
New Models for Predicting Diameter at Breast
Height from Stump Dimensions

James A. Westfall

Models to predict dbh from stump dimensions are presented for 18 species groups. Data used to fit the models were collected across thirteen states in the
northeastern United States. Primarily because of the presence of multiple measurements from each tree, a mixed-effects modeling approach was used to account
for the lack of independence among observations. The heterogeneous error variance was described as a function of stump diameter, which allowed for more
accurate representation of prediction intervals. Application of the mean response model (fixed-effects parameters only) to independent data indicated an average
absolute error between 0.2 and 0.7 in. for most groups. An additional advantage is that random-effect parameters allow the model to be calibrated to local
conditions if some additional data are available. An example is provided that indicates the local calibration results in a mean residual value that is closer to
zero compared with the mean response model. Efforts in other locales to use stump information to inform dbh predictions can obtain the same advancements
by adopting a similar modeling methodology.
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There are various reasons for reconstruction of sizes of re-
moved trees, including reviewing harvesting practices, as-
sessing damage due to catastrophic events, creating histori-

cal records of past management activities, and establishing loss due
to timber theft (Wharton 1984, Corral-Rivas et al. 2007). The need
to estimate the attributes of removed trees for which no readily
usable information is available has led to numerous studies in which
tree stump dimensions are used to predict tree characteristics. Most
commonly, the relationships between stump characteristics and tree
dbh are described via regression models. Most early works consisted
of development of lookup tables or ordinary least-squares (OLS)
linear models that were limited to species of high commercial im-
portance (Cunningham et al. 1947, Hampf 1957, Bones 1960).
Wider ranges of tree species were accommodated in later works. In
addition to stump diameter, McClure (1968) used a log transfor-
mation of stump height to develop linear regression models for 53
species in the southern United States. A similar methodology was
used by Alemdag and Honer (1977) to describe stump/dbh relation-
ships for 11 species in Canada and by Raile (1978) to present linear
models for dbh/stump diameter ratios for more than 20 species
occurring in the Lake States (Minnesota, Wisconsin, and Michi-
gan). Relationships between stump diameter and dbh for seventeen
species in the northeastern United States were described via OLS
linear regression models by Wharton (1984). Other research on
prediction of dbh using stump information includes simple OLS
linear regression models for lodgepole pine (Schlieter 1986), linear
and geometric models for white and black oak in Michigan (Ojasvi
et al. 1991), a linear model with a heteroscedastic variance function
for baldcypress (Parresol 1993), and nonlinear models using stump
diameter as a predictor for southern Indiana oaks (Weigel and John-
son 1997). Recently, Corral-Rivas et al. (2007) developed both
linear and nonlinear models to predict dbh from stump diameter for
five pine species in central Mexico. It is notable that relatively little

work on prediction of dbh from stump dimensions has been done
over the last two decades.

The most flexible prediction models were those that used both
stump diameter and stump height (McClure 1968, Raile 1978).
The models were calibrated using least-squares regression analysis,
despite the violation of the assumption of independence of observa-
tions (multiple data points were taken from each stump or tree). The
proper treatment of correlated observations is necessary to avoid bias
in variance estimates (Swindel 1968, Sullivan and Reynolds 1976).
Advances in statistical theory now allow for appropriate treatment of
the data in the model fitting process. Particularly, correlations be-
tween observed data points can be taken into account such that
unbiased model error estimates can be obtained (Gregoire et al.
1995). In this report, models that predict dbh from stump dimen-
sions are presented. A mixed-effects modeling approach was taken to
account for the within-tree correlations in the data (Garber and
Maguire 2003, Trincado and Burkhart 2006). The mixed-model
approach was further exploited to illustrate how the models may be
refined for a particular area of interest.

Methods
Data

The data used in this study were collected by the Forest Inventory
and Analysis (FIA) program of the US Forest Service as part of a tree
taper study. The geographic range encompassed 13 states in the
northeastern United States, including West Virginia, Maryland,
Delaware, New Jersey, Pennsylvania, Ohio, New York, Massachu-
setts, Rhode Island, Connecticut, Vermont, New Hampshire, and
Maine. Data were collected assuming species groupings described by
Scott (1981), which are also used by FIA for tree volume estimation
(implying similar tree form). The groupings represent a compromise
between individual species and broad aggregations (e.g., hardwood
and softwood). Tree species frequency and tree size information
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obtained from FIA inventory plots were used to allocate the sample.
Geographic dispersion and elimination of the potential need to
account for correlations between trees was accomplished by measur-
ing only one tree per species group at a given sampling location.
Figure 1 depicts the spatial distribution of sample locations.

Measurements were taken on a total of 2,464 trees over a range of
tree species and sizes (Table 1). Height/diameter information was
obtained using a Barr & Stroud dendrometer. Measurement points
occurred at heights of approximately 1, 2, and 3 ft, where heights
were recorded to nearest 0.1 ft and tree diameters were recorded to
nearest 0.1 in.; dbh was measured at 4.5 ft of height. There were
7,371 height/diameter data pairs obtained.

Analysis
To predict dbh from stump measurements, there are three pri-

mary sources of information: (1) species, (2) the diameter of the
stump (d), and (3) the height at which the diameter d occurs (h). The
latter two pieces of information, along with the fact that dbh is
measured at a height of 4.5 ft, can be used to describe the relation-
ship between the stump dimensions and dbh for a given species or
species group. For this study, two measures of distance between the
stump height (h) and 4.5 ft were considered. First, the ratio of 4.5/h
provides a relative metric of how far h is from the point where dbh is
measured. Also, the difference (4.5 � h) was calculated to represent
the absolute distance between the two points of interest on the tree
bole. These two variables, in addition to stump diameter, were used
to specify the prediction model,

dbh
^

i � di � �4.5/hi�
�̂0 � �̂1�4.5 � hi� � �i, (1)

where dbhi� estimated diameter breast height (in.) for tree i; di �
stump diameter (in.) for tree i; hi � stump height (ft) for tree i;
�̂0, �̂1 � estimated fixed-effects parameters; and �i � random error
for tree i.

Equation 1 is conditioned such that dbhi � di when hi � 4.5 ft.
To account for the multiple observations per tree, random-effects

parameters were added to Equation 1 to indirectly estimate the
within-tree correlations using the variance/covariance matrix of the
model parameters.

During model development, it was also noted that the error
variance increased with increasing stump diameter (surprisingly, the
magnitude of error was unrelated to stump height). To ascertain the
nature of this increase, the variances of the �i for each value of di were
calculated and analyzed (observed diameters greater than 34 in. were
grouped into 0.5-in. classes). The nonlinear trend was accounted for
via the error variance formulation given in Equation 3.

dbhi � di � �4.5/hi�
�̂0��li � ��̂1 � �2i��4.5 � hi� � �i (2)

�i � N�0, �̂2di
�̂2), (3)

where �̂2 � estimated fixed-effects parameter; �̂2 � estimated
model error variance; �hi � random-effects parameters for tree i; �h

� N(0, �2
h), h � 1, 2; and other terms are as previously defined.

Results and Discussion
The regression analyses were conducted separately for each of the

18 species groups. Table 2 reports the estimated values for the fixed-
effects parameters (�0–2), model error variance (�2), variance of
random-effects (�1–2

2 ), and covariance between random-effects
(�12) for Equations 2 and 3. All fixed effects parameter estimates
were statistically significant (	 � 0.05) for all groups except the �1

parameter for three of the species groups (5, 10, and 14). The esti-
mated parameters for �2 in the error variance function 3 provided an
accurate depiction of the relationship between residual variance and
stump diameter. Figure 2 shows this relationship evaluated over the
entire data set. Also shown is the constant error variance that would
have been estimated in a traditional application of OLS regression.
Figure 3 depicts the observed correlation between residual variance
and stump height, as well as a linear regression through the data
points. The slope of the regression line was not statistically different

Figure 1. Spatial distribution of data collection locations across 13 states in the United States.
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Table 1. Tree frequency, tree size, and sample size information by species for 18 species groups.

Species group Species name No. of trees

dbh (in.)

nMinimum Mean Maximum

1 Eastern white pine 102 3.2 12.6 36.7 304
1 Red pine 38 3.8 10.9 19.5 114
2 Black spruce 30 3.5 7.7 15.7 90
2 Red spruce 73 2.8 10.4 22.8 219
2 White spruce 45 3.1 10.0 19.4 135
3 Balsam fir 150 3.4 9.5 21.3 450
4 Eastern hemlock 133 3.4 13.6 33.5 399
5 Norway spruce 12 4.2 10.3 16.1 36
5 Scotch pine 8 3.7 7.8 13.3 24
5 Table Mountain pine 5 7.8 10.5 13.9 15
5 Virginia pine 26 3.1 9.7 16.8 78
5 Jack pine 3 6 8.4 10.3 9
5 Larch (introduced) 7 4.4 11.3 16 21
5 Loblolly pine 30 5.2 10.8 23.5 90
5 Pitch pine 30 3.4 9.8 15.3 89
5 Shortleaf pine 7 6.4 10.6 15.2 21
5 Tamarack (native) 18 4 9.1 14.2 54
6 Atlantic white-cedar 29 5 9.1 14.9 87
6 Eastern redcedar 35 3.5 10.3 21.8 105
6 Northern white-cedar 59 3.3 11.8 30.8 177
7 Sugar maple 138 3.1 13.0 31.4 412
8 Yellow-poplar 132 2.8 11.9 28.9 393
9 Balsam poplar 9 3.8 9.2 13.7 27
9 Bigtooth aspen 26 3.6 10.3 16.8 78
9 Black ash 12 3.9 8.3 15.2 36
9 Eastern cottonwood 7 7.5 15.6 28.9 21
9 Green ash 6 3.5 8.0 15.2 18
9 Quaking aspen 35 3.3 9.4 14.9 103
9 White ash 40 3.6 11.2 30.1 120

10 Black cherry 115 3 11.3 32.2 345
11 Gray birch 13 3.2 6.0 9.6 39
11 Paper birch 42 3.1 8.5 16.3 126
11 River birch 3 5.3 8.6 14 9
11 Sweet birch 41 3.2 9.6 27.3 123
11 Yellow birch 48 3.2 10.6 28.4 144
12 American beech 142 2.8 12.8 35.3 425
13 American basswood 48 3 10.4 28.2 144
13 Basswood 63 3 13.2 29.4 189
13 White basswood 4 5.2 9.6 14.6 12
14 Black oak 39 3.1 13.3 35.2 117
14 Blackgum 14 5.7 10.0 24.2 42
14 Northern red oak 46 5.2 13.9 44.3 136
14 Pin oak 7 6.8 15.0 30.3 21
14 Scarlet oak 23 4.8 12.4 27.3 69
14 Shingle oak 3 5.5 10.8 15.1 9
14 Southern red oak 7 7.8 13.0 17.5 21
14 Sweetgum 14 5.2 10.9 18.9 42
14 Willow oak 2 8 8.2 8.4 6
15 Chestnut oak 132 3.3 13.5 33.6 394
16 Bitternut hickory 19 3.7 9.5 15.3 57
16 Hickory 20 3 14.7 33 58
16 Mockernut hickory 29 3.4 8.6 17.9 87
16 Pignut hickory 36 4.1 9.1 14.4 106
16 Shagbark hickory 41 3.1 9.0 15.9 123
16 Shellbark hickory 1 3.2 3.2 3.2 3
17 American elm 9 3.3 8.1 15.6 27
17 American holly 5 5.3 6.2 7.2 15
17 Ohio buckeye 1 4.1 4.1 4.1 3
17 Black locust 20 3.9 12.8 24.2 60
17 Black walnut 11 9.6 12.5 17.2 32
17 Black willow 4 3.8 14.0 24.4 12
17 Buckeye 4 4.5 9.6 14 11
17 Bur oak 1 9.1 9.1 9.1 3
17 Butternut 1 11.4 11.4 11.4 3
17 Chinkapin oak 1 10.3 10.3 10.3 3
17 Cucumbertree 9 9.2 12.7 16.4 27
17 Elm 11 2.8 8.3 13.5 33
17 Hackberry 2 3 6.1 9.1 6
17 Honeylocust 2 9.4 12.0 14.6 6
17 Magnolia 6 10.8 13.0 15.2 18
17 Slippery elm 4 3.6 9.3 12.5 12
17 Swamp white oak 5 9.6 17.5 25.7 15
17 Sycamore 14 3.9 16.8 31.6 40
17 White oak 35 3.6 15.5 30.6 104
17 Yellow buckeye 1 9.2 9.2 9.2 3
18 Red maple 94 3 13.0 29.9 285
18 Silver maple 27 2.7 12.0 30.9 81
Total 2,464 2.7 11.5 44.3 7,371
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from zero (P � 0.71). The variances of the random effects were also
significant across all groups, indicating that there were inherent
between-tree differences in stump dimension/dbh relationships
within species groups. Examination of residuals versus predicted
values indicated no systematic trends that would indicate model
mis-specification.

Given that application of Equation 2 will be to predict dbh for
new observations, prediction error intervals are of primary interest.
Quantifying model error can be accomplished through Equation 3.
In this setting, random-effects parameters are assigned their ex-
pected value of zero. Prediction intervals were computed from
(Draper and Smith 1981)

dbh
^

i 
 tn�p,0.025� �2ei
�̂2 �1 � x�i�X �X��1xi	, (4)

where n � sample size; p � number of estimated parameters;
tn�p, 0.025 � t statistic (n � p degrees of freedom, probability 	/2 �
0.025); X � regression design matrix for fixed-effects parameters;
and xi � vector from design matrix associated with tree i.

As an example, the results for group 16 (hickory) were used to
illustrate how the prediction error changes with stump diameter
(Figure 4). The model predictions assumed a stump height of 1 ft,
and the interval width represents the 95% confidence level. It is
shown that the interval is relatively small when tree size is small, e.g.,
the interval is roughly 
 0.4 in. when dbh is estimated to be 9 in. In
contrast, the interval increases to 
 1.9 in. when dbh is estimated to
be 30 in. Note that this differs from the classical prediction intervals,
where the interval is smallest at the mean of the predictor variable(s)
and widens elsewhere (Figure 4).

Table 2. Estimates (and standard errors) for fixed-effects parameters (�0–2), model error variance (�2), variance of random-effects
(�1–2

2), and covariance between random-effects (�12) from Equations 2 and 3 for 18 species groups.

Species
group �0 �1 �2 �2 �1

2 �2
2 �12

1 �0.1096 (0.0047) 0.0588 (0.0154) 1.4462 (0.1575) 0.0024 (0.0010) 0.0008 (0.0002) 0.0145 (0.0031) �0.0003 (0.0005)
2 �0.1334 (0.0062) 0.0740 (0.0134) 2.1841 (0.1557) 0.0005 (0.0002) 0.0023 (0.0004) 0.0071 (0.0012) �0.0021 (0.0006)
3 �0.1353 (0.0084) 0.1451 (0.0184) 2.4605 (0.1222) 0.0002 (0.0001) 0.0024 (0.0005) 0.0065 (0.0009) �0.0022 (0.0007)
4 �0.1162 (0.0057) 0.0686 (0.0137) 2.5778 (0.1356) 0.0002 (0.0001) 0.0013 (0.0003) 0.0074 (0.0014) 0.0000 (0.0004)
5 �0.1117 (0.0030) 2.4009 (0.1874) 0.0004 (0.0002) 0.0012 (0.0001)
6 �0.1631 (0.0103) 0.1517 (0.0305) 2.2783 (0.1585) 0.0005 (0.0002) 0.0040 (0.0009) 0.0157 (0.0034) �0.0037 (0.0016)
7 �0.1323 (0.0072) 0.2442 (0.0231) 1.8478 (0.1376) 0.0011 (0.0004) 0.0014 (0.0003) 0.0132 (0.0020) 0.0006 (0.0004)
8 �0.0966 (0.0043) 0.0260 (0.0114) 1.7903 (0.1326) 0.0010 (0.0003) 0.0016 (0.0003) 0.0074 (0.0014) �0.0018 (0.0008)
9 �0.1074 (0.0064) 0.0685 (0.0148) 1.9470 (0.1657) 0.0008 (0.0003) 0.0024 (0.0004) 0.0091 (0.0016) �0.0007 (0.0005)

10 �0.0720 (0.0039) 2.1169 (0.1677) 0.0008 (0.0003) 0.0024 (0.0004)
11 �0.1743 (0.0075) 0.1376 (0.0170) 1.7486 (0.1622) 0.0022 (0.0008) 0.0024 (0.0006) 0.0060 (0.0020) �0.0002 (0.0009)
12 �0.1171 (0.0055) 0.0714 (0.0143) 2.1741 (0.1358) 0.0006 (0.0002) 0.0015 (0.0003) 0.0097 (0.0019) �0.0006 (0.0005)
13 �0.1193 (0.0078) 0.1009 (0.0261) 1.7150 (0.1319) 0.0013 (0.0004) 0.0014 (0.0003) 0.0076 (0.0015) 0.0000 (0.0005)
14 �0.1651 (0.0038) 2.4990 (0.1610) 0.0004 (0.0002) 0.0021 (0.0002)
15 �0.1329 (0.0082) 0.0659 (0.0224) 1.6448 (0.1551) 0.0022 (0.0008) 0.0026 (0.0005) 0.0133 (0.0032) �0.0023 (0.0011)
16 �0.1578 (0.0055) 0.0615 (0.0136) 1.8147 (0.1755) 0.0009 (0.0004) 0.0007 (0.0003) 0.0087 (0.0029) 0.0018 (0.0003)
17 �0.1662 (0.0075) 0.1258 (0.0206) 1.4486 (0.1383) 0.0034 (0.0012) 0.0024 (0.0004) 0.0173 (0.0030) �0.0008 (0.0008)
18 �0.1382 (0.0104) 0.1010 (0.0278) 1.8050 (0.1674) 0.0019 (0.0008) 0.0015 (0.0004) 0.0151 (0.0036) 0.0002 (0.0006)

Figure 2. Observed and modeled error variance versus stump diameter across all species groups. Note: Observed diameters greater
than 34 in. were grouped into 0.5-in. classes. OLS, ordinary least-squares.
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Figure 4. Mean response and 95% confidence intervals for prediction of new observations using variance from Equation 5 and using
variance from ordinary least-squares (OLS) (hickory; species group 16).

Figure 3. Observed error variance versus stump height and linear trend line across all species groups. Note: The slope of the trend line
was not different from zero (P � 0.71).
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Most commonly, the model will be applied by setting the ran-
dom-effects parameters to zero (mean response model). To evaluate
model performance under this scenario, independent data from
studies conducted on seven national forests were used. Forests
within the region where the model fitting data were collected in-
cluded the Monongahela, Green Mountain, White Mountain, and
Allegheny national forests. To obtain more data for some of the
species groups, some forests outside the region were also included
(Hiawatha, Hoosier, and Chequamegon-Nicolet national forests).
Table 3 provides the means and standard deviations for raw residual,
mean absolute residual, and mean relative residual (residual/dbh) by
species group.

These results show the mean residual is generally within 
 0.5
in., although eastern hemlock (group 4) is somewhat higher. Mean
absolute residuals ranged between approximately 0.2 to 0.7 in. for
all groups except hemlock (group 4), basswood (group 13), and oak
(group 14). These results compare favorably with those for the same
region reported by Wharton (1984), in which mean error often
exceeded 1.0 in. The mean relative residuals indicate that the aver-
age amount of error should be less than 4% of the true dbh for most
groups. The percentage errors were somewhat higher for eastern
hemlock (group 4) and cedar (group 6), having average values of
�6.2 and �6.0%, respectively. Overall, eastern hemlock appeared
to have the poorest predictions; however, there were only eight
observations available for testing. Additional data are needed to
better ascertain the quality of model predictions for this species.

At this point, it should be noted that similar predictive ability
would be obtained from a model development strategy that ignored
the correlated observations and heterogeneous variance (e.g., OLS).
Estimates of fixed-effect model coefficients remain unbiased even
when these factors are unaccounted for. However, the estimates of
model error will be biased and associated statistics, such as signifi-
cance tests for parameter estimates and confidence/prediction inter-
vals, will be unreliable.

An alternative approach to implementation is to obtain predic-
tions of random-effects for new observations using additional infor-
mation collected where the model will be applied. For instance,
Lappi (1991) calibrated a height/diameter model from local height
and diameter measurements. Trincado and Burkhart (2006) de-

scribe how to localize a taper model by using upper-stem measure-
ments for the trees of interest. The most likely approach to local
calibration is measurement of a “stump” diameter/height and dbh
from several nearby trees for each species group present. In this case,
a set of random coefficients applicable at the stand level can be
obtained via (Vonesh and Chinchilli 1997)

� � DZ��ZDZ� � R��1� y � Xb�, (5)

where � � vector of predicted random-effect parameters; B � re-
gression design matrix for random-effects parameters; F � matrix of
partial derivatives of Equation 2 with respect to each fixed parameter
(�0–1) evaluated at di, hi for each calibration tree; Z � FB; R �
predicted variance/covariance matrix of residual errors; D � pre-
dicted variance/covariance matrix of random-effects (from Table 2);
y � vector of observed tree dbh values; X � regression design matrix
for fixed-effects parameters; and b � vector of fixed-effects param-
eters (from Table 2).

Independent data from 31 sugar maple trees (species group 7)
were used to illustrate the process. For each tree, stump diameter at
stump height � 1 ft and dbh information were available. Sixteen
trees were randomly chosen to represent the harvested trees for
which predictions of dbh are desired. Fifteen trees were used to
estimate the random-effects parameters via Equation 5. The results
were �71 � 0.0100 and �72 � �0.0687. Thus, the localized predic-
tion model for sugar maple is given as

dbhi � di � �4.5/hi�
��0.1158�0.0100�

� �0.1047 � (�0.0687�)�4.5 � hi� � �i. (6)

Applying Equation 6 to the 16 harvest trees shows that the dis-
tribution of the residuals is shifted to be better centered about zero,
compared with the residuals resulting from applying the nonlocal-
ized mean model (Figure 5). The local calibration does result in
poorer predictions for some trees, but better estimates of dbh for the
entire sample are gained; the mean residual for the mean model
(fixed-effects only) was �0.16 in., whereas the mean residual for the
locally calibrated model was �0.04 in.

Conclusion
The models presented differ from previous efforts to estimate

dbh from stump dimensions in three ways. First, the inclusion of
random-effects parameters allows for unbiased estimates of error
variance, which directly affect inferences regarding estimated pa-
rameters and estimation of confidence/prediction intervals. Second,
the ability to locally calibrate the model provides an alternative to
using the mean response over an often large geographic area. Third,
the heterogeneous error variance was described as a function of
stump diameter, which allows for more realistic prediction intervals
than those based on an (often invalid) assumption of homogeneous
error. This represents marked improvements over earlier efforts, in
which such features were lacking.

The models are applicable to many species occurring in the
northeastern United States. Given that many of these species also
occur outside the area used in this study, the model may be used
elsewhere. However, it is recommended that local calibration be
performed if possible, and if not, considerable caution should be
exercised, as unknown biases may produce inaccurate predictions.
Ultimately, the most attractive option for other geographic areas
would be to collect data and adopt a similar modeling methodology.

Table 3. Means (and standard deviations) for raw residual, mean
absolute residual, and mean relative residual from mean response
model applied to independent data from seven national forests.

Species
group n Mean residual

Mean
absolute residual

Mean
relative residual

1 160 0.077 (0.460) 0.319 (0.338) 0.006 (0.038)
2 19 0.057 (0.279) 0.236 (0.149) 0.008 (0.033)
3 12 �0.212 (0.518) 0.310 (0.462) �0.020 (0.047)
4 8 �0.751 (1.012) 0.897 (0.866) �0.062 (0.074)
5 112 0.300 (0.353) 0.355 (0.298) 0.035 (0.039)
6 53 �0.463 (0.878) 0.518 (0.846) �0.060 (0.107)
7 213 �0.393 (1.148) 0.648 (1.025) �0.036 (0.087)
8 46 �0.025 (0.946) 0.646 (0.685) �0.002 (0.063)
9 63 �0.393 (0.951) 0.588 (0.842) �0.034 (0.077)

10 46 0.017 (0.850) 0.577 (0.619) �0.002 (0.046)
11 68 0.162 (0.555) 0.426 (0.387) 0.012 (0.046)
12 47 �0.186 (1.106) 0.657 (0.903) �0.014 (0.072)
13 25 �0.528 (1.707) 1.160 (1.343) �0.032 (0.113)
14 99 0.483 (1.224) 0.917 (0.940) 0.025 (0.064)
15 21 �0.009 (0.672) 0.513 (0.420) 0.000 (0.040)
16 26 0.177 (0.778) 0.567 (0.550) 0.011 (0.053)
17 41 �0.065 (1.034) 0.646 (0.803) �0.003 (0.066)
18 88 0.355 (0.572) 0.497 (0.452) 0.028 (0.045)
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The predicted values may be used to further construct the missing
trees (e.g., via height-diameter models) or as input into volume or
biomass models that the user may wish to use.
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