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a b s t r a c t

Lumber, a heterogeneous, anisotropic material produced from sawing logs, contains a varying number

of randomly dispersed, unusable areas (defects) distributed over each boards’ surface area. Each board’s

quality is determined by the frequency and distribution of these defects and the board’s dimension.

Typically, the industry classifies lumber into five quality classes, ranking board quality in respect to use

for the production of wooden components and its resulting material yield. Price differentials between

individual lumber quality classes vary over time driven by market forces. Manufacturers using

hardwood lumber can minimize their production costs by proper selection of the minimum cost

lumber quality combination, an optimization problem referred to as the least-cost lumber grade-mix

problem in industry parlance. However, finding the minimum cost lumber quality combination

requires that lumber cut-up simulations are conducted and statistical calculations are performed.

While the lumber cut-up simulation can be done on a local computing workstation, the statistical

calculations require a remote station running commercial statistical software. A second order

polynomial model is presented for finding the least-cost lumber grade-mix that manufacturers of

wood products can use to minimize their raw material costs. Tests of the newly developed model,

which has been incorporated into a user-friendly decision support system, revealed that only a limited

amount of lower quality raw material (e.g. lumber with a high frequency of defects in boards and/or

small board sizes) can be accepted, as otherwise the lumber quality mix cannot supply all the parts

required. However, the new model suggested solutions that resulted in lower raw material costs than

solutions from older models.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Manufacturers of solid wood products cut kiln-dried hard-
wood boards (lumber) into dimension parts of specified sizes,
qualities, and quantities according to customer orders, called
cutting bills [1]. Dimension parts are slightly oversized rectan-
gular pieces cut from lumber that are further processed through a
series of manufacturing steps into final components for products
sold by the wood products industry [1]. These parts are cut in
rough mills from lumber of varying geometrical sizes (length/
width) through a series of guillotine cuts such that randomly
dispersed and shaped defective areas (such as knots, splits, or
discolorations) are cut out, leaving dimension parts without
defects for further processing [2]. Lumber is traded in five quality
classes (called ‘‘grades’’ in industry parlance) with First and
Seconds (FAS) being the best quality consisting of large boards
with few defects, followed, in decreasing order of quality, by

Selects (SEL), 1 Common (1C), 2A Common (2AC) and 3A Common
(3AC), the lowest quality lumber that can be purchased for
appearance products [3]. Fig. 1 displays two boards, the top one
graded FAS, e.g. the best quality, and the bottom one graded 3AC,
e.g. the lowest quality. The usable areas contained in these boards
differ greatly. While the FAS board, according to the quality
standards setting body of the industry [3], contains a minimum
of 83.3% usable, clear area, the 3AC board must contain at least
33.3% usable, clear area. The amount of usable, clear area for given
quality classes is determined in the grading rules for all quality
classes, e.g. FAS 83.3%, SEL 66.7% (one side must contain 83.3%),
1C 66.7% (both sides), 2AC 50%, 3AC 33.3%, respectively [4].

Lumber costs are the single largest cost position incurred by
secondary wood products manufacturers [5]. Depending on the
product manufactured, an estimated 40–70% of total production
costs of raw dimension parts in rough mills of the secondary
wood industry stem from the procurement of lumber [6–9].
Understandably, the industry undertakes considerable efforts to
minimize lumber procurement costs first and foremost by
increasing yield from a given set of input lumber. Lumber yield
in rough mills is defined as the ‘‘ratio of aggregate part surface
output to aggregate lumber surface area input ([10] p. 13)’’ and is
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the single most important benchmark used in the industry. Most
research has focused on efforts to improve lumber yield through
finding optimum cut-up patterns for each board, which is a
typical cutting stock problem encountered in numerous indus-
tries [11,12]. Examples include the paper, glass, metal, and the
wood products industries [13–17]. Gilmore and Gomory [18–21]
in the 1960s published a series of solutions to the cutting stock
problem involving linear and dynamic programming. Over the
following years, numerous researchers have added to the meth-
odology and expanded the scope of problems that can be
addressed, such as expanding the dimensions in which solutions
are sought [22–32].

However, the quest for increased yield from lumber is only one
way manufacturers try to minimize their raw material costs. Solid
wood products manufacturers also try to minimize costs through
optimizing their lumber purchases, in particular through manage-
ment of the price differential that exists between different lumber
quality classes. In general, the better the lumber quality pur-
chased, the higher the per unit price set by the markets. Different
industry segments prefer to purchase different lumber qualities
dependent on the dimension part sizes they produce. Typically,
manufacturers who require a large amount of long and/or wide
dimension parts to be cut from their lumber will purchase higher
quality lumber. Manufacturers, who need only moderate amounts
of long and/or wide parts, will tend to buy lower quality lumber.
Since lumber prices fluctuate in absolute terms but also relative
to each lumber quality class, an opportunity exists to minimize
total lumber costs by finding the minimum cost lumber quality or
mix of qualities to obtain the dimension parts needed.

The industry refers to this problem as the least-cost lumber
grade-mix problem and much research has been conducted since
the 1960s [9,33–42]. In essence, the problem is to minimize the
cost of purchasing all the lumber needed to obtain all the required
dimension parts for a given production run. Yield obtained from
different lumber quality classes is dependent on the part size
requirements specified in the cutting bill [10]. Thus, depending on
the part size requirements for a given production run, different
lumber quality classes or combinations of lumber quality classes
result in different levels of yield and thus result in higher or lower
total lumber procurement costs. One lumber quality may be
better suited to obtain a specific size-range of parts but be
expensive to purchase per unit versus another quality that may
be good enough to obtain the needed parts and be relatively
inexpensive. For example, when a cutting bill asks for long and/or
wide parts to be cut, but also requires smaller parts, it is often
advantageous to purchase a mix of high quality lumber (i.e.
expensive lumber) and lower quality lumber (i.e. less expensive
lumber) to minimize total lumber procurement costs.

In the past, the least-cost lumber grade-mix optimization
problem was typically solved using linear programming models,
which require that both objective and constraint functions are
simple linear [43]. However, Zuo et al. [44] found that the

relationship between yield and lumber quality or lumber quality
mix is not always linear, in fact, an estimated 90% of scenarios
tested by these authors were found not to have a linear relation-
ship between lumber yield and lumber quality or quality mix.
Thus, the authors suggested that the existing least-cost lumber
grade-mix problem solvers using linear programming may not
return true minimum cost solutions and the industry may be ill-
advised to use those models. The objective of this research was to
create a user-friendly least-cost lumber grade-mix Decision Sup-
port System (DSS) for industry practitioners that does not rely on
linear optimization to find the minimum cost solution.

2. Materials and methods

Solving the least-cost lumber grade-mix problem is dependent
on the expected lumber yield results for a given set of dimension
part requirements (e.g. cutting bill). For this purpose, Thomas’ [45]
rip-first rough mill yield simulator (ROMI-ROP 2.0) was used
together with digital representations [46] of red oak lumber [47].

2.1. Lumber cut-up simulator

The USDA Forest Service’s ROMI-RIP 2.0 (RR2) simulation
software [45] was employed in this research to simulate the
actual cut-up of hardwood lumber in a rough mill of the
secondary wood products industry [1,48]. The study employed
commonly used industry operation parameters to reflect actual
industry operations. Settings used included movable saw-blade
positions; obtain extra dimension parts through additional pro-
cessing after the first iteration, if possible; employ complex
dynamic part prioritization [49]; and do not allow random length
and random width parts to be cut.

2.2. Cutting bill

This study used Buehlmann’s cutting bill [10,50,51], a theore-
tical representation of the ‘‘average’’ industrial cutting bill with
respect to size and quantity requirements. The part quantity
requirements were proportionally adjusted to fit the lumber
samples used for this study. Additionally, seven industrial cutting
bills were also examined in this study [8,54]. Table 1 summarizes
the dimension part requirements of all eight cutting bills and
ranks the cutting bills in order of their difficulty to obtain all parts
from a given set of lumber [52].

2.3. Lumber data

Red oak, a hardwood species growing widely in Eastern U.S.
Forests and used in all segments of the U.S. wood products industry,
was the wood of choice for this study [53]. While lumber from

Fig. 1. Digital representation of two kiln-dried lumber boards from the highest (FAS) and the lowest quality class (3A C). The shaded rectangles signify defects, e.g.

unusable areas within the board’s surface.
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different species have similar raw material characteristics and are
processed the same way in the rough mills of the industry, red oak,
due to its economic importance to the industry, has been closely
researched and libraries of digitized lumber exist [46,47].

The study employed the following lumber qualities, ranked
from best to worst quality: FAS, SEL, 1C, 2AC, and 3AC [4]. Since
each lumber grade was used as a factor in the model, a five-factor
model was created. Increments of 10% were used for creating the
lumber grade combinations. Three replicates of each lumber cut-
up simulation were conducted to smooth out random variations.
For this purpose, three lumber grade or grade combination
samples were randomly selected from the 1998 Kiln Dried Red
Oak Data Bank [47] using RR2’s data randomization utility [45] for
each lumber grade combination.

2.4. Statistical model

Each lumber quality was made up with between 0% and 100%
of the lumber contained in each lumber set tested. Lumber quality
combinations always summed to 100%. Since five different
lumber qualities were involved, a five-factor mixture design [54]
was applied. The five factors are the proportion of each lumber
quality utilized in a given lumber set. Three AC lumber was
constrained with an upper bound of 80%, since 3AC, the lowest
quality lumber used in this study is not capable of yielding the
larger/wider parts demanded by typical industry cutting bills.
Fig. 2 shows the treatment combinations of the design. Table 2
shows the details of the lumber grade mixture design executed to
derive the model’s response surface for the eight cutting bills
(Table 2, columns 1–6).

The simulated yields (Table 2, columns 7–14) from the 25
grade combination sample runs on RR2 [45] were used to build
the response surface. However, since the lumber quality combi-
nation with the least-cost was searched for, Eq. (1) had to be
employed for the transformation of yields to cost. Eq. (1) corre-
lates yield, the quality distribution, the market price for each
lumber quality, and processing costs with total costs.

2.5. Cost calculations

Like the steel [13], glass [14], paper [15,29], or other industries
[16,17,24], the hardwood industry faces trade-offs when trying to
minimize its raw material purchasing costs. In the hardwood
industry, to determine the lumber quality combination that satisfies
each cutting bill at the lowest raw material (e.g. lumber) and
processing cost, cost information for each lumber quality was
acquired to build a cost-response surface.

The secondary wood industry trades hardwood lumber in
board feet, a volume of one foot by one foot by one inch. Typically,
trades occur in thousand board feet increments (mbf), or approxi-
mately 2.36 m3. Price information for 4/4 in thick, kiln dried red
oak lumber published in the Weekly Hardwood Review [55], a
trade publication, was used to calculate total lumber costs per
thousand board feet (mbf) for satisfying a given cutting bill.
Lumber prices used were, in particular: FAS – $1570 per mbf,
SEL – $1350 per mbf, 1C – $1000 per mbf, 2AC – $748 per mbf,
and 3AC – $500 per mbf.

While lower quality lumber is considerably less expensive
($500 per mbf for 3AC versus $1570 per mbf for FAS), lower
quality lumber requires more input material and processing
efforts to extract the same amount of usable parts compared to
higher quality lumber. Thus, lower quality lumber is less expen-
sive to purchase, but creates higher costs when processing. As a
rough approximation of true processing costs involved in proces-
sing lumber in rough mills of the secondary wood products
industry, Buehlmann and Zaech [56] calculated processing costs
to be $200 per thousand board feet of lumber processed in the
mill. Since lower quality lumber requires more input lumber to
obtain an equal amount of usable parts compared to higher
quality lumber, lower quality lumber is penalized and the sum
of raw material (lumber) cost plus processing cost approximately
reflects the true costs incurred. Production costs thus become the
sum of market price of lumber (Mi) plus $200 processing costs
(Pi), e.g., FAS – $1770 per mbf, SEL – $1550 per mbf, 1C – $1200
per mbf, 2AC – $948 per mbf, and 3AC – $700 per mbf. Eq. (1)
calculates total costs (lumber plus processing) for using a given
solution. Total cost is then used in the second order polynomial
model (Eq. (2)) to generate the cost-response surface based on
which the minimum cost point can be located:

Costj ¼

P5
i GiðMiþPiÞ

Yieldj
ð1Þ

where Gi is the proportion of each lumber quality, Mi the market
price per mbf of each lumber quality, Pi the processing cost per
mbf of each lumber quality, i is equal to 1 for FAS, 2 for SEL, 3 for

Table 1
Length and width summary and difficulty rank for the 11 cutting bills used in

this study.

Cutting bill Ranka No. of parts No. of widths No. of lengths

A 1 5 3 4

B 2 10 4 9

C 3 25 7 16

D 4 5 3 5

E 5 4 4 4

F 6 12 4 6

Buehlmann 7 20 4 5

H 8 8 2 8

a The cutting bills were ranked from easiest to hardest as defined in Thomas’s

study [49], the ranking for the Wengert and Lamb [8] and Buehlmann [10] cutting

bills was based on the same criteria as employed in Thomas’ study.

FAS
100%

SEL (100%)

1C
(100%)

2AC
(100%)

3AC (100%)

80 percent upper
bound for 3AC (80%)

Fig. 2. Design space and treatment combinations for a 5-factor mixture design

with an 80% upper bound for 3A Common lumber.
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1C, 4 for 2AC, and 5 for 3AC, and j is the observation of a quality
combination run.

2.6. Model generation

Finding the global optimal minimum cost solution for cutting
bills with respect to raw material (lumber) plus processing costs
is the objective of the model. A second order polynomial model
(Eq. (2)) was used to fit the lumber quality plus processing cost-
response surface. SAS Institute’s Inc. statistical software package,
SAS 8.2 [57], was used to generate the model and analyze the
data:

uy ¼ b�0þ
X5

i ¼ 1

b�i xiþ
XX

io j

b�ijxixj ð2Þ

where uy is the cost of satisfying a given cutting bill, xi and xj are
the proportions of each lumber grade, b0

n is the intercept, bi
n is the

coefficient of linear terms; bij
n is the coefficient of the interaction

terms, i and j are equal to 1 for FAS, 2 for SEL, 3 for 1C, 4 for 2AC,
and 5 for 3AC.

Based on the lumber grade plus processing cost-response
surface created by SAS 8.2 [57], an iterative search over the
complete solution space is conducted to locate the lowest cost
point, corresponding with the least-cost lumber grade-mix solu-
tion. The SAS code used is shown in Appendix A, and more details
about the procedure, initial values, and the number of iterations
can be found in Zuo [58].

3. Results and discussions

Results for the eight cutting bills used in this study [8,49,50]
are shown and a discussion about the results is given. Thereafter,
the Decision Support System (DSS) to minimize raw material
(lumber) procurement costs is presented.

Table 3
Regression parameters for total production cost surfaces of the eight cutting bills investigated.

Cutting bill factor A B C D E F Buehlmann H

Intercept 2609.52 1933.41 1703.49 2031.93 4917.70 7639.73 2607.00 3558.46

FAS �0.80 3.91 6.16 3.80 �24.77 �52.97 �302.50 �10.95

SEL 2.41 3.05 7.18 4.79 �24.20 �48.91 �238.70 �11.09

1Com �4.85 �0.97 1.28 �0.34 �26.5 �53.65 �718.00 �15.49

2ACom �4.13 �2.27 �0.02 �0.73 �19.27 �43.44 �662.00 �16.09

FAS� SEL �0.01 0.00 0.00 �0.00 �0.00 �0.05 �139.20 �0.01

FAS�1Com 0.00 0.00 0.00 0.00 �0.05 �0.04 6.47 �0.00

FAS�2ACom 0.02 0.00 0.01 0.01 �0.18 �0.21 �132.20 0.01

FAS�3ACom �0.02 �0.03 �0.02 0.01 �0.47 �0.85 �999.30 �0.26

SEL�1Com �0.00 0.00 �0.00 0.00 �0.02 �0.08 �111.70 �0.019

SEL�2ACom 0.02 0.00 0.03 0.00 �0.07 �0.26 �218.60 +0.00

SEL�3ACom �0.02 �0.04 �0.00 0.02 �0.39 �1.21 �1272.70 �0.33

1Com�2ACom �0.00 0.00 �0.00 0.00 0.08 �0.11 �186.90 �0.01

1Com�3ACom �0.04 �0.05 �0.00 �0.01 �0.34 �0.89 �1236.90 �0.32

2ACom�3ACom �0.00 0.02 �0.00 �0.00 �0.04 0.21 821.10 0.05

Table 2
Design matrix for 5-factor mixture design with 80% upper bound for 3A Common lumber and average yield response from 3 replicates for 8 cutting bills tested.

Runs FAS (%) SEL (%) 1Com (%) 2ACom (%) 3ACom (%) Average yield (%)

A B C D E F Buehlmann H

1 0 0 0 20 80 29.31 37.39 44.17 37.16 15.59 8.92 27.03 19.65

2 0 0 0 60 40 36.71 47.70 49.38 43.02 24.88 18.29 37.06 35.52

3 0 0 0 100 0 42.99 54.98 54.76 48.36 30.95 26.67 47.93 46.29

4 0 0 20 0 80 32.59 44.65 46.37 39.72 21.41 16.45 36.02 31.18

5 0 0 50 50 0 50.09 60.74 60.76 54.14 43.90 43.62 57.68 54.57

6 0 0 50 50 0 49.54 60.36 60.38 53.96 44.37 41.57 57.21 54.68

7 0 0 60 0 40 45.30 56.49 56.68 50.10 38.62 40.79 52.46 50.24

8 0 0 100 0 0 56.43 65.61 65.50 60.08 53.60 54.03 63.83 60.79

9 0 20 0 0 80 33.80 46.40 45.80 40.50 24.37 23.76 39.02 34.97

10 0 50 0 50 0 49.23 62.47 60.17 55.46 48.32 52.93 59.78 56.53

11 0 50 0 50 0 48.30 63.12 60.76 55.88 49.03 52.66 59.09 57.35

12 0 50 50 0 0 55.39 67.37 66.28 60.75 59.95 59.78 65.83 63.34

13 0 50 50 0 0 55.38 67.32 66.03 60.93 58.25 59.30 65.11 62.57

14 0 60 0 0 40 44.00 58.96 54.83 51.17 44.79 48.21 53.98 52.49

15 0 100 0 0 0 54.59 69.56 64.01 61.78 63.34 61.13 66.16 64.95

16 50 0 0 50 0 56.50 66.74 67.00 61.24 60.03 58.78 65.28 60.93

17 50 0 0 50 0 56.24 66.75 66.69 61.14 60.51 59.70 64.70 61.08

18 50 0 50 0 0 63.39 71.01 71.42 66.81 66.33 67.60 70.92 66.49

19 50 0 50 0 0 63.79 70.99 71.36 67.02 66.41 67.30 70.66 67.04

20 50 50 0 0 0 62.86 72.93 72.26 67.81 68.02 68.72 72.45 68.57

21 50 50 0 0 0 62.13 71.97 71.33 67.33 66.78 68.19 71.83 67.67

22 60 0 0 0 40 53.63 64.35 63.92 59.06 58.50 55.49 61.31 58.75

23 60 0 0 0 40 53.16 64.36 63.98 58.73 57.92 55.65 61.55 58.60

24 100 0 0 0 0 70.11 76.08 76.05 73.21 72.64 75.50 76.68 71.80

25 100 0 0 0 0 69.85 76.21 76.61 73.55 72.43 75.61 76.96 71.92
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3.1. Least-cost lumber grade-mix solutions

The full model for the lumber grade – total production costs
(e.g., lumber costs plus processing costs) – is shown in
Eq. (3) [11]:

Cost¼ 2607�302:50� FAS�238:70� SEL

�718:00� 1Com�662:00� 2Acom�139:20� FAS� SEL
þ6:47� FAS� 1Com�132:20� FAS� 2ACom
�999:30� FAS� 3ACom�111:70� SEL� 1Com
�218:60� SEL� 2ACom�ð3Þ1272:70� SEL� 3ACom
�186:90� 1Com� 2ACom�1236:90� 1Com� 3Acom
þ821:10� 2ACom� 3ACom ð3Þ

Using this fitted response surface, the program conducts an
interactive search for the minimum cost point. Table 3 displays
the parameters for each factor (quality of lumber) and each factor
interaction for the eight cutting bills employed in this study. The
polynomial regression model parameters are different for each
cutting bill, accounting for the variability in part requirements by
each cutting bill. Using these polynomial regression surface
model parameters, iterative searches were conducted to find
the least-cost lumber grade-mix (e.g. lowest cost) solution using
SAS [57].

Table 4 shows the least-cost lumber grade-mix solution for the
eight cutting bills tested in this study. Results for the Buehlmann
cutting bill [50], the most thoroughly tested and analyzed cutting
bill of the study, indicate that the lowest cost solution consists of
using 80% 1C and 20% 3AC lumber. The sizeable amount of better
quality, 1C lumber required for the minimum cost solution, is due
to the large number of long and wide parts that are required by
the Buehlmann cutting bill. As pointed out before, such long and
wide parts are difficult to obtain in the small clear areas of low-
quality (e.g., 2AC and 3AC) lumber. To investigate the sensitivity
of the model to changing lumber prices, a scenario involving the
Buehlmann cutting bill [50] was tested with all lumber prices
reduced by $200 per mbf. In this case, when the lower grade
lumber gets disproportionally cheaper (a $200 per mbf price
reduction for each lumber quality reduces the total price for FAS
by 11%, SEL by 13%, 1C by 17%, 2AC by 21%, and 3AC by 29%),
more lower quality lumber is requested for the least-cost lumber
grade-mix solution. The least-cost solution found by the model in
this case is 70% 1C and 30% 3AC lumber, e.g., more lower quality
lumber is requested by the model.

Cutting bills can be ranked according to the ease of cutting all
the parts required. For example, a cutting bill that requires no
parts longer than 50 in and wider than 3 in is an easy-to-cut
cutting bill. A cutting bill asking for a large number of parts longer
than 70 in and wider than 4.5 in, conversely, would be a difficult-
to-cut cutting bill [44]. Using a ranking created by Zuo et al. [44]
in an earlier study, cutting bills in Table 4 have been listed in
increasing order of difficulty. Thus, cutting bill A is the easiest-to-
cut cutting bill, while cutting bill F is the most difficult-to-cut
cutting bill (Table 4, column 2). When cutting bills are harder-to-
cut, e.g. when their difficulty rank gets higher, the minimum cost
lumber quality mix (e.g. the least-cost lumber grade-mix solu-
tion) requires more higher quality lumber to be used in the
process to obtain the larger parts needed. However, since lower
quality lumber is less expensive per unit of part obtained, the
model always tries to use as much lower quality lumber as
possible.

In an attempt to verify the merit of the new method-
ology, Buehlmann et al. [52] compared solutions from the
new, statistical, polynomial model described in this article with
minimum cost solutions derived with a traditional, linear

Table 4
Optimal lumber grade-mix to minimize total production cost based on the five-

factor statistical model with interactions (with processing costs included).

Cutting bill Difficulty

rank

With $200/mbf processing cost

FAS

(%)

SEL

(%)

1Com

(%)

2ACom

(%)

3ACom

(%)

A 1 100

Da 4 100

C 3 20 80

B 2 100

H 8 70 30

Ea 5 50 30 20

Buehlmanna 7 80 20

Fa 6 60 10 30

a Cutting bills for which the optimal least-cost lumber grade mix shifted when

processing costs were included in the model.

Fig. 3. ROMI 3.0 data entry GUI to control the rough mill operations settings.
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programming-based least-cost lumber grade-mix model, OPTI-
GRAMI [41]. The new model presented in this article found, on
average of ten cutting bills tested, 3.6% cheaper solutions than did
the traditional model. The maximum cost savings from the new
model was 9.4%. However, OPTIGRAMI found two lower cost
solutions, one cheaper by 5.3% and one by 0.8%. Buehlmann
et al. [52] suspect the reason for this inferior performance of
the new model to be associated with the large increments used in
generating the cost-response surface (10% lumber quality incre-
ments used in the preliminary simulation tests to generate the
cost response surface).

3.2. Decision Support System (DSS)

Advanced algorithms such as the least-cost lumber grade-mix
solution discussed in this publication allow practitioners to
solve complex problems without knowledge of the underlying
algorithms. However, the solution has to be presented as a user-
friendly, easy to understand, and easily accessible Decision Sup-
port System (DSS) [59,60]. The USDA Forest Service has created
and maintains a number of DSS intended to help the wood
products industry to better compete in the global marketplace.
For example, the Ultimate Grading and Remanufacturing System
(UGRS) [61] helps sawmills improve their lumber quality sorting,
SOLVE assists sawmill managers in improving efficiency and
solving problems commonly found in hardwood sawmills [62],
or Cost of Sawing Timber (COST) calculates the cost of operations
per minute and per unit output for hardwood sawmills [63].
ROMI, ‘‘The ROugh MIll simulator y is a computer software package

for personal computers that simulates current industrial practices for

y lumber processing (p. 2 [64]).’’ ROMI 3.0, the most current
rough mill simulator, offers a wide range of operational settings,
allowing industrial practitioners to simulate almost any rough
mill. Fig. 3 shows the main Graphical Users’ Interface (GUI) of
ROMI. The GUI (Fig. 3) allows practitioners to enter the opera-
tional data necessary to simulate the cut-up of lumber according
to their operation’s set-up. Thereafter, a second GUI (Fig. 4)

allows users to enter data pertinent to their lumber-purchasing
situation. Once all data have been entered, the underlying rough
mill simulation program, ROMI, runs the lumber cut-up simula-
tion necessary to obtain the lumber yield-data used to calculate
and create the response surface in SAS 8.2 [57]. The least-cost
lumber grade-mix solver algorithm (Appendix A) then finds the
minimum cost raw material (lumber) solution and returns these
values to the user (Fig. 5).

However, what appears as a fairly straightforward process to
the user, in fact, involves some rather advanced programming.
While the lumber cut-up simulation program, ROMI 3.0 [64], is a
local application and runs on individual user’s computers, it also
contains the interface to the least-cost lumber grade-mix algo-
rithm. However, since the least-cost lumber grade-mix algorithm
needs access to a copy of SAS’ statistical package and industry
practitioners are highly unlikely to have SAS’ software [57]
installed on their premise, Weiss and Thomas [64] set-up an
Internet connection between the ROMI package run on individual
user’s computers and a server running the SAS’ statistical package
in the USDA Forest Service’s laboratory. Thus, the user runs ROMI
3.0 on his local computer to obtain the necessary lumber cut-up
information (Fig. 3) and enters lumber purchasing and processing
cost information (Fig. 4), then ROMI feeds this information to SAS
8.2 [57] running on a remote USDA Forest Service server. The
server creates the response surface that is used to find the
minimum cost lumber quality solution (e.g. the least-cost lumber
grade-mix) and returns the minimum cost solution to the user’s
GUI (Fig. 5). The user thus obtains the least-cost lumber grade-
mix solution from running algorithms on his computer and on a
remote government server. Although the user is aware of this fact
since he had to make sure that his machine is connected to the
Internet, nothing in the execution of the code indicates that part
of the calculation is done on a remote machine. Thus, for the user,
the program is simple to use and delivers the least-cost lumber
grade-mix solution without the need to install advanced, expen-
sive statistical software on local computers.

3.3. Implications

The methodology used for the least-cost lumber grade-mix
solver discussed in this article can potentially be applied to other
problems in industries that entails the selection of different
materials at different costs to achieve a defined outcome. While
hardwood lumber quality and its respective cost was the input
variable in this example, the steel or glass industries can similarly
choose different input materials and processing variables to
achieve an outcome with specified characteristics. The paper or
engineered wood products industries have choices when selecting
their input material and processing parameters to achieve speci-
fied outcomes. For problems like this, the model developed in thisFig. 4. Data entry GUI for the least-cost lumber grade-mix solver algorithm.

Fig. 5. Solution GUI for displaying the least-cost lumber grade-mix solution.
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research should be considered, especially when optimizing pro-
blems that do not necessarily have a linear relationship.

4. Summary

A statistical model to find the minimum cost lumber quality
mix (called the least-cost lumber grade-mix problem in industry
parlance) was developed. The model uses a mixture designed to
establish a test protocol to obtain simulated yields from the USDA
Forest Service’s ROMI 3.0 rough mill lumber cut-up simulator.
Results from these simulations are then used to build a poly-
nomial cost-response surface that allows for an exhaustive search
for the lowest cost lumber quality mix.

The minimum-cost lumber quality-mix solutions found by the
newly developed statistical model described in this article tend to
use as much low-quality lumber (2AC and 3AC) as possible. Higher
quality lumber is only called for when part requirements call for
many large, i.e. long and/or wide, parts to be obtained from a given
set of lumber. The minimum lumber cost search model developed is

sensitive to lumber and processing cost changes. Tests have shown
that the model results in lower cost lumber quality-mix decisions
for wood products manufacturers compared to existing models. The
new model has been incorporated into ROMI 3.0, the free USDA
Forest Service rough mill lumber cut-up simulation program. ROMI
allows users with only fundamental computer knowledge to simu-
late their operation and to minimize their lumber-purchasing costs.
The industry is thus expected to embrace the new least-cost lumber
quality-mix model as it helps their quest to lower production costs.
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Appendix A

/nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
n SAS code for searching the optimal grade combination n

n based on yield and lumber cost, as well as processing n

n cost. n
n By Xiaoqiu Zuo n

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn/
data LeastCostSearch;
input fas sel one two three yield;
cards;
/n Put the experimental design and results heren/
0 0 0 0.2 0.8 14.92
0 0 0 0.2 0.8 14.7
0 0 0 0.2 0.8 17.47
0 0 0 0.6 0.4 38.13
0 0 0 0.6 0.4 34.95
0 0 0 0.6 0.4 28.09
yy

;
run;
%macro leastcost (fasc¼ , selc¼ , onecomc¼ , twocomc¼ , threecomc¼ , process¼);

data LeastCostSearch;
set LeastCostSearch;
fasc¼&fasc;
selc¼&selc;
onecomc¼&onecomc;
twocomc¼&twocomc;
threecomc¼&threecomc;
process¼&process;
fasnew¼fasc+process;
selnew¼selc+process;
onecomnew¼onecomc+process;
twocomnew¼twocomc+process;
threecomnew¼threecomc+process;
cost¼(fasnfasnew+selnselnew+onenonecomnew+twontwocomnew+threenthreecomnew)/(10000n(yield/100));

data grid;
set five end¼eof;
output;
if eof then do;

yield¼ .;
cost¼ .;
do fas¼0 to 1 by 0.1;

do sel¼0 to 1 by 0.1;
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do one¼0 to 1 by 0.1;
do two¼0 to 1 by 0.1;
do three¼0 to 0.8 by 0.1;

output;
end;

end;
end;

end;
end;
end;

run;
proc rsreg data¼grid out¼costout(drop¼_type_) noprint;

model yield cost¼fas sel one two three / lackfit predict;
run;
data final;

set costout;
if yieldo100 and fas+sel+one+two+three¼1;

run;
proc sort data¼final;

by cost;
run;
proc print data¼final(obs¼40);

format yield cost 8.2;
title ’Optimal lumber grade mix with minimum cost’;

run;
%mend leastcost;
ods listing close;
ods rtf bodytitle;
%leastcost(fasc¼1570,

selc¼1350,
onecomc¼1000,
twocomc¼748,
threecomc¼500,
process¼200)

ods rtf close;
ods listing;
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