundaries

Wavelet based significance testing has been previously

described for one-dimensional data (e.g., time series)

using the wavelet power spectrum (WPS; Cazelles et al.

2008, Rouyer et al. 2008). For linear data, the WPS is

two dimensional and significance in frequency and

locations can be assessed simultaneously relative to an

expected spectral WPS or a distribution derived from a

parametric bootstrap procedure. For analysis of two-

dimensional spatial data, the WPS is three-dimensional

and the consequent WPS is not amenable to statistical

significance testing and visualization in the same way

that it is for one-dimensional data. Methods that

examine global scale-specific properties separately from

local properties are useful in this context (James et al.

2010). We analyzed the significance of scales and

locations independently through comparison of the

global wavelet power spectrum to that generated using

a simulated null model, and then similarly identified

locally significant regions relative to the distribution of

scale-averaged wavelet variance at significant spatial

scales. The strength of this approach is that wavelets can

be used as a filter to remove ‘‘noise,’’ defined as

nonsignificant or nonrelevant scales, to identify globally

dominant scales of pattern, and then to identify

significant local variation in wavelet power. Local

significant regions represent relative hotspots of forest

basal area at unique spatial scales.

Recent dendrochronology work has found that the

spruce budworm (SBW) outbreak dynamics are differ-

ent among the three regions of the BLL (L.-E. Robert,

D. Kneeshaw, and B. R. Sturtevant, unpublished

manuscript). Because of this we expected to identify

distinct regions of basal area wavelet variance that

corresponded to the regional boundaries. We found that

the scale-specific emergent boundaries did not follow

regional boundaries exactly, but are somewhat sugges-

tive of differences among regions. Emergent boundaries

at scale 10 (template size of 184 km) separated the

northern portion of the BLL from its southern portion.

Maps of local wavelet variance at scales 8 and 9 indicate

that there are more significant hotspots of spruce basal

area in Ontario than in Minnesota, with the exception of

a single large patch in central Minnesota (Fig. 6B and

C). Conversely, Minnesota has more significant regions

in fir and deciduous basal area at these scales (Figs.

7A, B, and 8A, B). Agreement between the basal area

data and the spatial null model in the wilderness zone

for fir and deciduous basal area suggests that the

greatest proportion of mixed-wood forest is found there

and indicates reduced vulnerability to the SBW. In

contrast, large significant host patches at coarse scales in
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Minnesota and Ontario indicate greater relative vulner-

ability to spruce budworm, particularly in the central

and eastern portion of Minnesota and the northwestern

portion of Ontario, where fir basal area is particularly

high. It is in these regions that one might expect the

greatest budworm vulnerability in the near future.

However, it is important to note that these hotspots

are relative indicators of basal area. That is, significant

hotspots are regions that have the greatest amount of

host basal area at a given scale relative to the

distribution of host basal area across the landscape. In

the case of balsam fir, hotspots are not ‘‘hot’’ in an

absolute sense because of the highly dispersed distribu-

tion of fir throughout the BLL. It is also interesting to

note that the significant local regions of fir strongly

overlap with those of deciduous forest cover at scale 8

(Figs. 7B and 8B). This indicates that although regions

may appear as suitable host for SBW with respect to a

high density of fir, these sites may be mixed forests that

actually have a very low vulnerability.

Few contours cross existing regional borders and this

further suggests that legacies of previous management

have persisted in forest basal area. The two important

exceptions to this are the boundaries that define a large

hotspot in total basal area (Fig. 5B) and a small zone of

relative spruce basal area across the Ontario–wilderness

border (Fig. 6B) at scale 8. All boundaries identified in

Minnesota stop abruptly at the edge of the wilderness

and indicate that the forest spatial pattern, at least in

terms of total and relative spruce basal area, is more

similar between Ontario and the wilderness than

between Minnesota and the wilderness, and this further

suggests that the patterns created by forest management

practices in Ontario may be better at creating ‘‘natural’’

patterns than those in Minnesota. These patterns could

be the result of either the scale of cutblocks (i.e., those

more similar to natural openings created by fire), or due

to silviculture and forest successional responses to

management. It remains to be examined whether such

‘‘natural’’ conditions are to be preferred with regards to

influencing forest vulnerability to SBW. One might also

expect there to be greater similarity in forest vulnera-

bility and patterns of budworm defoliation between

Ontario and the wilderness than between the wilderness

and northern Minnesota.

SBW vulnerability

We are limited in our ability to fully infer the

relevance of management legacies to landscape-level

forest vulnerability to future SBW defoliation based on

these findings. Given that these analyses pertain to the

type and scale of spatial pattern of forest basal area in

the BLL, and do not relate empirical SBW damage per

se to these different regions, we cannot say for certain

which type of pattern is the most vulnerable and results

in the greatest defoliation damage. However, because

forest vulnerability is inversely related to the proportion

of hardwood content in a region (Su et al. 1996,

Cappuccino et al. 1998, Campbell et al. 2008), large,

significant hotspots of SBW host-species basal area (i.e.,

fir and spruce) likely represent regions of greatest

relative vulnerability. For example, the large spruce

hotspots in the managed zone central-western Ontario

and central Minnesota (Fig. 6B) as well as the fir

hotspots in western Ontario and eastern Minnesota

represent areas of highest potential vulnerability (Fig.

7B). In support of this, a recent and ongoing budworm

outbreak in Minnesota has recently spread eastward

into the central Minnesota patch we identified (Mike

Albers [Minnesota Department of Natural Resources],

personal communication).

The regions of local significance that we identified did

not conform strongly with our expectations and other

work that has demonstrated important differences in

forest structure and outbreak dynamics among regions

(e.g., L.-E. Robert, D. Kneeshaw, and B. R. Sturtevant,

unpublished manuscript). Furthermore, the ambiguous

patterns make it difficult to infer budworm vulnerability

within and among regions. One of the possible

explanations for this mismatch between expectations

and what the wavelet analysis revealed is that other

processes have structured forest basal area in the BLL.

Additional processes such as fire, other insect outbreaks,

and forest succession can obscure the legacies of

management and make it difficult to identify clear

cause-and-effect relationships (Veblen et al. 1994, James

et al. 2011). As a result, legacies may be temporary

(James et al. 2007) and identifying the correct time

frame to investigate them represents a significant

challenge to understanding the role that forest manage-

ment can play in mitigating future insect outbreaks.

Further work in this area will include investigating

forest spatial structure in the BLL at different time

periods using the scale-specific methods presented here.

Conclusions

Descriptions of the dynamic interactions among

spatial legacies and forest disturbances are important

for forest management and further development of

ecological theory (Levin 1992, Cooke et al. 2007). We

examined spatial patterns in forest composition and

boundaries in forest basal area at multiple scales using a

novel wavelet-based significance-testing method. Using

this method, we identified nonstationarity in forest basal

area in the BLL and observed that the local regions that

most strongly exhibit this nonstationarity have bound-

aries that are somewhat similar to regional boundaries.

These results suggest that different histories of forest

management have the potential to influence the spatial

distribution of spruce budworm host species and hence

relative forest vulnerability to SBW defoliation. Local

significance testing revealed large continuous patches of

SBW host-species basal area at coarse scales in

northwestern Ontario and central northern Minnesota

that are more likely to support an outbreak.
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The differences between what we know about

historical management in the BLL and the patterns we

detected on the landscape are likely due a combination

of the constraining influence of lakes and wetlands,

forest succession, and the forest-changing consequences

of other disturbances (e.g., fire, wind, insects). The

legacy-eroding effects of such successional stochasticity

and compounded disturbances (Veblen et al. 1994,

James et al. 2007), in combination with the relatively

long return intervals for successive spruce budworm

outbreaks (Candau and Fleming 1998), suggest that

patterns in forest basal area created through forest

management may not affect forest vulnerability as

strongly or directly as the silvicultural hypothesis might

suggest. Furthermore, legacies in species composition

and basal area are not the only relevant measures of

forest vulnerability. Forest age is also important

(MacLean 1980) and age-specific legacies have been

shown to have long-lasting influence on forest structure

(James et al. 2007). As a result, the boundaries identified

and vulnerability inferred are only a partial assessment

of spruce budworm defoliation potential in the BLL.

Additional research into the relationships among

management legacies, forest composition, basal area,

forest age, and vulnerability is still required to better

understand the complex interactions among human

management activities and insect outbreak dynamics.
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defoliators as periodic disturbances in northern forest

ecosystems. Pages 487–525 in E. A. Johnson, and K.
Miyanishi, editors. Plant disturbance ecology - the process
and the response. Elsevier, Amsterdan, The Netherlands.

Csillag, F., and S. Kabos. 2002. Wavelets, boundaries, and the
spatial analysis of landscape pattern. Ecoscience 9:177–190.

Dale, M. R. T., and M. Mah. 1998. The use of wavelets for
spatial pattern analysis in ecology. Journal of Vegetation
Science 9:805–814.

Daubechies, I. 1992. Ten lectures on wavelets. Society for
Industrial and Applied Mathematics, Philadelphia, Pennsyl-
vania, USA.

Diggle, P. J., and P. J. Ribeiro. 2006. Model-based geostatistics.
Springer Series in Statistics. Springer-Verlag, New York,
New York, USA.

Falkowski, M. J., A. M. S. Smith, A. T. Hudak, P. E. Gessler,
L. A. Vierling, and N. L. Crookston. 2006. Automated
estimation of individual conifer tree height and crown
diameter via two-dimensional spatial wavelet analysis of
Lidar data. Canadian Journal of Remote Sensing 32:153–
161.

Fleming, R., J.-N. Candau, and R. McAlpine. 2002. Landscape-
scale analysis of interactions between insect defoliation and
forest fire in central Canada. Climatic Change 55:251–272.

Fortin, M.-J., and M. R. T. Dale. 2005. Spatial analysis.
Cambridge University Press, Cambridge, UK.

Fortin, M.-J., and G. M. Jacquez. 2000. Randomization tests
and spatially autocorrelated data. Bulletin of the ESA
81:201–206.

Gardner, R. H., B. T. Milne, M. G. Turnei, and R. V. O’Neill.
1987. Neutral models for the analysis of broad-scale
landscape pattern. Landscape Ecology 1:19–28.

Goovaerts, P., and G. M. Jacquez. 2005. Detection of temporal
changes in the spatial distribution of cancer rates using local
Moran’s I and geostatistically simulated spatial neutral
models. Journal of Geographical Systems 7:137–159.

Jacquez, G. M., S. Maruca, and M. -J. Fortin. 2000. From
fields to objects: a review of geographic boundary analysis.
Journal of Geographic Systems 2:221–241.

James, P. M. A., R. A. Fleming, and M.-J. Fortin. 2010.
Identifying significant scale-specific spatial boundaries using
wavelets and null models: spruce budworm defoliation in
Ontario, Canada as a case study. Landscape Ecology 25:873–
887.

James, P. M. A., M.-J. Fortin, A. Fall, D. Kneeshaw, and C.
Messier. 2007. The effects of spatial legacies following
shifting management practices and fire on boreal forest age
structure. Ecosystems 10:1261–1277.

James, P. M. A., M.-J. Fortin, B. R. Sturtevant, A. Fall, and D.
Kneeshaw. 2011. Modelling spatial interactions among fire,
spruce budworm, and logging in the boreal forest. Ecosys-
tems 14:60–75.

Johnson, D. M., O. N. Bjørnstad, and A. M. Liebhold. 2004.
Landscape geometry and travelling waves in the larch
budmoth. Ecology Letters 7:967–974.

Keitt, T. H., and J. Fisher. 2006. Detection of scale-specific
community dynamics using wavelets. Ecology 87:2895–2904.

Keitt, T. H., and D. L. Urban. 2005. Scale-specific inference
using wavelets. Ecology 86:2497–2504.

Kembel, S. W., and M. R. T. Dale. 2006. Within-stand spatial
structure and relation of boreal canopy and understory
vegetation. Journal of Vegetation Science 17:783–790.

Levin, S. A. 1992. The problem of pattern and scale in ecology.
Ecology 73:1943–1967.

Liang, J., and T. W. Parks. 1994. A two-dimensional
translation invariant wavelet representation and its applica-
tions. Pages 66–70 in Proceedings ICIP-94, volume 1. [doi:
10-1109/ICIP.1994.413276]

MacLean, D. A. 1980. Vulnerability for fir–spruce stands
during uncontrolled spruce budworm outbreaks: a review
and discussion. The Forestry Chronicle 56:213–221.

PATRICK M. A. JAMES ET AL.2208 Ecological Applications
Vol. 21, No. 6



MacLean, D. A. 1984. Effects of spruce budworm outbreaks on
the productivity and stability of balsam fir forests. The
Forestry Chronicle 60:273–279.

MacLean, D. A., T. A. Erdle, W. E. MacKinnon, K. B. Porter,
K. P. Beaton, G. Cormier, S. Morehouse, and M. Budd.
2001. The spruce budworm decision support system: forest
protection planning to sustain long-term wood supply.
Canadian Journal of Forest Research 31:1742–1757.

Mallat, S. 1999. A wavelet tour of signal processing. Second
edition. Academic Press, New York, New York, USA.

Maraun, D., and J. Kurths. 2004. Cross wavelet analysis:
significance testing and pitfalls. Nonlinear Processes in
Geophysics 11:505–514.

McCullough, D. G., R. A. Werner, and D. Neumann. 1998.
Fire and insects in northern and boreal forest ecosystems of
North America. Annual Review of Entomology 43:107–127.

Miller, A., and P. Rusnock. 1993. The rise and fall of the
silvicultural hypothesis in spruce budworm (Choristoneura
fumiferana) management in eastern Canada. Forest Ecology
and Management 61:171–189.

Muzika, R. M., and A. M. Liebhold. 2000. A critique of
silvicultural approaches to managing defoliating insects in
North America. Agricultural and Forest Entomology 2:97–
105.

Ourcival, J. M., R. Joffre, and S. Rambal. 1999. Exploring the
relationships between reflectance and anatomical and bio-
chemical properties in Quercus ilex leaves. New Phytologist
143:351–364.

Pastor, J., A. Sharp, and P. Wolter. 2005. An application of
Markov models to the dynamics of Minnesota’s forests.
Canadian Journal of Forest Research 35:3011–3019.

Peltonen, M., A. M. Liebhold, O. N. Bjørnstad, and D. W.
Williams. 2002. Spatial synchrony in forest insect outbreaks:
roles of regional stochasticity and dispersal. Ecology
83:3120–3129.

Percival, D. B. 1995. On estimation of the wavelet variance.
Biometrika 82:619–631.

Percival, D. B., and A. T. Walden. 2000. Wavelet methods for
time series analysis. Cambridge University Press. New York,
New York, USA.

Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A.
Hicke, M. G. Turner, and W. H. Romme. 2008. Cross-scale
drivers of natural disturbances prone to anthropogenic
amplification: The dynamics of bark beetle eruptions.
BioScience 58:501–517.

Robert, L.-E., D. Kneeshaw, and B. R. Sturtevant, in review.
Effects of forest management legacies on spruce budworm
outbreaks. Canadian Journal of Forest Research.

Roland, J., and P. D. Taylor. 1997. Insect parasitoid species
respond to forest structure at different spatial scales. Nature
386:710–713.

Rouyer, T. A., J.-M. Fromentin, N. C. Stenseth, and B.
Cazelles. 2008. Analyzing multiple time series and extending
significance testing in wavelet analysis. Marine Ecology
Progress Series 359:11–23.

Royama, T. 1984. Population dynamics of the spruce budworm
Choristoneura fumiferana. Ecological Monographs 54:429–
462.

Smith, M. L., S. Ollinger, M. Martin, J. Aber, R. Hallett, and
C. Goodale. 2002. Direct estimation of aboveground forest
productivity through hyperspectral remote sensing of canopy
nitrogen. Ecological Applications 12:1286–1302.

Strand, E., A. Smith, S. Bunting, L. Vierling, D. Hann, and P.
Gessler. 2006. Wavelet estimation of plant spatial patterns in
multitemporal aerial photography. International Journal of
Remote Sensing 27:2049–2054.

Sturtevant, B. R., E. J. Gustafson, W. Li, and H. S. He. 2004.
Modeling biological disturbances in LANDIS: A module
description and demonstration using spruce budworm.
Ecological Modelling 180:153–174.

Su, Q., D. A. MacLean, and T. D. Needham. 1996. The
influence of hardwood content on balsam fir defoliation by
spruce budworm. Canadian Journal of Forest Research
26:1620–1628.

Torrence, C., and G. P. Compo. 1998. A practical guide to
wavelet analysis. Bulletin of the American Meteorological
Society 79:61–78.

Townsend, P. A., J. R. Foster, R. A. Chastain, and W. S. Currie.
2003. Application of imaging spectroscopy to mapping canopy
nitrogen in the forests of the central Appalachian mountains
using Hyperion and AVIRIS. IEEE Transactions on Geosci-
ence and Remote Sensing 41:1347–1354.

Veblen, T. T., K. S. Hadley, E. M. Nel, T. Kitzberger, M. Reid,
and R. Villalba. 1994. Disturbance regime and disturbance
interactions in a Rocky Mountain subalpine forest. Journal
of Ecology 82:125–135.

Williams, D. W., and A. M. Liebhold. 2000. Spatial synchrony
of spruce budworm outbreaks in eastern North America.
Ecology 81:2753–2766.

Wolter, P. T., and M. A. White. 2002. Recent forest cover type
transitions and landscape structural changes in northeast
Minnesota, USA. Landscape Ecology 17:133–155.

APPENDIX

Gaussian random field (GRF) simulation and variogram parameter estimates (Ecological Archives A021-099-A1).
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