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Abstract This mini review discusses several key techni-
cal issues associated with cellulosic ethanol production
from woody biomass: energy consumption for woody
biomass pretreatment, pretreatment energy efficiency,
woody biomass pretreatment technologies, and quantifi-
cation of woody biomass recalcitrance. Both total sugar
yield and pretreatment energy efficiency, defined as the
total sugar recovery divided by total energy consumption
for pretreatment, should be used to evaluate the perfor-
mance of a pretreatment process. A post-chemical
pretreatment wood size-reduction approach was proposed
to significantly reduce energy consumption. The review
also emphasizes using a low liquid-to-wood ratio (L/W)
to reduce thermal energy consumption for any thermo-
chemical/physical pretreatment in addition to reducing
pretreatment temperature.

Keywords Recalcitrance . Cellulosic ethanol .

Woody/Forest biomass . SPORL
Enzymatic hydrolysis/saccharification . Pretreatment

Introduction

Woody biomass from forestlands and intensively managed
plantations can be sustainably produced in large quantities
in many regions of the world, including the United States
(Perlack et al. 2005). To promote biodiversity, to meet local
and regional bioenergy needs, and to achieve healthy and
sustainable forest and ecosystem management, woody
biomass will be an important part of the feedstock supply
mix for the future biobased economy. Woody biomass as a
feedstock has many advantages in terms of production,
harvesting, storage, and transportation compared with herba-
ceous biomass for bioconversion (Zhu and Pan 2010).
Barriers specifically to woody biomass conversion need to
be addressed to translate these advantages into tangible
economic benefits for cellulosic ethanol production.

Woody biomass has tough and strong physical structure
and high lignin content that make it very recalcitrant to
microbial destruction. This suggests that research efforts on
woody biomass should focus on upstream processing (e.g.,
wood size reduction and pretreatment) to reduce recalci-
trance and enhance microbial destruction of polysacchar-
ides. Specifically, more research should be devoted to
robust thermochemical pretreatment processes to improve
wood cellulose enzymatic saccharification and fermentable
sugar yield, as well as to significantly reduce energy
consumption during pretreatment and wood size reduction
from logs to the levels of fibers or fiber bundles for efficient
enzymatic saccharification (Zhu and Pan 2010). This is one
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crucial component of sustainability because the goal of
cellulosic ethanol production is net energy output. It should
be pointed out, however, that it is not difficult to achieve
good sugar and ethanol yields, but it is very difficult to
achieve good yields at low energy input. However, the issue
of pretreatment energy input (i.e., energy consumption for
wood size reduction) and the associated net energy output
and process energy efficiency have largely been overlooked
in the biorefining community. Many expert reviews empha-
sized maximizing the release/recovery of sugars and ethanol
yield from biomass but neglected the importance of
minimizing energy consumption for achieving maximal
sugar and ethanol yield (Gable and Zacchi 2007; Jorgensen
et al. 2007; Kumar et al. 2009; Lynd et al. 2008; Yang and
Wyman 2008). To fill this gap, we recently defined the term
pretreatment energy efficiency and proposed to use both
sugar yield and pretreatment energy efficiency to evaluate
the performance of any given pretreatment process (Zhu and
Pan 2010).

Feedstock pretreatment processes not only affect the
enzymatic digestibility of the resultant substrate but also
dictate its downstream processing, commercial scalability,
and pathway of biorefinery process. For example, dilute
acid pretreatment is an extensively investigated technology.
Furfurals generated during the pretreatment inhibit the
fermentation of hemicellulose sugars. In addition, the
nature of condensed lignin limits its use for value-added
coproducts other than boiler fuel. Different pretreatments
also require different approaches for chemical recovery and
wastewater treatment to comply with various environmental
regulations. Commercial scalability is another issue rarely
discussed in previous expert reviews evaluating the
performance of different pretreatment processes (Kumar et
al. 2009; Lynd et al. 2008; Yang and Wyman 2008). It is a
major technological and ingenuity challenge to scale
research technologies to production capacities of up to
1,000 tons of dry mass per day, which requires intensive
capital investment as well as research and development.

In this mini review, we address important aspects of
ethanol production from woody biomass. First, we
outline the difficulties in woody biomass pretreatment
for cellulosic ethanol production. We quantitatively
define an expression for characterizing biomass “recalci-
trance” to differentiate woody biomass from herbaceous
biomass. Second, we present several potentially promis-
ing pretreatment technologies for woody biomass pre-
treatment. We emphasize energy consumption (input) as
well as potential for maximizing sugar yield, that is,
process energy efficiency (Zhu and Pan 2010), when
evaluating pretreatment technologies. We discuss woody
biomass availability and sustainable production. Last, we
discuss the strategies for enhancing enzymatic saccharifi-
cation of woody substrates.

Woody biomass availability and sustainable production

It is difficult to quantify the volume of current and potential
woody biomass available for energy production given
complex social issues such as the debate over shifting land
uses and biological questions about present and future
productivity levels under traditional and progressive forest
management prescriptions (Alig et al. 2003; Berndes et al.
2003; Johnson et al. 2007). This problem is further
complicated with the accelerated need to reduce consump-
tion of nonrenewable resources to maintain economic and
ecological sustainability (Hill et al. 2006). In the United
States, 1,584 million acres are within the lower 48
contiguous states comprising forests (35%), grassland,
pasture, and range (37%), and cropland (28%) (Lubowski
et al. 2006). Despite having potential for woody biomass
production, socioeconomic and ecological factors preclude
the use of most of this acreage for energy feedstocks.
Nevertheless, using a variety of high-yield scenarios, it was
estimated that forestlands in the contiguous United States
have the capability to produce 368 million dry tons of
biomass annually (Perlack et al. 2005). The estimated
biomass of perennial crops on agricultural lands was 377
million dry tons, with a substantial proportion allocated to
short-rotation woody crops (Perlack et al. 2005). Overall,
both woody biomass from forestlands and intensively
managed plantations are necessary components of the
renewable energy supply chain. Evaluation of the quantity
of woody biomass available from forests and plantations is
beyond the scope of this review; such information is
available from expert syntheses such as those conducted
by Perlack et al. (2005) and Smith et al. (2009).
Nevertheless, it is prudent to discuss general trends in
availability and sustainability across both feedstock groups.

Woody biomass from forestlands comes from a number
of different sources, including but not limited to logging
residues from harvest operations, fuel treatments (removing
excess biomass), fuelwood, primary and secondary pro-
cessing mill residues, and urban wood residues (Perlack et
al. 2005). There are potential ecological consequences on
the overall ecosystem sustainability of removing forest
residues and excess biomass during harvesting (Fox 2000).
Therefore, numerous studies have been completed or are
under way to assess the effects of removing coarse and fine
woody debris on soil health and quality, as well as plant,
animal, and insect communities (Ares et al. 2007; Powers et
al. 2005; Yanai et al. 2003). In addition, economic
sustainability issues must be addressed. For example,
economically sustainable systems for removal of residual
tops, branches, and other material historically left on site
must be developed and tested (Rummer 2008). Loggers
need to be assured that supplying residual woody biomass
for energy production is profitable, which is largely
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dependent upon available markets. Lastly, the magnitude of
the impact of harvesting forest biomass for energy
production on biodiversity will vary greatly across temporal
and spatial scales, with sustainability being site- and
species-dependent.

Woody biomass from intensively managed plantations
comes from short-rotation woody crops such as species and
hybrids within the genera Populus (i.e., poplars) and Salix
(i.e., willows), as well as other hardwoods (e.g., eucalyptus,
Eucalyptus spp.; sycamore, Platanus occidentalis L.; red
alder, Alnus rubra Bong.) and softwoods (e.g., loblolly
pine, Pinus taeda L.; slash pine, Pinus elliottii Engelm.; red
pine, Pinus resinosa Ait.; Douglas-fir, Pseudotsuga men-
ziesii [Mirb.] Franco; ponderosa pine, Pinus ponderosa
Laws.; western hemlock, Tsuga heterophylla [Raf.] Sarg.)
(Johnson et al. 2007). In the United States, the production
of woody biomass from plantations is regionally influenced
(Vance et al. 2010), with the majority of feedstocks from
the Pacific Northwest with 13.6 million acres of plantations
mostly consisting of Douglas-fir but also poplar, alder,
ponderosa pine, and western hemlock (Stanturf and Zhang
2003) and the southeast with 32 million acres mostly
consisting of loblolly and longleaf pine but also eucalyptus
and sycamore (Wear and Greis 2002). In addition, the
midwest (poplar, red pine) and northeast (willow) have
substantial areas of intensively managed forests that are at
least an order of magnitude smaller than the Pacific
Northwest and Southeast. Plantation-grown trees have been
very productive in the United States, with productivity
levels approaching 20 Mg ha-1year-1 when matching
adapted genotypes to optimal local and/or regional site
conditions (Stanturf and Zhang 2003; Zalesny et al. 2009).
In addition to their potential to produce much higher
biomass per unit land area than forestlands, plantations
provide opportunities to reduce pressure on native forests
(Gladstone and Ledig 1990; Joslin and Schoenholtz 1997).
Overall, short-rotation woody crops and other intensively
managed trees are one of the most sustainable sources of
biomass, provided they are strategically placed on the
landscape and managed with cultural practices that con-
serve soil and water, recycle nutrients, and maintain genetic
diversity (Hall 2008). These woody biomass sources also
provide secondary benefits such as carbon sequestration,
wildlife habitat, and soil stabilization (Hansen 1993;
Isebrands and Karnosky 2001; Moser et al. 2002).

A combination of woody biomass from forestlands and
intensively managed plantations will be necessary to help
achieve U.S. policy that mandates the production of 16
billion gallons of cellulosic biofuels by 2022 (U.S. Energy
Independence and Security Act of 2007). Paramount to the
success of this achievement will be testing and identifica-
tion of woody biomass feedstocks that grow fast, accumu-
late substantial biomass, and break down to sugars easily

with energy-efficient technologies. As described above, the
availability and sustainability of such woody biomass is
possible, with further selection for cellulosic ethanol
production dependent upon energy efficiency of conver-
sion, effectiveness of pretreatment technologies, specific
levels of recalcitrance, and useful strategies for enhancing
enzymatic saccharification.

Two major species of woody biomass have some major
differences. In general, hardwood species have much lower
recalcitrance to enzyme and microbial processing than do
softwood species and therefore easily convert biochemically.
Hardwood species can be intensively cultured to improve
productivity as discussed. However, hardwoods have higher
xylan and low mannan content than softwoods (Zhu and Pan
2010). Xylose (a five-carbon sugar from xylan) is much
more difficult to ferment than six-carbon sugars with
current microbial technologies. Therefore, a robust pretreat-
ment technology to effectively remove the strong recalci-
trance of softwood species is advantageous for biofuel
production from woody biomass.

Woody biomass pretreatment

Energy consumption for pretreatment
(pretreatment energy efficiency)

Woody biomass pretreatment involves both physical and
thermochemical processes (Zhu and Pan 2010). Physical
pretreatment refers to size reduction (increasing surface
area) of wood to the level of fibers and/or fiber bundles
from chips or chops to increase enzyme accessibility to
wood cellulose. Unlike herbaceous biomass, the size
reduction of woody biomass is very energy-intensive. The
typical energy consumptions of milling wood chips into
fibers are approximately 500 to 800 Wh/kg (Schell and
Harwood 1994; Zhu et al. 2009b; Zhu et al. 2010b).
Assuming ethanol yield of 300 L/ton wood with current
technology and ethanol high heating value of 24 MJ/L, 500
to 800 Wh/kg is equivalent to 25–40% of the thermal
energy stored in the ethanol produced. Because mechanical
wood size reduction consumes mechanical energy and the
conversion efficiency from thermal energy (stored in
ethanol) to electric–mechanical energy is only about 30%,
the thermal energy in ethanol produced is just sufficient for
wood-size reduction. Therefore, any thermochemical/physical
pretreatment processes that require prior significant wood size
reduction to the level of fiber/fiber bundles, such as ionic
liquid (IL) pretreatment (Lee et al. 2009; Sun et al. 2009), will
need to overcome this energy barrier for viable commercial
cellulosic ethanol production from woody biomass. To
reduce mechanical energy consumption for wood size-
reduction through milling, we proposed an approach of
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post-chemical pretreatment size-reduction (Fig. 1). The
benefits in energy savings achieved using this post-
chemical pretreatment size-reduction approach are significant
based on our previous laboratory study (Zhu et al. 2010b).
All pretreatment reduced energy consumption for wood size
reduction through disk-milling for the four pretreatments
examined (Table 1). Energy consumption for disk-milling
lodgepole pine wood chips was reduced by as much as about
80% while achieving greater than 90% enzymatic digestion
of the resultant substrate when a low pH SPORL pretreat-
ment (Wang et al. 2009; Zhu et al. 2009a) was employed
(Table 1). Unfortunately, the method of size reduction before
chemical pretreatment (Fig. 1a) has been proposed as a
standard process flow for cellulosic ethanol production in
several key pieces of the literature (Lynd 1996; Yang and
Wyman 2008), as well as the U.S. Department of Energy
biofuels research roadmap (U.S. DOE 2005). This standard
approach has also been adopted for woody biomass
pretreatment (Wyman et al. 2009; Yu et al. 2010) despite
significant negative impacts on pretreatment energy efficien-
cy (Zhu and Pan 2010; Zhu et al. 2010b). In addition to
reducing energy consumption for wood size reduction, the
demonstrated post-chemical pretreatment size reduction

approach has the following benefits: (1) reducing the
resources needed for separating pretreated solids from liquid
as the wood remains as chips after pretreatment; (2)
eliminating the energy-intensive mixing operation required
for pretreating fiberized/pulverized materials; and (3) reduc-
ing liquid-to-wood ratio (L/W) in pretreatment to reduce
pretreatment thermal energy for heating up water because
wood chips have much less water intake than fiberized
materials due to the porous and hydrophilic nature of wood
fibers.

The total energy consumption for pretreatment also
includes thermal energy used for thermochemical/physical
pretreatment conducted at elevated temperatures. The
thermal energy consumption depends on two factors: (1)
L/W and (2) pretreatment temperature. When steam
pretreatment is employed, the heat of latent to produce
steam should also be included. Because the thermal energy
consumption for pretreatment is almost linearly proportion-
al to L/W, reducing L/W is very critical to improve energy
efficiency. This poses a significant challenge for IL
pretreatment because this method requires a very large
L/W of 10 to 20 or higher for efficient pretreatment as
demonstrated in the literature (Lee et al. 2009: L/W=20 at
80°C; Sun et al. 2009: L/W=20 at 90°C). Although IL is
often carried out at low temperatures below 100°C, the
L/W of 10 to 20 significantly increased thermal energy
consumption to more than traditional aqueous thermochem-
ical pretreatments that use L/W=3 at temperature around
180°C. The thermal energy required for aqueous pretreat-
ments at three different temperatures with different L/Ws
were used to illustrate this point (Fig. 2). The results in
Fig. 2 are based on thermodynamic calculations of the
enthalpy of saturated pulp suspension without taking
thermal energy recovery into account (spreadsheet is
available upon request). As can be seen clearly, the energy
for aqueous pretreatments at T=75°C with L/W=10 is 18%
more than that required for pretreatment at 180°C (much
higher temperature) but with L/W=3. To reduce the energy
to that for pretreatment at 180°C with L/W=3, L/W needs
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Fig. 1 Schematic diagram shows the approach for mechanical wood
size reduction operation from a pre- to b post-chemical pretreatment
to reduce energy consumption

Table 1 Effects of chemical pretreatment on lodgepole pine wood chip size reduction energy consumption and the resultant SED

Pretreatment at 180°C
for 30 minutesa

Initial
liquor pH

Disk-milling energy
(kWh/ton wood)

Size reduction energy
savings (%)

SED
(%)

Untreated 699 12.7

Hot water 5.0 680 2.7 16.0

Acid 1.1 412 41.0 41.6

SPORL 4.2 594 15.0 75.1

SPORL 1.9 153 78.1 91.6

Pretreatment L/W=3, disk-milling solids loading =30% (≈ the solid contents of pretreated wood chips), and disk plate gap =0.76 mm
a Sodium bisulfite charge was 8% on oven dry wood for the two SPORL runs; sulfuric acid charge was 2.21 (w/w) on oven dry wood for the dilute acid and
low pH SPORL runs, and 0 for the hot water and high pH SPORL runs
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to be less than 8 and 6 for pretreatment conducted at 75 and
100°C, respectively.

We define pretreatment energy efficiency using the
following expression:

hPretreatment ¼
Total sugar recovery

Total energy consumption for pretreatment

ð1Þ
where total sugar recovery is the sugar yield as the fraction
of total wood sugar (theoretical sugar yield). Eq. (1) is
slightly different from our previous definition (Zhu and Pan
2010), where absolute total sugar “yield (kg)” rather than
“recovery (fraction)” was used. Therefore, the present
definition is independent of the wood carbohydrate content
by normalizing the total sugar yield using the sugar content
in the feedstock. The pretreatment energy efficiency
defined in Eq. (1) has a unit of inverse energy, for example,
1/MJ. Both total sugar recovery and pretreatment energy
efficiency should be used in evaluating and comparing the
performance of pretreatment processes. Unfortunately, this
was not done in most published works, including a recent
major study on comparisons of the performance of different
pretreatment processes (Wyman et al. 2009) conducted by the
Biomass Refining Consortium for Applied and Fundamental
Innovations sponsored by the U.S. Departments of Energy
and Agriculture.

Thermochemical pretreatment technologies

Given its strong recalcitrance, only a few pretreatment
technologies have proven to be applicable to woody
biomass. This is especially true of softwood species.
Alkaline-based pretreatments are not generally suitable for
cellulosic ethanol production from woody biomass because
severe conditions such as high alkali loading and temper-

atures are required to extensively remove lignin as it is
done in chemical pulping. For example, sodium hydroxide
pretreatments require an expensive chemical recovery
process to reduce the cost of high chemical loading (Zhao
et al. 2008). Lime pretreatment (Sierra et al. 2009) is less
effective and can cause severe equipment scaling problems.
Furthermore, size reduction of wood chips pretreated under
high pH (alkaline) through disk-milling consumes more
energy than those pretreated under low pH (acid) (Zhu et al.
2010b, also Table 1). Moreover, size reduction of pretreated
wood under high pH tends to produce long fibers/bundles
(Zhu et al. 2010b), which can increase both difficulties and
energy consumption during mixing in high-solids enzymat-
ic saccharification. Finally, ammonia-based pretreatments,
such as ammonia-fiber expansion (Balan et al. 2009) and
ammonia-recycle percolation (Gupta and Lee 2009), are not
effective for woody biomass. IL pretreatment suffers from
the difficulties in IL recycling and high-energy input
because of very large L/W of 10 20 (Lee et al. 2009; Sun
et al. 2009), as discussed previously.

Dilute acid pretreatment Dilute acid pretreatment can
achieve some level of satisfactory enzymatic saccharifica-
tion of cellulose when applied to certain hardwood species
at high temperatures (Wyman et al. 2009). However, most
of the reported work used materials with significant size
reduction, which is a major pitfall for practical applications
because of the high energy consumption in wood size
reduction discussed above. In a recent study (Wyman et al.
2009), size-reduced poplar wood of less than 6 mm was
pretreated at 190°C with sulfuric acid charge of 2% on
wood. Total sugar recovery of 82.8% was achieved with an
enzyme loading of 15 FPU/g cellulose. The study did not
provide adequate information to determine ethanol yield
from unit ton of poplar wood. Fermentation efficiency of
the enzymatic hydrolysate was 81.4% when a genetically
modified Sacharomyces cerevisiae 424A(LNH-ST) was
used. The study did not provide information about energy
consumption for reducing wood size to 6 mm. It should be
pointed out that a flashing step (similar to a steam
explosion to be discussed in the next subsection) was used
to further reduce the substrate size and enhance enzymatic
hydrolysis, which was not mentioned in the study (Wyman
et al. 2009). In a recent study conducted at our laboratory,
we used commercial-sized wood chips (6–38 mm) pre-
treated at 180°C with sulfuric acid charge of 1.84% on
oven dry wood, followed by disk-milling to produce a solid
substrate. The post-chemical pretreatment disk-milling
approach significantly reduced size reduction energy
consumption to less than 100 Wh/kg (Zhu et al. 2010b).
We achieved 80% substrate enzymatic digestibility (SED),
which is defined as the percentage of glucan on solid
substrate converted to glucose enzymatically.
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Dilute acid pretreatment is not able to remove the strong
recalcitrance of softwood to achieve satisfactory enzymatic
cellulose saccharification. For example, SED was only
about 40% when softwood (spruce and lodgepole pine)
wood chips were pretreated at 180°C with acid charge of
1.84% on oven dry wood followed by disk-milling (Zhu et
al. 2009a; Zhu et al. 2010b). Glucose recovery of 80% was
achieved when a two-stage dilute acid pretreatment at 190
and 210°C was applied to size-reduced spruce wood of 2 to
10 mm at the expense of increased thermal energy cost for
pretreatment (Monavari et al. 2009b). Continuous circula-
tion of fresh acid solution can increase sugar recovery as
practiced in the 1940s using the so-called “Madison
Process” at the expense of high L/W or thermal energy
cost (Harris and Beglinger 1946).

Acid-catalyzed steam explosion Most of the current research
on acid-catalyzed steam pretreatment of woody biomass was
conducted by two research groups, Professor Zacchi at Lund
University of Sweden (Gable and Zacchi 2002; Monavari et
al. 2009a; Sassner et al. 2008; Soderstrom et al. 2004) and
Professor Saddler at University of British Columbia of
Canada (Cullis et al. 2004; Ewanick et al. 2007). In a
previous publication, we provided a comprehensive review
on catalyzed steam explosion for woody biomass pretreat-
ment (Zhu and Pan 2010). The steam explosion combines
chemical pretreatment and size reduction in one step through
acid catalyzed steaming followed by a thermal flashing
process (quick releasing). This method uses a low L/W with
the potential to recover a high-concentration hemicellulose
stream. Satisfactory enzymatic saccharification of acid-
catalyzed steam pretreated hardwood substrates was
achieved. One of the major drawbacks of steam explosion
is relatively low sugar recovery of about 65% when applied
to softwood, although it can be improved by two-step
explosion (Monavari et al. 2009a; Soderstrom et al. 2004).
Another drawback is that it is also energy-intensive,
especially when applied to softwood species at elevated
temperature of above 200°C. Finally, commercial scalability
of steam explosion devices needs to be demonstrated.

Ethanol organosolv pretreatment The ethanol organosolv
process was developed in the 1970s and adopted as the Alcell®

process in the late 1980s to produce pulp from hardwoods
(Williamson 1988; Pye and Lora 1991; Stockburger 1993).
The process uses a blend of ethanol and water with a small
amount of mineral acid to extract lignin from wood chips.
The Alcell® pulp has comparable strength properties with
kraft pulp. In addition to the pulp, the ethanol organosolv
pulping process generates a fraction of high-quality lignin
(Lora et al. 1993; Hepditch and Thring 1997; Liu et al.
2000). The lignin has coproduct potential for various
industrial applications such as adhesives and biodegradable

polymers (Boocock and Balatineez 1992; Thring et al, 1997;
Kubo and Kadla 2004).

Recently, the ethanol organosolv process was modified
into a biorefining platform for pretreating woody biomass
for cellulosic ethanol production (Pan et al. 2005a).
Different from the pulping application, the pretreatment
does not require preventing destruction of fibers and
depolymerization of cellulose but rather the enzymatic
susceptibility of the substrate and overall sugar recovery. In
fact, destructed fibers with smaller size (larger surface area)
and lower cellulose degree of polymerization are desirable
for enzymatic hydrolysis (Pan et al. 2006a). In our previous
studies (Pan et al. 2005a; Pan et al. 2006a; Pan et al. 2007;
Pan et al. 2008), the ethanol organosolv pretreatments of
mixed softwood, hardwood hybrid poplar, and lodgepole
pine killed by mountain pine beetle indicated that the
ethanol organosolv process is a unique and promising
pretreatment technology for bioethanol production from
lignocellulosic biomass, in particular wood. The substrates
produced by the process had superior enzymatic digestibil-
ity over those pretreated by alternative processes. Over 90%
cellulose-to-glucose conversion yield could be achieved
within 24 hours at a low enzyme loading of 15 to 20 FPU/g
cellulose. The ethanol organosolv lignin generated had high
purity, low molecular weight, narrow distribution, and more
functional groups (Pan et al. 2005a, b, 2006b), providing
potential applications in antioxidants, adhesives, polyure-
thane foams, and carbon fibers. High-value chemicals, such
as furfural, hydroxymethylfurfural (HMF), and formic,
acetic, and levulinic acids, were also derived from the
hemicellulose fraction (Pan et al. 2007). Hemicellulose
recovery is very difficult with ethanol organosolv process.
Furthermore, the process requires an energy-intensive step—
distillation—to recover solvent, ethanol. The high ethanol
loading of 50% (v/v) in pretreatment requires an ethanol
recovery yield of over 99% to be economical because the
ethanol concentration in the final fermentation broth is less
than 8%, a significant challenge that has not been addressed.
Therefore, development of high-value coproducts from
lignin and hemicellulose is one of the keys to successful
commercialization of the ethanol organosolv process.

Sulfite pretreatment to overcome recalcitrance of lignocellulose
(SPORL) The SPORL process, recently developed by the
present authors at the U.S. Forest Service, Forest Products
Laboratory, and the University of Wisconsin-Madison
(Wang et al. 2009; Zhu et al. 2009a), showed robust
performance for woody biomass (both hardwoods and
softwoods) saccharification. The SPORL process is very
similar to traditional dilute acid pretreatment except that an
additional catalyst is used: sulfite or bisulfite. Typical acid
and bisulfite charges on oven dry wood are about 0.5–1%
and 1–3% for hardwood and 1–2% and 4–8% for softwood,
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respectively. SPORL is a mild pretreatment conducted at a
temperature of 160 to 190°C for a period of 10 to 30
minutes in a batch mode. The sulfite addition increases the
pretreatment pH under similar acid dosages compared with
dilute acid pretreatment. As a result, the SPORL process
generates significantly lower amounts of fermentation
inhibitors, such as furfural and HMF (Shuai et al. 2010;
Wang et al. 2009; Zhu et al. 2009a), than dilute acid
pretreatment. More importantly, the partial sulfonation of
lignin by sulfite enhances lignin hydrophilicity and conse-
quently softens wood chips. The wood softening can reduce
energy consumption for size reduction as discussed
previously (Table 1). The improved hydrophilicity of lignin
weakens the hydrophobic interaction between lignin and
enzymes and therefore facilitates the saccharification of
cellulose. In addition, the dissolved lignosulfonate in
pretreatment liquor is a potential high-value coproduct with
existing markets. SPORL pretreatment can be directly
applied to wood chips, which affords to use at a low L/W
of about 3 (Zhu et al. 2010a, b). Post SPORL size reduction
significantly reduced energy consumption by an order of
magnitude (Zhu et al. 2010b, Table 1). SPORL produces a
readily digestible substrate. About 90 to 95% enzymatic
saccharification of SPORL substrates from softwoods were
achieved within 48 hours with enzyme loading of 15 FPU/
substrate (Zhu et al. 2009a; Zhu et al. 2010b). Overall sugar
recovery of about 85% achieved from lodgepole pine
without detailed optimization (Zhu et al. 2010a). When
compared with acid catalyzed steam explosion and organo-
solv pretreatment, the pretreatment energy efficiency of
SPORL is about 30 and 15% greater, respectively (Zhu and
Pan 2010). Recently, we reported an ethanol yield of
276 L/ton lodgepole pine with the SPORL process. The net
energy output was 4.55 GJ/ton wood (before distillation).
The net ethanol (lignin energy excluded) energy production
efficiency, defined as net energy output divided by total
energy input, was 237% (before distillation) from lodge-
pole pine (Zhu et al. 2010a). This work represents the state
of the art in cellulosic ethanol research and development.
Furthermore, SPORL produces sulfonated lignin with the
potential as a directly marketable coproduct within existing
and new markets. Finally, SPORL is developed based on
sulfite pulping process with proven commercial scalability
with low technological and environmental risks. Therefore,
SPORL can be easily implemented using capital equipment
practiced for decades in the pulp and paper industry, a
significant advantage over many competing technologies.

Woody biomass recalcitrance

Mother nature produces plant biomass as a structural
material with strong recalcitrance against microbial destruc-

tion to sustain its intended purpose. This recalcitrance is
sustained by the hierarchical structure of plant biomass
made of cellulose, hemicelluloses, lignin, etc. This hierar-
chical structure for wood can be simply described as the
basic cellulose unit of elementary fibrils on the order of 3 to
5 nm in diameter that forms microfibrils up to 20 nm in
diameter (Wegner and Jones 2009). The microfibrils are
bundled together to form a matrix structure, which is the
basic unit of fiber (cell) wall. Hemicelluloses and lignin
serve as glue or reinforcing materials to bind/build this
hierarchical cellulose-based structure from bottom (elementary
fibrils) up (fiber) in each level as a biocomposite. Each growth
ring (year) usually consists of several or tens of fiber layers.
The recalcitrance of plant biomass results from physical and
chemical barriers posed by plant fiber (cell) walls to prevent
microbes or cellulases from direct access to structural cellulose
(Himmel et al. 2007). The concept of plant biomass
recalcitrance (PBR) is complex, which is related not only to
the physical structure and strength of the biomass matrix but
also to the chemical composition of the biomass. For
example, woody biomass has greater recalcitrance than
herbaceous biomass because of its tough and strong structure
and high lignin content. In addition, PBR is also dependent
on the physical and chemical features and distribution of the
major components within the cell walls of the biomass:
hemicellulose, cellulose, and lignin. For example, crystalline
cellulose is more recalcitrant to enzymatic destruction than
amorphous cellulose; condensed lignin may have a greater
resistance to cellulases. Furthermore, molecular-level struc-
ture and functional groups of lignin can play an important
role, especially in enzyme–lignin interactions that were
recently observed (Pan 2008; Liu et al. 2010). Despite that
much research has been carried out to remove PBR through
pretreatment (Gable and Zacchi 2007; Jorgensen et al. 2007;
Yang and Wyman 2008; Zhu and Pan 2010), PBR has never
been quantitatively defined in the biomass and microbiology
research community. As a result, quantitative comparisons of
PBR of different plant biomass have not been made.

There are several ways to define “recalcitrance.” Because
PBR is a property of plant biomass, it is ideal to define it
using physical and chemical characteristics of the plant
biomass itself. Such a definition is a daunting task at present
given that cell-wall components of plant biomass at the
molecular level have not been well understood. Furthermore,
there is still a lack of complete knowledge about what and
how cell wall structure and components retard efficient
saccharification of the structural carbohydrates. Therefore,
another way to define PBR is to use enzymatic digestibility
of a plant biomass after a given pretreatment coupled with
energy input and process parameters during the pretreatment.
This definition is certainly affected by the pretreatment
process and conditions applied. Nevertheless, it can provide
some quantitative information about the nature of PBR when
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proper pretreatment conditions are taken into account. For
example, under a given set of pretreatment conditions, the
enzymatic saccharification efficiency of cellulose retained in
solid substrate after pretreatment, or SED, can be a surrogate
measure of the PBR. The higher the SED, the lower the PBR.
The problem with this definition of recalcitrance is that
process parameters such as energy consumption for pretreat-
ment that affects the results of SED are not taken into
account. One can achieve high SED with high-energy input.
In addition, hemicellulose sugar recovery is not considered.
Another measure of recalcitrance can be based on the
pretreatment energy efficiency, defined as the total sugar
yield divided by total energy consumption for pretreatment,
or sugar yield on unit energy (Zhu and Pan 2010). The
higher the pretreatment energy efficiency, the lower the
recalcitrance. This definition does not reflect the achievable
maximal sugar yield from biomass as one may be able to
achieve high energy efficiency by using less energy but at
low sugar yield.

In view of the above discussion, we use the following
expression to quantitatively characterize PBR:

PBR ¼ 100

SED
� Total energy consumption for pretreatment

Total sugar recovery

ð2Þ
where total sugar recovery is the fraction of theoretical total
sugar yield after the given pretreatment at a given enzyme
loading, for example, 15 FPU/g cellulose. We suggest using
hot water pretreatment at 170°C to eliminate complication by
chemistry. We also suggest that all feedstock should go
through the same size reduction process with known size
reduction energy consumption. Furthermore, all pretreatment
should be conducted under same liquid to oven-dry biomass
solid ratio, for example, L/W=3 for wood. Based on this
definition, PBR has a unit of energy. The higher the energy
input and the lower the SED and total sugar recovery, the
higher the PBR. This definition is proportional to the inverse
of the product of SED and pretreatment energy efficiency.

Let us carry out a simple calculation to illustrate the
definition of PBR proposed above. Six lodgepole pine trees
(Table 2) from forest thinnings at two different sites (B and
F) are compared. There are one live tree (L) and two dead
trees (D) killed by mountain pine beetle infestations at each
site. The digit in the sample label represents the age of the
trees after beetle infestation. The sample FDD was a wind-
fall and severely deteriorated. Two additional hardwood
samples were from aspen and eucalyptus. For this calcula-
tion, all woods were pretreated by SPORL, not hot water as
suggested. The enzyme loadings were not constant, that is,
15 and 7.5 FPU/g substrate for softwood and hardwood,
respectively, because data were obtained not for the present
purpose. The pretreatment energy included thermal energy
for pretreatment conducted at 170°C with L/W of 3, wood
chipping energy (assumed at 50 Wh/kg), and measured
wood chip milling energy. The results show that the beetle-
killed lodgepole pine has low PBR, which agrees with
previous obervations that beetle infestation increased the
wood susceptibility to chemical pretreatment (Luo et al.
2010; Pan et al. 2008). Furthermore, the greater the beetle
infestation age, the lower the PBR. The hardwood has
much lower recalcitrance than all lodgepole samples
(softwood). Eucalyptus has a greater PBR than aspen. The
results validate the definition of PBR described above.

Strategies for enhancing enzymatic saccharification
of woody substrates

High lignin content (20–25% in hardwoods and 25–30% in
softwoods) differentiates woody from herbaceous biomass.
Furthermore, the removal of hemicelluloses through pre-
treatment enriches lignin in the substrates. For example, the
lignin content in steam exploded Douglas-fir could be as
high as 42% (Pan et al. 2004). Lignin is recognized as the
primary source of PBR of lignocellulosic biomass to
enzymes. It was proposed that lignin inhibits enzymes by

Wood
samplea

Substrate enzyme
digestibility (%)

Total sugar
recovery (%)

Total pretreatment
energy (GJ)

Pretreatment energy
efficiency (1/GJ)

Recalcitrance
(GJ)

Softwood (lodgepole pine from forest thinning)

BL 50.8 48.6 2.57 0.189 10.4

BD1 55.4 51.3 2.49 0.206 8.8

BD4 58.6 54.4 2.50 0.218 7.8

FL 51.5 50.0 2.82 0.177 11.0

FD5 50.0 48.4 2.44 0.198 10.1

FDD 59.3 54.8 2.61 0.210 8.0

Hardwood

Aspen 85.1 79.4 1.49 0.533 2.2

Eucalyptus 79.1 75.5 1.79 0.422 3.0

Table 2 Recalcitrance of
different woody
biomass feedstocks

All samples were pretreated by
SPORL in a laboratory pulping
digester at 170°C for 20 minutes
with an L/W of 3 and sodium
bisulfite and acid charge of 4
and 1.1%, respectively. See
text for detailed about
sample description
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physical block of cellulose and nonproductive adsorption of
enzymes (Mansfield et al. 1999). Although delignification
can remove PBR (Pan et al. 2004; Yang et al. 2002), all
processes for delignification are expensive. Therefore,
extensive delignification is not a suitable practice in woody
biomass pretreatment for ethanol production.

Nonproductive adsorption of enzymes by lignin reduces
the efficiency of cellulose hydrolysis (Eriksson et al. 2002;
Mansfield et al. 1999; Sewalt et al. 1997; Yang and Wyman
2006; Zheng et al. 2008). Physically blocking or covering
lignin prior to enzyme loading is a strategy to reduce
lignin–enzyme interactions and to enhance cellulose sac-
charification. For example, exogenous protein (for example,
bovine serum albumin, BSA) has been used to saturate
lignin for reducing adsorption of cellulase and enhancing
enzymatic cellulose saccharification (Pan et al. 2005b;
Yang and Wyman 2006; Zheng et al. 2008). Surfactants
have also been used as lignin-blocking agents to improve
enzymatic hydrolysis (Borjesson et al. 2007; Eriksson et al.
2002; Ooshima et al. 1990; Tu et al. 2009). However, both
techniques have potential problems. For example, proteins
are too expensive to be economically feasible in commer-
cial applications, and surfactants can cause foaming that
may affect yeast activity. These techniques need to be
verified, especially with respect to the potential effect on
the efficiency of simultaneous saccharification and fermen-
tation. Recently, we discovered that certain metal com-
pounds, such as CaCl2, CaSO4, MgSO4, can be used to
significantly reduce nonproductive adsorption of enzymes
by lignin (both bound on solid substrate and unbound
dissolved in pretreatment hydrolysate) through lignin–metal
complexation (Liu et al. 2010). With the application of
these metal compounds, enzymatic hydrolysis of lignocel-
luloses was greatly enhanced (Liu et al. 2010).

Selectively removing active fractions of lignin or chemi-
cally modifying lignin is another strategy to reduce lignin
inhibition. For example, extracting steam-exploded Douglas-
fir with 1% NaOH at room temperature only reduced lignin
content from 43% to 36%, but enzymatic hydrolysis of the
substrate was enhanced by 30% (Pan et al. 2005b). This
suggested that the alkali-extractable lignin was more
inhibitive to enzymes. It was reported that free phenolic
hydroxyl groups on lignin benzene rings played an
important role in inhibiting enzymes and that selectively
blocking (etherifying) the hydroxyl groups could remove the
inhibition of the lignin (Pan 2008).

The inhibitive effect of lignin on enzymes is dependent
on the structure of the lignin. For example, SPORL
pretreated spruce wood contained as high as 33% lignin
(Shuai et al. 2010), but the substrate had ready digestibility.
Over 90% cellulose-to-glucose was achieved within 24
hours at enzyme loading of 15 FPU/g cellulose. This
suggests that the lignin in the SPORL substrates is less

inhibitive to enzymes. This is presumably because the
partial sulfonation of lignin during the SPORL pretreatment
increased the hydrophilicity of the lignin and therefore
reduced the hydrophobic adsorption of enzymes on lignin.

Conclusions

Woody biomass is an important feedstock for the future
biobased economy. Effective pretreatment technologies to
remove woody biomass recalcitrance are critical for efficient
utilization of woody biomass for biofuel production. The goal
of biofuel production is net energy output; therefore, an
effective pretreatment process should be evaluated by both
total sugar yield and pretreatment energy efficiency, that is,
total sugar recovery divided by the total energy consumption
for pretreatment.Wood size reduction to the level of fibers and/
or fiber bundles for efficient enzymatic hydrolysis is energy-
intensive. A post-chemical pretreatment wood size reduction
approach is proposed to significantly reduce mechanical wood
size reduction energy consumption. In addition to reducing
pretreatment temperature, reducing L/W is critical to reduce
thermal energy consumption in thermochemical pretreatment.
Pretreatment processes that require fiberized materials and
large L/W, such as IL, need to overcome the pretreatment
energy barrier for woody biomass applications. SPORL
pretreatment is an efficient process for woody biomass
bioconversion. Finally, biomass recalcitrance can be quantita-
tively defined as the amount of energy consumed in
pretreatment divided by the SED and the total sugar recovery.
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