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priate weighting scheme can vary depending on the type of analysis and graphical display. Both statistical
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issues and user expectations need to be considered in these methods. A weighting scheme is proposed
that balances statistical considerations and the logical expectations of users. The methods described
here are being used in an online forest carbon estimation tool. Example applications are presented to
demonstrate the methods.
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. Introduction

Analysis methods for mapped plot forest inventory data are
mportant because the USDA Forest Service Forest Inventory and
nalysis (FIA) program (Bechtold and Patterson, 2005) has installed
undreds of thousands of such plots throughout the US and its ter-
itories. In addition, mapped plots are being used by some state
gencies and individual owners (Van Deusen, 2009). Mapped plots
equire the delineation of areas within the plot, called a condition,
ith distinct land-based characteristics in terms of forest type, land
se and structure, for example, FIA makes these data available in an
nline public database called the FIADB (Anon., 2010; Smith et al.,
006), which users can download and analyze in a number of ways.
enerally, analyses of FIADB data can be categorized based on the

ntended output such as: tabular, regression, maps or graphs.
Often, graphs and maps involve similar considerations that

ocus on a combination of statistical issues and user needs for
nderstandable, timely, and objective information. Instead of
ownloading the data for analysis elsewhere, users of FIA data often
refer using online analysis tools that allow them to customize and
ownload output in usable form. The methods described here were

eveloped to provide forest carbon information, which has been

n increasing demand to the point where an automated informa-
ion system is necessary to satisfy user requests. These methods are
hared by the Carbon OnLine Estimator (COLE) (Proctor et al., 2005;

∗ Corresponding author. Tel.: +1 978 296 5030.
E-mail addresses: PVanDeusen@ncasi.org, pvandeus@gmail.com

P.C. Van Deusen), LHeath@fs.fed.us (L.S. Heath).

378-1127/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.foreco.2010.08.010
NCASI, 2010), and a newer version that features a ®Google Maps
interface (G-COLE). Total carbon stocks and carbon density (ton per
area) are output in a consistent way across analysis methods. FIA
has several online tools (USDA, 2010) which draw data from the
FIADB, including Evalidator, which creates tables, and FIDO, which
creates tables and maps. Currently, Evalidator outputs total pop-
ulation carbon estimates only in tables, whereas carbon output is
not yet a feature of the FIDO tool.

Mapped plot data (Van Deusen, 2004; Bechtold and Patterson,
2005) bring some complications to the analysis, because FIA plots
can be subdivided into one or more conditions. Thus, the one plot
becomes multiple observations, each based on an area of less than
a plot. A proper analysis of the data needs to take this into consid-
eration. Weighted approaches are appropriate when fitting these
data to equations, and when developing estimates for tabular out-
put. Graphs and maps may not use weights, but they need to
be produced with regard to mapped plot characteristics. In this
study, we further discuss the issues, and propose solutions that
unify the underlying methods while producing the various out-
puts.

2. Background

A variety of methods may be used to analyze mapped plot forest

inventory data depending on how the data are being analyzed and
displayed. However, all approaches must handle the special charac-
teristics of mapped plot data in a way that allows for a meaningful
analysis. For example, a user generally expects 1 point per plot on
a graph, not 1 point per condition. A regression analysis should

dx.doi.org/10.1016/j.foreco.2010.08.010
http://www.sciencedirect.com/science/journal/03781127
http://www.elsevier.com/locate/foreco
mailto:PVanDeusen@ncasi.org
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e weighted to reflect different condition proportions and possibly
ifferent plot expansion factors as well.

The most recent compilation of statistical methods that FIA fol-
ows is published in the “Green-Book” (Bechtold and Patterson,
005). The Green-Book presents methods for tabular analysis, but
oes not specifically consider methods for graphs, regressions or
aps. The methods for tables presented here are similar to Green-

ook methods, but we emphasize using weights and plot condition
easurements that are adjusted to ensure unbiasedness and that

ows and columns logically sum to the correct totals.
Graphical displays such as box plots and xy plots are generally

eferred to here as graphs to differentiate a graphical display from
field plot. Data intended for graphs should often be handled dif-

erently than for tables or regressions. It may not be appropriate
o display a point for each mapped plot condition. Doing so could
ead to having more than one point per field plot, which might
onfuse interpretation. Likewise, a very small condition may have
ew trees and should not necessarily be displayed alongside full
lot conditions without some adjustment. Examples are provided
sing output from the online tools.

. Weighted tabular estimation

A mapped plot forest inventory results in measurements for
ach condition, c, within each plot, i. The analysis involves the con-
ition measurements, yic, and the condition proportions, aic, where
he proportions on each plot sum to 1.0. These data can be described
ith the following simple model (Van Deusen, 2004),

ic = aic�c + �ic (1)

here �c is the expected value for condition c, and the random error
ic has mean 0 and assumed variance ai�

2
c . We assume throughout

hat yic has already been expanded to a per acre or per hectare
alue. For example, with 10th hectare plots, the actual plot con-
ition measurements should have been multiplied by 10 to make
hem represent per hectare values.

Weighted estimation also requires that each plot be assigned
weight. Often, it is meaningful to interpret this weight as an

xpansion factor denoting the number of acres or hectares a plot
epresents. FIA installs 1 plot for (approximately) every 6000 acres
1 ha = 2.47 acres). Therefore, we would expect the expansion factor
or FIA plots to be close to 6000 when working in English units. Most
ingle owner inventories would have a higher sampling intensity,
ay 1 plot for every 100 acres, but weighted analysis follows the
ame template regardless of the sample intensity.

.1. Weighted estimates of the mean

A weighted estimator was presented (Van Deusen, 2007) that
sed plot expansion factors as weights and estimates the condition
otal, T̂c , without bias,[

n∑
i=1

eiyic

]
= �c

n∑
i=1

eiaic (2)

here ei is the plot expansion factor, n is number of plots in the
nventory or the number of plots that contain some condition c
either interpretation of n gives the same result). The expectation
n the right side of Eq. (2) follows directly from Eq. (1). It is the log-
cal estimate for the condition total, which is to multiply the mean

c by the sum of the expansion factors adjusted with the condi-

ion proportions. It follows immediately that an unbiased weighted
stimate of the mean is,

ˆ c =
∑n

i=1eiyic∑n
i=1eiaic

(3)
d Management 260 (2010) 1607–1612

In order to simplify the weighted estimator notation, we define
a set of adjusted weights, wic = aicei and corresponding adjusted
condition measurements, ỹic = yic/aic . This results in the following
estimator for the mean,

�̂c =
∑n

i=1wicỹic∑n
i=1wic

(4)

Although Eq. (4) is just a reformulation of Eq. (3), we show below
that the adjusted weights and condition measurements have value
beyond their obvious use for creating tabular results where rows
and columns logically add to the totals.

3.2. Weighted variance estimates

The weighted total, T̂c , and the weighted mean (Eqs. (2) and (3))
are related as follows,

�̂c = T̂c

Âc

(5)

where Âc is an estimate of the area in condition c. With mapped
plots, a forest condition area estimate is

Âc =
n∑

i=1

wic (6)

We are ignoring the contribution to variance from Âc in what fol-
lows, but interested readers can see (Zarnoch and Bechtold, 2000)
for ideas on how to incorporate this additional variance component.

The variance of the weighted total (Eq. (2)) is

v(T̂c) = v

(
n∑

i=1

wicỹic

)
=

n∑
i=1

e2
i �2

c (7)

where �2
c can be estimated for each table cell from the plots that

fall into that cell or category. The suggested estimator from (Van
Deusen, 2004) can be used to estimate the variance component in
Eq. (7)

�̂2
c =

∑n
i ∈ cε̂2

i∑n
i ∈ cai − 1

(8)

where ε̂i = yi − ai�̂c , and i ∈ c denotes that the summation is over
the plots that contain the same category or condition.

The variance of the weighted mean follows immediately from
the relationship in Eq. (5) and is

v(�̂c) = v(T̂c)

Â2
c

(9)

4. Combining conditions for graphs

Conditions should generally be combined so that each mapped
plot only contributes one observation to the graph. The adjusted
condition measurements, ỹic , represent per hectare expected val-
ues. For example, when the condition covers 50% of the plot one
expects it to have half the value of a like condition that covers
the full plot. In general, the partial condition measurement should
be divided by the condition proportion to make it approximate a
full plot value. The original condition measurements, yic, may have
already been adjusted to represent per acre or hectare values in the
dataset by dividing by the full plot size, e.g. values for 10th hectare

plots have been divided by 0.1. Clearly, adjusting small conditions
(slivers) to per hectare values can give results that might be hard to
find on an actual full hectare of that particular condition. For exam-
ple, a small sliver that contains a few large trees could result in an
extremely large per hectare value.
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Table 1
Pseudo data from three mapped plots. The columns are: y—condition measurements,
a—condition proportions, e—plot expansion factors and c—condition codes.

Plot y a e c

1 y11 0.4 100 1
1 y12 0.6 100 2

m
f
t
m
t
(
a
1
o
w
o
i
w
p
o

i
y

y

N
c
t

w

t
a
o
y
t
c

5

b
(
a
f

t
i

Y

w
p
o

v

2 y21 1.0 100 1
3 y31 0.2 100 1
3 y32 0.7 100 2
3 y33 0.1 100 3

To clarify these ideas, consider the pseudo data (Table 1) that
ight arise from three mapped plots. Actual values are assigned

or expansion factors and condition proportions, but the condi-
ion measurements are denoted generically as yic. The suggested

ethod for presenting condition measurements on a graph is
o create one measurement per plot. Suppose the pseudo data
Table 1) are to be used to create an xy plot for filtered plot char-
cteristics which are exhibited by conditions 2 and 3. Only plots
and 3 contain conditions 2 and 3, so there should be 2 points

n the graph. Plot 1 would contribute ỹ12 = y12/0.6 and plot 3
ould contribute (y32 + y33)/(0.7 + 0.1). Therefore, graphs depend

n how the data are filtered by the user and must be created dynam-
cally. For this example, the user filtered for conditions 2 and 3,

hich required those conditions to be combined such that each
lot containing some of either condition would contribute a single
bservation to the graphical display.

Mapped plot observations that have been filtered for character-
stics so that more than 1 condition is included will be denoted by
˜ if , where

˜ if =
∑

c ∈ f yic∑
c ∈ f aic

(10)

ote that ỹic is a special case of ỹif , occuring when there is only 1
ondition. Graphs should generally display a value that corresponds
o ỹif , so that each mapped plot only contributes one observation.

The corresponding weight for filtered observations is simply,

if = ei

∑
c ∈ f

aic (11)

Thus, proper results for graphs depend on combining condi-
ions according to the user defined filters prior to display. Tabular
nalysis will give the same results whether applied to the filtered
bservations, ỹif , and weights, wif , or individual condition values,

˜ ic and wic , because conditions are combined during the summa-
ion process. Regression analysis also requires that conditions be
ombined to produce proper results.

. Weighted regression

Weighted regression analysis and graphical analysis should both
e applied to filtered mapped plot data as defined by Eqs. (10) and
11). Each mapped plot should contribute a single observation to
ny given weighted regression analysis. Otherwise, the degrees of
reedom in the analysis of variance will be inflated.

Consider using mapped plot data in a regression analysis where
he objective is to estimate the parameter vector, ˇc, in the follow-
ng linear equation,

c = Xˇc + Vc (12)
here Yc is a vector of condition c observations (from mapped
lots), X is a matrix of concomitant variables and Vc is a vector
f error terms.

It makes sense to apply weighted regression methods to obser-
ations that have different expansion factors. Also, it would not
d Management 260 (2010) 1607–1612 1609

be reasonable to treat a condition which is only a mere sliver of a
plot the same as an observation from a full plot. Consider the basic
matrix formula for weighted linear regression,

ˆ̌ c =
[
X ′W−1

c X
]−1

X ′W−1
c Yc (13)

where Wc is a matrix of weights.
Our proposal is to let Wc = 1/diag(w1c, . . . , wnc), i.e. a diago-

nal matrix consisting of the inverse of the weights defined in Eq.
(11). This weighting scheme results in weights being proportional
to the product of the condition proportion and the plot expan-
sion factor. Therefore, conditions of large proportions on plots with
large expansion factors get more weight in the analysis. If all plots
have the same expansion factor, then the weights are equal to
condition proportions, which is intuitively reasonable. In fact, it
might be appropriate to set all expansion factors to a constant, say
1.0, for some regression analyses. There is no statistical reason for
plot expansion factors to weight the analysis when the plot selec-
tion probability was independent of the expansion factor, which is
the case with the FIA survey. Recall that tabular analysis involves
expansion factors so that tables add to the correct totals, which is
logically (not theoretically) motivated.

It can also be shown that Eq. (4) is a special case of Eq. (13)
when Yc = (ỹ1f , . . . , ỹnf ) and X is set to a vector of ones. There-
fore, this approach to weighted regression produces estimates from
mapped plot data that are compatible with weighted tabular esti-
mates when the observations and associated weights are, (ỹif , wif ).
In particular, this weighted regression strategy results in minimiz-
ing the following weighted sum of squared residuals,

n∑
i=1

wif (ỹif − xi
ˆ̌ c)

2
(14)

where xi is the ith row of the X matrix. This weighting scheme can
be applied to nonlinear regression as well.

5.1. Exceptions to the one observation per plot rule

There is a situation that calls for an exception to the rule of one
observation per plot for a regression analysis. This is when there
is a categorical independent variable. For example, suppose one is
interested in predicting total above-ground carbon as a function of
owner group. There could be plots that have conditions with differ-
ent owners. Suppose a plot overlaps Federally-owned and Private
land. In this case, the plot has to contribute two observations to the
analysis.

In general, it is reasonable to treat FIA plot observations as if they
are independent in a regression analysis. This is not the case in the
situation where a plot contributes more than one observation to the
analysis. Clearly, multiple observations from the same plot are not
independent. Ignoring this dependence between observations from
conditions on the same plot does not bias the parameter estimates.
However, it does lead to overly optimistic variance estimates.

6. Growth, removals and mortality

In general, growth, removals and mortality (GRM) estimates do
not require new techniques. However, GRM data may require dif-
ferent weights. This is largely due to the fact that some mapped
plots may be newly installed and therefore have no data to con-

tribute to a GRM analysis. The number of plots with current
measurements will always be at least as large as the number of
plots that have current and past measurements. Therefore, a GRM
analysis will often use a subset of the plots that would contribute
to an analysis of current values.
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Fig. 1. Hexagon map of above-ground live tree carbon (ton/ha) in Georgia, 2006.

.1. Defining plot expansion factors

Plot expansion factors for COLE are derived from values in the
IADB. It is possible to determine the current FIA estimate of forest
and area for each county in the US from the FIADB. COLE weights
re then derived so the weights for all forested plots in a county add
o the FIA estimate of forest land area for that county. This equa-
ion, applicable to any set of plots within a well defined polygon or
olitical region, is,

p = Ap

np
(15)

here wp is the weight to assign to each plot that falls within the
olygon, Ap is the forest area of the polygon and np is the number
f plots in polygon p. The area, Ap, is fixed but the number of plots,
p, may be different for GRM and non-GRM analyses.

. Example applications

The example results are generated with COLE (NCASI, 2010)
nd FIADB (Anon., 2010) data that were current as of Monday,
ugust 16, 12:57:15, 2010 for the state of Georgia. We begin
y generating a map of hexagons (Fig. 1) where each hexagon
overs 5937 acres (2402.6 ha). Hexagons that include only non-

orested conditions are blank; hexagons that include a forested
ondition are colored. Each FIA plot that includes a forested con-
ition is assigned to the nearest hexagon’s center. The data are
reprocessed so that each FIA plot contributes one observation that
orresponds to ỹif (Eq. (10)). A loess smoothing procedure from

able 2
bove-ground live tree (no foliage) carbon density (ton/ha) by owner group and stand or

Natural

USDA Forest Service 77.27 (2.77)
Other federal 62.03 (3.37)
State and local 62.04 (4.26)
Private 52.02 (0.84)
All 53.99 (0.79)
d Management 260 (2010) 1607–1612

the R statistical package (RDCT, 2010) is applied to improve the
appearance.

We apply the weighted estimation procedure to produce a
table (Table 2) of above-ground carbon density (live trees without
foliage). The per hectare means use Eq. (4) and the standard errors
are based on Eq. (9).

Carbon totals (Table 3) are computed with Eq. (2) with standard
errors based on Eq. (7). The rows and columns add to the correct
totals as they should with the weighted estimators. The “All” cells
(Table 3) were computed independently to verify that the totals
add correctly, apart from small differences due to rounding to the
nearest tonne.

We use the average measurement year as the estimate for year.
To calculate this, the number of plots by measurement year table
(Table 4) is printed out by COLE when the Table – Means analysis
function is chosen. By weighting measurement year by number of
plots, we estimate the average measurement year for these data is
2005.6, which we round up to 2006.

Finally, we look at a weighted regression analysis and do a com-
parison of those results with the weighted means (Table 2). The
linear model is fitting live tree above-ground carbon (treeAGC) to
indicator variables for owner group and stand origin (natural or
planted), i.e. treeAGC = f(OWNGRPCD + STDORGCD). This approach
absorbs the first level of each categorical variable into the intercept.
Therefore, the coefficient for the intercept (Table 5) corresponds to
the USDA Forest Service natural stand category as computed by the
weighted mean method (Table 2).

The other coefficients (Table 5) can be interpreted as deviations
from the Forest Service natural stand category. For example, the
mean for Natural Private stands is derived by adding the private
coefficient to the intercept (77.281 − 25.646 = 51.635 ton/ha). The
planted coefficient indicates the expected difference between a
natural and a planted stand, regardless of owner.

It might seem odd that the planted stand coefficient is negative,
since we expect plantations to produce more wood than natural
stands. However, these are stock, not production estimates, and
if age is included in the model the planted coefficient becomes
positive. The results in Table 5 reflect the fact that plantations on
average are younger than the typical natural forest stand, especially
if it is on Forest Service land.

8. Discussion

FIA annual inventory data can be analyzed in a number of ways.
Methods were presented to unify tabular, graphical and regression
analyses, which can all be used to summarize and understand FIA
survey data. The methods presented here are not identical to the
methods that FIA uses (Bechtold and Patterson, 2005), but these
methods still produce unbiased estimates with variances that can
be estimated.

The fact that there are alternative methods for the analysis of

FIA data should not be surprising or disturbing. It is known that
uniformly minimum variance estimators do not generally exist for
survey samples from finite populations (Godambe, 1970). Regard-
less, the methods presented here are very similar to FIA (Bechtold
and Patterson, 2005) methods, but leave out some of the compli-

igin for all forest land in Georgia, 2006. Standard errors are in parentheses.

Planted All

62.97 (23.16) 76.64 (2.81)
49.84 (13.23) 61.6 (3.28)
35.37 (4.67) 56.29 (3.62)
31.44 (0.76) 45.03 (0.63)
31.73 (0.75) 46.94 (0.61)
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Table 3
Total above-ground live tree (no foliage) carbon (ton) by owner group and stand origin for all forestland in Georgia, 2006. Standard errors in parentheses.

Natural Planted All

USDA Forest Service 25,372,107 (911,054) 944,046 (347,188) 26,316,153 (966,683)
Other federal 17,957,137 (983,133) 539,322 (143,190) 18,496,459 (992,831)
State and local 13,498,838 (936,750) 2,111,547 (287,643) 15,610,385 (1,019,532)
Private 309,312,168 (5,079,044) 96,043,616 (2,344,580) 405,355,785 (5,787,401)
All 366,140,251 (5,396,259) 99,638,530 (2,391,475) 465,778,782 (60,144,832)

Table 4
Number of plots by measurement year by owner group for all forest land in Georgia, 2006.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

USDA Forest Service 6 2 – – – 24 23 35 34 21
Other federal 4 1 – – – 23 34 30 18 23
State and local 4 1 – – – 31 25 30 25 12
Private 119 60 1 3 4 694 874 953 914 497

Table 5
Linear model results for total above-ground live tree (no foliage) carbon (ton) by owner group (OWNGRPCD) and stand origin (STDORGCD) for all forestland in Georgia, 2006.

Coefficient Estimate Std. error t value

Intercept 77.281 2.524 30.616
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OWNGRPCD:other federal −14.959
OWNGRPCD:state and local −16.799
OWNGRPCD:private −25.646
STDORGCD:planted −20.255

ations that result from FIA’s use of stratified estimators. The FIA
nalysis method (Bechtold and Patterson, 2005) based on double
ampling for stratification adds components to the variance esti-
ator that are not required in the methods proposed here.
There are four FIA strata (Bechtold and Patterson, 2005): forest,

on-forest, forest/non-forest-edge, and non-forest/forest-edge. FIA
lots are laid out on a grid and post-stratification is accomplished
y assigning each plot to a stratum determined from (Vogelmann et
l., 1998) USGS National Land Cover data (NLCD). However, much of
he variance reduction could be obtained with just two strata, for-
st and non-forest. The FIA strata involving proximity to forest-edge
re somewhat subtle and hard to identify. The approach described
ere uses only forest land plots and ignores the strata, which imme-
iately simplifies the analysis.

While the stratification might reduce variance at a state level,
t’s likely to have little impact with smaller sample sizes, because
ssigning plots to strata is inherently uncertain. It is difficult to
atch an FIA plot consisting of four circular subplots located 37 m

part that collectively total one-fifteenth of a hectare to a 30 m2

LCD pixel.

. Conclusions

The methods presented here apply statistical principles in a
ractical way that enhances the value of forest survey data. Imple-
enting these methods in a web tool allows users to develop

tatistically-sound estimates based on data chosen for their needs.
abular and weighted regression estimates can be presented with
tandard errors for tests of statistical significance. Presentation of
esults from individual FIA plots (Fig. 1), may provide useful infor-
ation about geographic patterns. Graphic display of individual

bservations can enhance understanding of advanced statistical

nalysis and promote comparative interpretation among plots.

The estimation methods are useful for summarizing current
tatus from forest survey data. They are also useful for assessing
RM data based on a set of current and previous plot measure-
ents. More sophisticated methods (Van Deusen, 1999) should
3.679 −4.066
3.761 −4.466
2.589 −9.904
1.012 −20.010

be employed when data are available from multiple remeasure-
ments of the same plot or multiple inventories over time. The FIA
annual inventory is maturing to where multiple plot remeasure-
ments are becoming available for a number of states. Use of these
data in the near future will require addressing analytical needs for
remeasurements.

It should be clear from the methods presented here that FIA
data are flexible and can be processed with understandable analyt-
ical procedures. The example applications were generated from an
online tool that implements these methods. This makes it possible
for users to quickly access FIA data for their region of interest and to
obtain a range of valid summary results. Online tools are useful, but
there will always be users who need to go beyond what an online
tool can offer. It is hoped that the methods described here will help
users to achieve their analysis objectives with FIA data, regardless
of what they might be.
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