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[1] Elevation data acquired from radar interferometry at C‐band from SRTM are used in
data fusion techniques to estimate regional scale forest height and aboveground live
biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to
perform post‐processing and parameter estimations from four data sets: 1 arc sec National
Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic
Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover
map. The first fusion algorithm corrects for missing or erroneous NED data using an
iterative interpolation approach and produces distribution of scattering phase centers from
SRTM‐NED in three dominant forest types of evergreen conifers, deciduous, and mixed
stands. The second fusion technique integrates the USDA Forest Service, Forest
Inventory and Analysis (FIA) ground‐based plot data to develop an algorithm to
transform the scattering phase centers into mean forest height and aboveground biomass.
Height estimates over evergreen (R2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed
forests (R2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over
deciduous forests were less accurate because of the winter acquisition of SRTM data and
loss of scattering phase center from tree‐surface interaction. We used two methods to
estimate AGLB; algorithms based on direct estimation from the scattering phase center
produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest
height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and
implications of the results in the context of mapping regional and continental scale forest
biomass distribution.
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1. Introduction

[2] It is generally understood that the terrestrial carbon
sink required to balance the global carbon budget could be
located in the forested land of the Northern Hemisphere
[Keeling et al., 1996; Houghton et al., 1999; Goodale et al.,
2002]. The uncertainties of the magnitude and distribution of
the sink, however, vary geographically and depend on land
use history and management, disturbance frequency, and
ecological and climate factors [Schimel et al., 2001]. Cur-
rently, several national and international scientific research
programs are designed to study these uncertainties such as

the North American Carbon Program (NACP), Carbo‐
Europe, etc. The main goal of the NACP is to quantify and
assess the role of various components of the carbon sink over
North America. Among these components, the woody bio-
mass and amount of carbon stock in forests as well as its
spatial distribution play a major role in achieving this goal
[Wofsy and Harriss, 2002]. Moreover, credible information
on vegetation biomass has significant economic value in
existing markets for carbon trading and serves as a major
indicator to evaluate the ecosystem services [Foley et al.,
2005].
[3] However, there is considerable uncertainty in our

knowledge of how much carbon is contained in the world’s
forests. Measurement of the forest carbon is based on the
biomass inventories that provide reliable estimates of timber
volume, growth, and mortality. These measurements are
based on statistical sampling with samples interspersed
across forest lands of the United States such that the cov-
erage is not wall‐to‐wall; costly to perform; and difficult to
repeat frequently on national and continental scales. More-
over, forest inventory data cannot be readily integrated in
spatial models to study the cycling and dynamics of carbon
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in vegetated ecosystems [Hurtt et al., 2004]. But these
ground‐based data are crucial for model development and
validation while additional information or techniques must
be used to apply these data across the landscape.
[4] Measuring and monitoring forest structure and carbon

stock and changes from space can help circumvent the
limitations associated with inventory data. Active remote
sensing techniques using lidar and radar sensors have been
used extensively to measure vegetation structure and
aboveground biomass. In lidar sensing, backscatter returns
from laser altimetry are used to estimate vegetation height
and other structural variables that can be used to estimate
biomass [Dubayah and Drake, 2000; Drake et al., 2002;
Lefsky et al., 2002]. Radar backscatter measurements from
low frequency synthetic aperture radar (SAR) data at L‐band
(1.25 GHz) and P‐band (0.45 GHz) and at different polar-
izations are strongly and positively correlated with forest
volume and aboveground biomass [Dobson et al., 1992; Le
Toan and Floury, 1998; Saatchi et al., 2000]. In recent
years, a new technique, using interferometric SAR (InSAR)
measurements, has been developed to estimate forest height
and structure [Kobayashi et al., 2000; Papathanassiou et al.,
2001]. The InSAR is a technique that measures the cross‐
correlation of backscatter measurements from two different
locations (two antennas) in space. By knowing the vector
between the two antennas (baseline) and their absolute
distance to a surface point, the location of the surface point
in elevation is determined from the phase difference of
InSAR cross‐correlation. Over vegetated surfaces, the ele-
vation of the surface point, known as the scattering phase
center, is somewhere within the vegetation canopy depend-
ing on the vegetation type and its structure. In theory, by
knowing the surface elevation, the height of scattering phase
center can be determined from one InSAR measurement and
consequently related to the vegetation height or biomass
[Hagberg et al., 1995; Askne et al., 1997; Kobayashi et al.,
2000]. By adding other measurements such as polarimetry
or geometry in space (multibaseline), the height of vegetation
can be determined unambiguously without the surface ele-
vation [Papathanassiou et al., 2001; Reigber et al., 2000].
[5] In February 2000, the Shuttle Radar Topography

Mission (SRTM) provided a near global coverage of land
surface elevation from InSAR measurements at C‐band
(5.3 GHz). The surface elevation derived from SRTM data
is biased over the vegetated surfaces proportional with the
vegetation height. Several studies have shown that by
knowing the surface elevation, SRTM data can be used to
estimate the height of the scattering phase center and the
vegetation height [Kellndorfer et al., 2004; Simard et al.,
2006]. For example, by using the National Elevation Data-
set (NED), which is available over the United States, as a
reference, it is possible to establish a linear regression model
between vegetation canopy height and the difference of
SRTM‐NED [Kellndorfer et al., 2004]. However, this rela-
tionship is highly dependent on forest characteristics such as
species, density, and structure and cannot be readily applied
on regional and continental scales. In addition, the spatially
inconsistent quality of NED, errors in geo‐referencing of
SRTM and NED, and the effect of SAR scattering mecha-
nism in the vegetation layer on the location of scattering
phase center are some of the difficulties in extending the
applicability of this approach over large regions. A com-

prehensive assessment of the quality of the SRTM data and
its application for forest structure retrieval has been per-
formed by Walker et al. [2007a, 2007b]. Consequently, a
series of fusion approaches with field inventory data and
ancillary spatial information such as NED and land cover
maps have been proposed to extend the application of SRTM
data to continental scale mapping of forest canopy height
[Walker et al., 2007a, 2007b].
[6] In this study, we present alternative data fusion

methodologies to investigate and mitigate problems associ-
ated with the SRTM and NED data that would be relevant
for regional and continental scale studies. We developed an
interpolation algorithm to reduce the amount of area over
which SRTM and/or NED data is missing or the quality is
below an acceptable level. Optical remote sensing data from
Landsat and the National Land Cover Database (NLCD)
were used to aid the generation of a final product of SRTM‐
NED. By using location, biomass, and structure from the
USDA Forest Inventory and Analysis plots over the state of
Maine, we developed separate algorithms for evergreen,
deciduous, and mixed forests, to estimate forest height and
biomass from fusion of SRTM‐NED and Landsat data. The
methodologies used for the state of Maine can also be
applied to other regions with slight modifications. These
methodologies complement the existing methods and extend
the applications to regional mapping of forest carbon in
continental US. In addition, the results from this study will
provide an assessment of application of SAR interferometry
data for forest height and biomass estimation from future
planned sensors on‐board NASA’s DESDynl (Deformation,
Ecosystem Structure, and Dynamics of Ice) and European
Space Agency’s BIOMASS missions.

2. Area of Study

[7] The state of Maine is located between 42° and 47°N
latitude, and 67° and 71°W longitude in the northeastern
United States. Topography of the region ranges from rea-
sonably flat coastal areas to the mountainous regions further
inland. Elevation runs between sea level and 1000 m. Based
on the National Land‐Cover Database [Homer et al., 2004],
approximately 90% of the state’s land surface is forested,
which includes evergreen, deciduous, mixed, shrub, and
woody wetlands. The forested areas are approximately
divided in half between softwoods and hardwoods [Smith
et al., 2004]. The softwoods mainly consist of firs and
pines (mostly evergreen trees) while the hardwoods are
mostly made up of maple, birch, and oak (mostly deciduous)
[Little, 1979].
[8] For this study, the forested areas were separated into

deciduous, evergreen, and mixed types. This is due to the
fact that the structures of these two types of trees are very
different. More importantly, the SRTM was flown in Feb-
ruary 2000 during the northern hemisphere winter when all
the deciduous forests in Maine would have lost their leaves.
Figure 1 shows the spatial distribution of the different types
of forests. With this classification at a 90 m pixel scale, the
deciduous, evergreen, and mixed types take up approxi-
mately 18%, 22%, and 35% respectively, of the total land
area. This area is ideal for the study because of the avail-
ability of in‐situ field measurements as well as the different
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combinations of topography and vegetation types to test the
methods.

3. Data

3.1. Forest Inventory Data

[9] For direct field measurements, data were provided by
the USDA Forest Service, Forest Inventory and Analysis
program (FIA). FIA conducts inventories in three phases.
Phase 1 consists of aerial photography and/or remote sens-
ing to reduce variance through stratification. Phase 2 are the
traditional FIA ground plot measurements of forest and tree
information. In phase 3, a subset of phase 2 plots are
selected and more information relating to forest health is
collected. Measurements from phase 2 of FIA’s inventory
program were used for this study because of the larger
number of plots available. In the phase 2 measurements,
only trees with diameter greater than or equal to 5 inches

were measured. In both phase 2 and phase 3, each ground
plot sampled is made up of 4 smaller subplots. Each ground
data point, therefore, is approximately representative of a
circular plot of 37 m radius. Detailed information on the
ground data used can be found on the FIA web site (http://
fia.fs.fed.us/). Ground inventories for deciduous and ever-
green forests from 1999 and 2000 were used to minimize
variation of the forest due to time difference from SRTM
flight. Inventories from 1999 to 2003 were used for mixed
forests because of the small number of plots available.
Overall, we chose 613 evergreen, 933 deciduous, and 29
mixed stands in the pool of 2294 plots to perform this study
(Table 1). The forest stands covered a wide range of ages
and biomass from young secondary to old growth forests.
The plot data included a number of structural variables. We
chose to examine the forest type, average and dominant
heights, basal area (the sum of surface areas of trees with

Figure 1. Forest vegetation cover derived from Conterminous United States Land Cover by National
Center for Earth Resources Observation and Science, U.S. Geological Survey.

Table 1. Summary of Statistics From FIA Ground Data

Percent of Land
(From NLCD2001) Number of Plots

Biomass

Mean
(Mg/ha)

Median
(Mg/ha) Skew Percent < 200 Mg/ha

Deciduous 18 933 116 112 0.394 92.4
Evergreen 22 613 108 105 0.412 94.5
Mixed 35 29 131 113 0.184 86.2
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diameters at breast height and in the unit of m2/ha), and
aboveground biomass in our analysis.

3.2. Remote Sensing Data

[10] Several sets of remote sensing data that included all
of Maine were used to develop relationships with the ground
data. With the exception of the National Elevation Dataset
(NED), similar time period of coverage were used for all the
remote sensing data. We selected the remote sensing data
and the ground data to be as close to the year 2000 as
possible to minimize errors due to variations in the forest
structure over time from the acquisition of SRTM data.
3.2.1. Shuttle Radar Topography Mission
[11] The Shuttle Radar Topography Mission was con-

ducted in February 11–22 of 2000. It uses interferometric
synthetic aperture radar (InSAR) techniques and covers
global landmasses between ±60° latitude. The main instru-
ment on the shuttle is a C‐band (5.6 cm wavelength)
ScanSAR interferometer. The C‐band radar has 4 sub‐
swaths using horizontal (H) and vertical (V) polarization
(2 H sub‐swaths and 2 V sub‐swaths) with 2 ScanSAR
beams illuminating 2 sub‐swaths at a time. Together, the
swaths cover about 225 km. There is also a X‐band (3 cm
wavelength) interferometer on‐board, but since it did not
have a ScanSAR mode, it had a much smaller swath and did
not provide continuous coverage (see http://www.jpl.nasa.
gov/srtm). The SRTM data is available to the public in 3 arc‐
second resolution (≈90 m) outside of the United States, and
full resolution of 1 arc‐second (≈30 m) in the U.S. The
consistency and near‐global coverage of SRTM make it a
great choice for studying terrestrial biomass distribution.
The data was re‐sampled into 3 arc‐second resolution for
this study.
[12] The National Geospatial‐Intelligence Agency (NGA)

and NASA conducted an extensive ground campaign to
collect ground truth and produced global validation of the
SRTM data. For North America, SRTM was shown to have
absolute geo‐location error of 12.6 m, absolute height error
of 9.0 m, and relative height error of 7.0 m, with the biggest
component of the error coming from random errors caused
by instrument thermal noise and residual geometric dec-
orrelation effects [Rodriguez et al., 2006]. It was shown that
the random error is correlated with topography and radar
brightness: typically <5 m, but at higher latitudes or for flat
regions with good coverage, <2 m. This means that a large
portion of the area of interest will have much better absolute
SRTM height error than 9.0 m. But this also means that it is
important to produce a map of confidence levels to
accompany any large scale forest canopy and biomass maps
generated using SRTM.
[13] It is well known that SRTM radar signal does not

always penetrate all the way through the forested canopy to
the ground. In a dense canopy forest, the scattering phase
center height generally falls somewhere between the canopy
top and the ground surface. Kellndorfer et al. [2004],
Simard et al. [2006], and Heo et al. [2006] have all shown
that it is possible to retrieve forest height information from
SRTM. Sarabandi and Lin [2000] showed that the equiva-
lent scattering phase center height for a vegetated forest
stand depends on forest characteristics such as soil moisture,
tree density, and tree types as well as the InSAR parameters
such as frequency, polarization, and incidence angle. These

factors control the relative significance of scattering mech-
anism within the forest and consequently impact the location
of the scattering phase center. For example, if the double‐
bounce or volume‐surface interaction scattering dominates,
the scattering phase center shifts towards the ground. This
may happen in a tall forest with a sparse canopy or when
forest floor is smooth and very wet [Saatchi and McDonald,
1997; Sarabandi and Lin, 2000].
[14] In the case of the SRTM product used for this study,

the InSAR parameters for individual pixels are not known
since most pixels at these latitudes are averaged from mul-
tiple passes (part of the post processing to reduce the error.)
Therefore, we can only assume that the SRTM data gives a
scattering phase center height with a certain amount of
vertical error as well as horizontal geo‐location error, and
focus on the physical characteristics of the forest stands
which also affect the scattering phase center.
[15] In a forest with closed canopy and dense leaf cov-

erage, the scattering phase center height will fall closer to
the top of the canopy. As the forest becomes less dense, or
in the case of deciduous trees which have lost all their leaves
during the time of SRTM flight, the scattering phase center
height becomes lower and forest density, tree types, and soil
moisture may play a larger role in impacting the location of
scattering phase center [Saatchi and McDonald, 1997]. The
biomass value of a forest is correlated with the density and
height of the forest, which are two of the physical para-
meters that affect the scattering phase center height. It is
reasonable that there is also a relation between scattering
phase center height and forest biomass. In the case of
deciduous forests, density is expected to play a bigger role
in the amount of penetration, due to the loss of leaves to
allow more radar penetration. These variations will need to
be taken into consideration when retrieving forest para-
meters from SRTM for different forest types.
3.2.2. National Elevation Dataset
[16] The National Elevation Dataset (NED) is a seamless

digital elevation map (DEM) produced by the U.S. Geo-
logical Survey (USGS). It is assembled from the best
available source data over the region of interest. The source
data consist of 10‐m DEM, 30‐m Level 2 DEM, 30‐m Level
1 DEM, 2‐arc‐second DEM, and 3‐arc‐second DEM from
the USGS National Mapping Program’s Sales Database. The
different source data are reprojected into the same projection
and then processed and matched to remove artifacts and fill
in missing data at the boundaries through interpolation. The
dataset is also updated as better DEMs become available
over various regions [Gesch et al., 2002]. However, because
of the piecewise production of the NED data, there are areas
with missing data, and the quality of the DEM may vary
from region to region.
[17] In the case of the state of Maine, we found several

small patches with missing data or various imaging artifacts
(e.g. smearing). These are mainly due to lack of high preci-
sion data or a mismatch in geo‐referencing between adjacent
patches of DEM. Sometimes, these artifacts are hard to locate
when observing only the NED image by itself. However,
when taking the difference of SRTM‐NED, the artifact
becomes pronounced. Figure 2 shows the SRTM‐NED
image for a small area of Maine as well as a histogram of
the pixel values. The histogram shows most points fall into
the expected range of values, but there are also small
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numbers of unrealistically large values as well as unphysical
negative values.
3.2.3. Landsat
[18] The Landsat data for this study were from the

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) used in
GeoCover data set (Landsat GeoCover. 2003). ETM+ pro-
vides data from eight spectral bands with 30 m resolution
for the visible and near‐infrared bands, 15 m for the pan-
chromatic band, and 60 m for the thermal infrared band.
The spectral bands 2, 4, and 7 (two reflected IR and one
green) were obtained from USGS in 30 m resolution. The
wavelength range of bands 2, 4, and 7 are .525–.605 mm,
.75–.90 mm, and 2.09–2.35 mm respectively. The ETM+
scenes were mosaicked and cut into the desired area and
re‐sampled into 90 m resolution to match the SRTM and
NED images. More information about the Landsat program
can be obtained at the USGS Landsat Program web site
(http://landsat.usgs.gov/).
[19] The Landsat image was also used to generate images

of various vegetation indexes. The spectral bands 4 and 2
from ETM+ were used to develop the Green Normalized
Difference Vegetation Index (GNDVI) and Specific Leaf
Area Vegetation Index (SLAVI):

GNDVI ¼ NIR� G

NIRþ G
; SLAVI ¼ NIR

MIRþ R
ð1Þ

Both indexes are different from the commonly used Nor-
malized Difference Vegetation Index (NDVI). The ETM+
green (band 2) and mid‐infrared (band 7) have a strong sen-
sitivity to forest height and the timber volume [Butera, 1986;
Horler and Ahern, 1986; Puhr and Donoghue, 2000]. In
general, GNDVI is sensitive to canopy cover and disturbance
severity and is used in monitoring crops, whereas SLAVI is
primarily sensitive to volume or height of vegetation [Puhr
and Donoghue, 2000].

3.2.4. Land Cover
[20] The Multi‐Resolution Land Characteristics Consor-

tium (MRLC) produced the National Land Cover Database
2001 (NLCD 2001) land cover layer. One of the products of
this database is a land cover classification map derived from
Landsat imageries and ancillary data. The NLCD 2001 was
produced by using a decision tree classification [Homer et
al., 2004].
[21] The land cover map was downloaded at 30 m resolu-

tion in an equal area projection. It is then reprojected into the
same geographic latitude/longitude projection as the other
images but with 1/3 the pixel width and height as the other
images, which is roughly the same pixel size as the original
30 m image. The image is then re‐sampled into the same size
pixels as the others and then registered with the other images
via linear shift only. The re‐sampling algorithm divides the
higher resolution image into windows of 3 by 3 pixels with
no overlap. A simple majority is first used for the pixels in
each window to determine if the result pixel will be land or
water. For land pixels, the NLCD 2001 classification of over
20 classes is simplified down to 5 classes for this study,
consisting of: evergreen forest, deciduous forest, mixed
forest, woody wetlands, and non‐forest. Each window that
will be classified as land is classified as one of the 5 classes
mentioned above if and only if that class accounts for over
50% of the land pixels in the window. If none of the 5 classes
account for over 50% of the land pixels, then the window is
classified as mixed forest. More detailed information about
the NLCD 2001 can be found at the MRLC Consortium web
site (http://www.mrlc.gov/mrlc2k_nlcd.asp).

4. Methodology

[22] Several studies have shown that linear relationships
can be established between the difference of SRTM‐NED
and forest canopy height [Kellndorfer et al., 2004; Heo et
al., 2006; Walker et al., 2007a, 2007b]. This works espe-
cially well in areas where the forest is more homogeneous

Figure 2. (left) Image of SRTM‐NED over a small area of Maine (400 × 400 pixels) and (right) histo-
gram of pixel values in the image. Image shown is prior to interpolation with mean height of 8.91 m and
range between −31 to 58 m.
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and with closed canopy, which reduces the errors introduced
due to varying forest characteristics. However, when
deriving canopy height on a larger regional scale, variations
in forest characteristics are bound to increase significantly as
a bigger range of stand age and tree species comes into play.
[23] We introduced several methods to minimize errors in

remote sensing data and ground observations. Ancillary data
were also brought in to help determine forest characteristics.
We also looked at two different ways of obtaining above
ground live biomass (AGLB) information from the remote
sensing data. An overall procedure is presented for the
derivation of height and biomass maps on a large regional
scale, in this case, the state of Maine. The order of the
methods used and the types of remote sensing data used for
the different steps are shown in Figure 3. Details on what is
performed in each step are presented below.

4.1. Correction of SRTM‐NED

[24] In the ideal case, the value of the difference between
SRTM and NED over a forest stand would be somewhere
between zero and the actual height of the forest stand with
the location of the scattering phase center height dependent
on forest characteristics. However, due to the errors inherent
in both data sets, there will be erroneous points that fall
outside of the physically reasonable range. We created an
algorithm to interpolate over as many of these erroneous
points as possible. Figure 4 shows the flow of our interpo-
lation algorithm.
[25] The interpolation program first finds all the pixels it

deems erroneous by marking any pixels where SRTM‐NED
either falls below 0 or goes above a prescribed value based
on distribution of SRTM‐NED values over field plot loca-
tions as well as the distribution of mean canopy height in the

FIA field measurements (Figure 6). For the set of pixels
identified as erroneous, NLCD 2001 land cover map is used
to determine if the pixel is forested or not. If it is not for-
ested, the SRTM‐NED value is set to zero. If it is forested,
we look at a window of 3 by 3 pixels centered at the “bad
pixel”. Within this window of nine pixels, we look at the
other forested pixels (with reasonable values of SRTM‐
NED); and if there are enough (threshold of 4 used in this
study) surrounding “good pixels”, the value of the bad pixel
is interpolated from the mean of the surrounding forested
pixels. This assumes that the forest in question is similar to
the surrounding forests, and by filling the gap in the data, we
preserve the mean value of forest height or density in the 3 ×
3 box.
[26] If the pixel is marked erroneous because it has a

SRTM‐NED value over the prescribed threshold, the “bad
pixel” is interpolated by taking the mean of the surrounding
“good pixels” and adding one standard deviation to it. This
was done for two reasons: (1) to reflect the increased pos-
sibility of a higher‐than‐average forest because of the larger
value of SRTM‐NED; (2) to approximately preserve the
variance of the forest within the 3 × 3 box. A larger vari-
ability in the local region of forest would give an interpo-
lated forest height that is farther from the mean, while no
variability in the surrounding forest would give an interpo-
lated forest height. The standard deviation is calculated from
all forested “good pixels” within the interpolation window
(as indicated by NLCD 2001 land cover map). This method
can be repeated with as many iterations as desired. The
pixels that were interpolated in the current iteration will not
be used again in the current iteration. The interpolated pixels
will only be included for interpolation in the next iteration.

Figure 3. Flowchart of the overall methodology of the pro-
duction of height and biomass maps using remote sensing
and ground data.

Figure 4. Flow of the algorithm for interpolating bad
points in SRTM‐NED. Multiple iterations can be run to
interpolate more points.
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The number of pixels interpolated in each iteration drops
exponentially with each iteration.

4.2. Integration of FIA Data and Remote Sensing Data

[27] Due to the inherent errors in the geo‐location of the
data, especially of the field measurements, the pixel with the
same location coordinates as the ground plot is not neces-
sarily the actual pixel where the field measurements were
taken. One example of this is when the ground plot is an
isolated forest stand that is surrounded by crop fields. Using
the latitude and longitude coordinates given for the ground
measurement, the plot appears to fall in a crop field on the
remote sensing image instead. Another obvious example of
geo‐location error is when a ground forest plot appears to
fall into a body of water which is next to the forested areas.
To help correct this random error in geo‐location, we uti-
lized a box search program written in IDL, similar to an
approach used by Anderson et al. [2006].
[28] First, SRTM‐NED values are extracted from the

locations of the ground data. A simple linear regression fit is
then applied between the SRTM‐NED values and each of the
field measurements of mean canopy height and above ground
live biomass (AGLB). We then return to the SRTM‐NED
data and scanwithin awindow of 3 pixels by 3 pixels centered
around the location given by the ground data. The pixel
within the window that fits best with the linear relationship
found above is selected as the final remote sensing data. The
new set of remote sensing data is then fitted again to the field
measurements using linear regression. This gives the final
corrected regressions between SRTM‐NED and canopy
height and AGLB. The final result from the box search
method has minimal change in slope and intercept of the
fitting functions. It is mostly a reduction in the spread of the
data points. This can be seen in Figure 5. Tests were also
performed using random regression equations. The improve-
ments to the random regressions were negligible while the
actual results showed significant improvements.
[29] Histograms in Figure 6 show the distribution of forest

canopy height of the ground samples as well as SRTM‐NED
values of the corresponding corrected locations. All the data
follow a roughly normal distribution. Averages calculated
from ground plots and extracted SRTM‐NED values show

that SRTM on average penetrates 10.4 m, 9.9 m, and 10.0 m
into the canopy for deciduous, evergreen, and mixed types
respectively. A few outliers also exist in the SRTM‐NED
values that are most likely erroneous. These happen to be in
the deciduous group. (See Figure 6. Outliers fall to the right
of the vertical line in Figure 6 (bottom).) These points were
removed from subsequent data analysis.

4.3. Algorithm Development

[30] The February time frame for SRTM means that
deciduous trees in this region were leafless. This would
greatly affect the amount of penetration of radar signal over
deciduous forest stands. It is then best to separate the dif-
ferent types of forests when building a relationship between
remote sensing data and in‐situ field measurements. The FIA
field data were separated into three groups consisting of
evergreen, deciduous, and mixed forests. Using the SRTM‐
NED data and in‐situ field measurements, simple linear
relationships were developed between SRTM‐NED and for-
est canopy height and forest biomass using least‐squares fit.
See Figures 7–9 for the functional fits of these relationships.
[31] An exponential relationship between scattering phase

center height, forest canopy height, SRTM‐NED, and VI

Figure 5. Fitting between SRTM‐NED and mean canopy
height for evergreen forests before and after the box search
algorithm.

Figure 6. Histograms of (top) ground measurements of
mean canopy height and (bottom) SRTM‐NED values of
pixels corresponding to the ground data locations. Note that
the widths of the bins are not shown here (1 m). Lines are
drawn between the middle of the bin widths. Vertical line
in Figure 6 (bottom) represents cut off point for “too large”
values of SRTM‐NED.
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was also developed. The equation used for fitting to this
relationship is

hsp ¼ h 1� e��VI
� � ð2Þ

where hsp is the scattering phase center height, h is the mean
canopy height, and VI is the vegetation index. The reasoning
behind this is that the VI values should have some degree of
correlation with forest density and thus can be used as a
surrogate for forest density [Huete et al., 2002]. Then we
can assume that VI will affect the location of the scattering
phase center height. Forest stands with denser canopy cov-

erage (higher VI) would give a higher hsp while those with
less dense canopy would give a lower hsp with the asymp-
totes approaching h and 0 respectively. For the deciduous
forest stands, the data points had two distinct coefficients for
regions of lower VI and regions of higher VI. This is likely
due to the difference in characteristics of young and mature
forests. The deciduous data set was then further divided into
two separated groups using VI as a threshold. See Figure 10
for the results of equation (2).
[32] A second way of deriving a biomass map is through

the use of allometric equations between height and biomass.

Figure 8. Linear fits for evergreen forests of SRTM‐NED
versus (a) mean canopy height, (b) AGLB with SRTM‐NED
pixels extracted using box search with biomass values, and
(c) AGLB with SRTM‐NED pixels selected by box search
algorithm based on height. RMSE is 1.1 m for height and
25 Mg/ha for biomass.

Figure 7. Linear fits for deciduous forests of SRTM‐NED
versus (a) mean canopy height, (b) AGLB with SRTM‐NED
pixels extracted using box search based on biomass values,
and (c) AGLB with SRTM‐NED pixels selected by box
search algorithm based on height. RMSE is 1.9 m for height
and 42 Mg/ha for biomass.
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Using the FIA ground data, three separate allometric equa-
tions were developed for the three types of forest stands (see
Figure 11). These allometric equations can then be applied
over the height map that was generated using equation (2) to
produce a biomass map. The exponential relationship of
canopy height with ancillary data was chosen because it
handles the extreme values of SRTM‐NED better than the
linear fits.
[33] Once separate relationships for canopy height and

AGLB were developed for each of the three forest groups,
height and biomass maps were generated with the aid of the
NLCD 2001 land cover classification. First, functions for

each forest type were applied over the entire region on a 90 m
scale using NLCD 2001 land cover map to separate the
different forest types. This 90 m image is then re‐sampled to
270 m. This was done by dividing the image into 3 pixel by
3 pixel blocks. For each block where there are more forested
pixels than non‐forested pixels, a mean value of all the
forested pixels were calculated and used as the value for the
resulting 270 m pixel. If there were more non‐forested
pixels than forested, then the resulting 270 m pixel is set to a
value of 0. This represents the 270 m pixel being classified
into non‐forested class based on area of coverage. A final
check was performed on the resulting height and biomass
maps using threshold values to cut off any unrealistic values
of height and biomass. All the above operations were per-
formed using the IDL software.

4.4. Validation

[34] Validation was performed on the linear fits of height
and biomass with SRTM‐NED as well as the exponential
fits of canopy height with SRTM‐NED. First, a boot-
strapping method was used to test the fitted functions.
Second, the spatial patterns of forest biomass generated in
this study were compared with biomass map provided by
FIA. Mean and standard deviation values for each of the
forest types were also compared with those calculated from
FIA field measurements (Table 5).
[35] For the bootstrapping method, each of the three types

of forest plots were randomly placed into two groups.
Functional relationships were developed between field
measurements and remote sensing data from plots in group 1,
and R2 values were calculated. These functions from group 1
were then applied to plots in group 2, and R2 and root mean
squared error (RMSE) values are calculated. The two groups
were then compared with each other.
[36] R2 values matched well between group 1 and group 2

for both types of height relationship and the biomass rela-
tionship. The R2 for deciduous and evergreen forest AGLB
were slightly higher in group 2 than group 1. Table 2
summarizes the R2 and RMSE values calculated from
group 2 of the bootstrapping validation.

5. Results

5.1. Structure and Biomass Relations

[37] The structural variables measured in FIA plot data
and the plot level biomass values derived from allometric
equations provided us with the necessary data to examine
the relationships between average forest height, biomass,
and basal area. First, we separated the plots associated using
three forest types: evergreen, deciduous, and mixed.
Although the original plot data had species level informa-
tion, the regrouping of the plots into three forest types was
primarily due to similar forest classes in NLCD vegetation
map that can eventually allow the extension of the results
over the entire country. However, depending on regions, the
algorithms for estimating forest biomass from remote sens-
ing data or field estimation may be different depending on
the forest structure and growth mechanism or environmental
and edaphic conditions. We examined the relations between
aboveground biomass, basal area, and average height
(Figure 12). Basal area was the best indicator of biomass,
representing almost 90% of the variations in all three forest

Figure 9. Linear fits for mixed forests of SRTM‐NED ver-
sus (a) mean canopy height, (b) AGLB with SRTM‐NED
pixels extracted using box search with biomass values,
and (c) AGLB with SRTM‐NED pixels selected by box
search algorithm based on height. RMSE is 0.8 m for height
and 34 Mg/ha for biomass.
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types. This could be easily predicted as the allometric
equations are derived from DBH (Diameter at Breast
Height). Average canopy height showed an approximately
linear relationship with the aboveground biomass and
represented only 40–55% of the variations [Lefsky et al.,
2005]. A linear relationship derived from regression pro-
vided a positive correlation between biomass and height for
evergreen (R2 = 0.39), deciduous (R2 = 0.39), and mixed
forests (R2 = 0.56). Average height and basal area, however,
showed a weak nonlinear relationship in all three forest
types. Average height at the plot scale represented only 20–
35% of the basal area variations, suggesting forest density
and tree distributions within the plot playing a major role in
determining the biomass density of the plots. Basal area
captures the tree density within the plots, whereas average

height is almost independent of tree density. This confirms a
long accepted theory in forestry: that the height growth of
dominant and co‐dominant trees are generally independent
of stand density and instead relate strongly to site quality
[Wenger, 1984]. Another potential structural parameter is
the basal area weighted height or the Lorey’s height, which
is often used in lidar remote sensing [Naesset, 1997].
However, in the absence of tree level field data for this
study, we were unable to examine the relationship between
Lorey’s mean height and forest biomass.

5.2. Interpolation of SRTM‐NED

[38] There were a total of around 15 million land pixels
in the state of Maine (roughly 90 m by 90 m in area per
pixel.) Approximately 17% of these pixels had a negative

Figure 10. Exponential fit of height and linear fit of biomass plotted against measured values. Solid
lines are one to one lines (y = x). Dotted lines are best fit lines. All data points were included in these
fits. Graphs shown are:mean canopy heights for (a) deciduous, (b) evergreen, (c) mixed; and above
ground live biomass for (d) deciduous, (e) evergreen, (f) mixed.
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SRTM‐NED difference, and approximately 0.5% had
SRTM‐NED values that were deemed too high. After run-
ning the interpolation algorithm for 50 iterations, about 10%
of the land pixels remain with negative SRTM‐NED values
and most of the pixels with SRTM‐NED values that were too
high were interpolated. The number of points interpolated
each iteration diminishes exponentially with the number of
iterations. Overall, after 50 iterations, approximately 44.5%
of the pixels that were erroneous were interpolated. After the
interpolation, a number of pixels in the SRTM‐NED image
remained unchanged. Majority of these pixels fall within
blocks of troublesome regions where finding enough
neighboring “good pixels” for interpolation is difficult. Other
regions tend to be areas of rugged terrain or in areas of

deciduous trees where the scattering phase centers were low
because of the impact of the tree‐surface interactions.
[39] The remaining pixels that were not interpolated were

marked and had their values in the final biomass and height
products set to 0. Not much else can be done for these areas
as it is limited by the quality of the remote sensing data
available. The USGS is continuously updating the NED data
set and results will improve as better NED data becomes
available.

5.3. Height and Biomass Algorithms

[40] The linear relationships between SRTM‐NED and
mean forest canopy height showed the highest correlation
values, ranging from R2 = 0.587 for deciduous forests to
R2 = 0.926 for mixed forests (Figures 7–9). P‐values are less
than 0.001 for all three forest types. As expected, the
deciduous forests showed the worst R2 value out of the three
groups of forests (Figure 7). This is mostly due to the lack of
leaves in the deciduous forests. This would lower the scat-
tering phase center height, as well as introduce more noisy
random scatterers of branches. Surprisingly, mixed forest
showed the best R2 value of the three. Root mean squared
errors (RMSE) were also calculated for the different
relationships. Linear relationship for height had RMSE of
approximately 2 m for deciduous forests and 1 m for ever-
green forests. Exponential relationship of height had much
higher RMSE across the board. Biomass estimations from
direct linear relationships had RMSE of 42 tons per hectare
for deciduous forests and RMSE of 25 tons per hectare for
evergreen forests. Table 3 summarizes the R2 and RMSE
values for the different function types and forest types.
[41] Figures 7c, 8c, and 9c show the results for biomass

relationship using corrected plot locations obtained from
box search algorithm applied on height. While the R2 values
are lower than those for biomass relationships based on box
search results using biomass (Figures 7b, 8b, and 9b), they
are still improved from the case where no correction for
geo‐location errors were performed.
[42] Figure 10 shows the exponential functional fits of

mean canopy height as a function of SRTM‐NED and
Landsat derived VI (equation (2)), as well as linear fit of
AGLB as a function of SRTM‐NED. The fits shown are the
one to one scatter plot between calculated values and field
measurements. The R2 values in the exponential fit of mean
canopy height are lower than those obtained through the
linear functions. Lowest is still deciduous forests with R2 of
0.4 while evergreen has a R2 of 0.6. The simple linear
relationship for mean canopy height had higher R2 values

Figure 11. Allometric equations developed from FIA
ground data for (a) deciduous, (b) evergreen, and (c) mixed
forests between mean canopy height and AGLB.

Table 2. Validation of Results Through Bootstrappinga

Height Linear
Height

Exponential Biomass Linear

RMSE
(m) R2

RMSE
(m) R2

RMSE
(Mg/ha) R2

Deciduous 2.1 0.613 3.7 0.331 45.9 0.405
Evergreen 1.3 0.805 4.5 0.600 41.1 0.406
Mixed 0.9 0.912 3.3 0.580 33.5 0.530

aData points were randomly split into two groups: G1 and G2. Functional
fits were developed using points in G1, and then applied to G2 to calculate
R2 values and RMSE. All values shown are calculated from G2.
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across all three forest types than the exponential relationship
with VI.
[43] Table 3 shows a summary of the goodness of fit and

error estimation for various forms of functions developed in
this study. There are two functions of mean canopy height
and two functions of AGLB. The linear function of height
and biomass are direct linear correlations between the
respective quantities and SRTM‐NED. The SRTM‐NED
values used here were extracted from separate runs of the
box search algorithm: one for height and one for biomass.
The exponential height values were obtained through the

Figure 12. Relationships between basal area, height, and biomass from FIA ground data. (a, b, and c)
Deciduous plots; (d, e, and f) evergreen plots; (g, h, and i) mixed plots.

Table 3. Calculations of Goodness of Fit and Root Mean Square
Errora

Height (m) Biomass (Mg/ha)

Linear Exponential Direct From Height

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Deciduous 0.587 1.925 0.435 2.952 0.614 42.13 0.179 57.80
Evergreen 0.855 1.136 0.594 4.008 0.789 24.98 0.246 66.36
Mixed 0.926 0.802 0.567 4.021 0.575 33.60 0.283 70.54

aValues are calculated using the entire data set.
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application of equation (2) with VI as the functional vari-
able. The “From Height” values of biomass are derived by
applying the allometric equations shown in Figure 11 to
height values derived through the use of equation (2). The
root mean squared errors (RMSE) are also shown for all of
the functions and all of the forest types. RMSE of height
ranged from approximately 0.8 m (mixed) to 2 m (decidu-
ous) with the linear relationship. RMSE of AGLB ranged
from 25 tons per hectare (evergreen) to 42 tons per hectare
(deciduous).

5.4. Final Height and Biomass Maps

[44] Final images of mean canopy height and AGLB were
generated for the state of Maine at 270 m pixel resolution.
Figure 13 shows the final biomass and height results. The
results were grouped into classes to produce the final ima-
ges. Mean canopy height is grouped into classes of 2 m
intervals in the 0–10 m height range, and 5 m intervals for
heights above 10 m. For AGLB, we used 20 Mg/ha intervals
for values less than 100 Mg/ha range, and 50 Mg/ha inter-
vals for biomass values greater than 100 Mg/ha to approx-
imately represent the errors in biomass estimation. Large
spatial variation in the height and AGLB of the forests are
also visible in the images. Areas with negative SRTM‐NED

or missing data that could not be corrected by the interpo-
lation algorithm were blocked from height and biomass
maps by setting their values to zero.
[45] For the creation of the biomass map, we used a

combination of the linear and exponential equations (from
Figures 7a and 7b, Figures 8a and 8b, and Figures 9a and 9b
as well as data from Figures 7b, 8b, and 9b fitted to expo-
nential functions) even though plot data gave the highest R2

value for the linear fit. The equations were applied at the
90 m level, and then re‐sampled to 270 m. Physically, one
would not expect the biomass to continue to scale linearly
with height after a certain point. Within the ground plots
provided, there were very few plots with high biomass
values, so the linear equation provided an adequate fit.
However, when generating a product image, the linear rela-
tionship will break down over areas of high forest height and
biomass. To take into account of this effect, we applied the
exponential function for areas where SRTM‐NED values
exceeded those sampled in the field plots.

6. Discussion

6.1. Comparison of Results

[46] Some statistics of biomass values over the state of
Maine are calculated and displayed in Tables 4 and 5. The
distribution of biomass corresponds well with the division of
the three forest categories by area with AGLB fairly evenly
distributed across all forest types. The statistics for this
study are calculated from the AGLB map at 90 m resolution.
However, this resolution would not be well suited for pro-
ducing a final product. This is due to the fact that at such
fine resolution, errors in spatial registration between the
SRTM and NED images would create errors in biomass
allocation in the final image. To mitigate this problem, the
final biomass map was produced at 270 m resolution where
an average biomass value was calculated within a 3 × 3
window of the 90 m image using forested pixels of NLCD to
represent an average forest biomass instead of an average
biomass for the pixel.
[47] Table 5 shows a comparison of the overall statistics

of the biomass generated from this study with the biomass
map provided by FIA. While the mean values and the range
are very similar between the two sets of biomass maps, the
standard deviation from our analysis is larger than the FIA
map. It is very difficult to interpret this difference. FIA map
has been derived from extrapolation of plot data over the
region using two MODIS spectral bands at 250 m resolution
and decision rule approach. As MODIS signal is not sen-
sitive to forest structure, we expect the FIA approach would
have an smoothing effect on the final result and hence
reducing the variations of the forest biomass over the
landscape. A comparison with the statistics of FIA ground

Figure 13. (a) Final mean canopy height and (b) AGLB
results for the state of Maine. Products are generated at
270 m resolution.

Table 4. Statistics of Height Calculations Over the Entire State of
Maine From the Final Generated Maps at 90 m Resolutiona

Height Linear (m) Height Exponential (m)

Mean Standard Deviation Mean Standard Deviation

Deciduous 14.4 12.2 14.9 11.1
Evergreen 15.5 7.5 18.5 12.5
Mixed 13.7 6.6 12.9 10.1

aBefore re‐sampling to 270 m.
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inventory shows that the standard deviations of biomass for
all three categories of forest types are closer to results
obtained by our method than the FIA map derived from
MODIS. A visual comparison of the two biomass images
also confirms the statistical analysis. The general patterns
of biomass distribution are similar between the two sets of
images over the landscape. However, there are differences
on a pixel‐by‐pixel basis. This suggests that the existing
data and analysis can only provide a rough estimate of the
AGLB of the forests because of multiple errors associated
with estimating the forest height or biomass from SRTM
and NED. The AGLB obtained from this methodology had
errors up to 40% of the mean biomass. This error does not
allow us to capture small scale variations in forest biomass
over the landscape. However, large variations can be
readily observed in the map generated from our study. We
expect that it would be difficult to map the small scale
variations (at about 1 hectare) of the biomass accurately
without a more direct remote sensing approach. Active
remote sensing, as designed for the future NASA DES-
Dynl mission, with both interferometry and polarimetry at
L‐band (25 cm wavelength) frequency and multibeam lidar
are considered the most promising techniques to directly
estimate the above ground biomass or forest structure.

6.2. Caveats and Future Application

[48] In theory, the methodology presented in this paper
can be applied to another state or to the entire country. There
is nothing in our approach that is specific to the state of
Maine, except the FIA inventory plots and the remote
sensing data. However, applying the methodology to a
larger region requires careful consideration of the following
problems:
[49] 1. While previous as well as this study have shown

that good regression models can be developed between
ground plot measurements and the height of the scattering
phase center SRTM‐NED, areas of intense topography and
the poor quality of NED and possibly SRTM will introduce
large errors in forest height and biomass estimation. This
effect is noticeable in areas of high elevation in western
portion of the Maine image.
[50] Aside from certain tiles of NED image which may

have systematic error in elevation, the most significant
source of error appears to be geo‐location errors. This is
evident when comparing the SRTM image with the NED
image. The easiest method to see this geo‐location error is
by generating images of the aspect of the two data sets, and
comparing the two aspect images. The geo‐location errors
would produce artifacts of topography mentioned above.
This is because in areas of high slope, even small geo‐
location errors can create large errors in SRTM‐NED. This

error can be reduced by producing a coarser resolution
image for the final product.
[51] 2. The techniques developed here should work well

towards that goal. Even though the interpolation algorithm
can correct part of the erroneous pixels, some areas, espe-
cially of intense topography, can still prove challenging.
The methodologies developed use remote sensing data
which are available for the entire US. Calibration for dif-
ferent regions can be accomplished by breaking the entire
extent into smaller regions. The same procedure can then be
followed which includes obtaining local threshold values.
This would produce best results if the regions were chosen
based on similar surface and vegetation characteristics.
Based on the analysis in this paper, we recommend a
stratification of landscape compatible with biome types and
elevation gradients.
[52] 3. Generating the final height or biomass map at a

coarser resolution to avoid geo‐location or missing data
points can introduce errors associated with the scaling up of
the algorithm or the products. The scaling errors are related
to the surface heterogeneity. By aggregating the remote
sensing data before applying the estimation algorithm, we
may encounter errors due to mixing vegetation types and
characteristics. We performed some statistical analysis on
the heterogeneity of the forests in Maine and found that by
aggregating pixels from 1 ha to 100 ha (1 km resolution),
more than 60% of forested pixels changed from hardwood
or softwood to mixed forests (assuming more than half of
the aggregated pixel is mixed). Applying the mixed forest
biomass algorithm to a large pixel comprising of smaller
pixels of homogeneous stands is not the same as aggregating
the biomass of smaller pixels. This is especially important
when coarse resolution remote sensing data are used with
algorithms developed at smaller scales. In general, one
expects the accuracy of estimation to be optimum when the
resolution of the remote sensing data, the plot size used in
algorithm development, and the pixel size for algorithm
implementation are the same. An alternative approach would
be to use a multiscale probabilistic technique with ground
data at one scale and as many remote sensing data layers as
possible at different resolutions. This would utilize as much
information as possible from different remote sensing data
sets to complement each other. This approach would also be
prune to errors. However, it provides a rigorous upscaling
mechanism and improved estimation accuracy at some
optimum scale [Irving and Willsky, 2001; Slatton et al.,
2005; Saatchi et al., 2010].
[53] We did not include an error analysis of biomass

estimation that can include measurement errors associated
with SRTM or NED data sets. This is mainly due to the fact
that there was no reasonable model to quantify and include
errors associated with both data sets in the estimation model.

Table 5. Comparison of Statistics of AGLB From This Study, the FIA Map Derived From MODIS, and FIA Ground Inventorya

This Study FIA Map FIA Inventory

Deciduous Evergreen Mixed Deciduous Evergreen Mixed Deciduous Evergreen Mixed

Minimum 0.66 0.66 8.93 20.18 20.18 20.18 1.15 0.99 33.1
Maximum 211.5 212.6 212.6 213.0 215.2 215.2 341.81 298.36 225.4
Mean 121.6 115.6 111.2 116.0 103.7 108.8 116.1 107.7 131.2
Standard Deviation 45.8 44.2 36.3 20.8 21.7 20.9 56.4 53.2 50.7

aBiomass values are in units of Mg/ha.
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Errors associated with the phase noise in SRTM data can be
included as an additive noise term in the estimation model
[Kellndorfer et al., 2004]. The phase noise error can be
reduced by multilooking (averaging) the radar imagery and
hence coarsening the spatial resolution. However, this
approach may not work in this study for the following rea-
sons: (1) There is no plot data at coarse resolution to compare
with the averaged product. (2) Multilooking or averaging
will reduce the noise error but does not reduce the overall
error if the biomass estimation is biased. (3) The SRTM data
is produced by multiple polarizations and different looks.
There is no analytical or numerical model to quantify the
radar performance error for each pixel [Rodriguez et al.,
2006].

7. Conclusion

[54] The work was produced on a spatial resolution of
roughly 90 m, with final product images generated at 270 m
resolution. While good correlation can be developed
between scattering phase center height of SRTM and field
measurements of mean canopy height with appropriate fil-
tering of plots, caveats exist when attempting to apply this
method for generating products over a large region. An
interpolation algorithm was developed to correct for erro-
neous pixels and other ancillary remote sensing data were
used to help constrain the final output. Even after applying
correction techniques, some regions such as areas of intense
topography can still be problematic. It is most likely that the
main source of error is the geo‐location between the SRTM
and reference ground height from NED. Although caveats
exist, overall statistical results showed good agreement with
published ground inventory data from FIA, with our method
estimating a total AGLB of 700 Gg for the state of Maine
for the year 2000 (FIA data shows total AGLB estimation of
759 Gg for the year 2002.) This study also provided a tested
methodology which can be applied, with a degree of auto-
mation, towards the generation of height and biomass maps
for the entire United States.
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