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Geospatial datasets of forest characteristics are modeled representations of real populations on the ground.
The continuous spatial character of such datasets provides an incredible source of information at the
landscape level for ecosystem research, policy analysis, and planning applications, all of which are critical for
addressing current challenges related to climate change, urbanization pressures, and data requirements for
monitoring carbon sequestration. However, the effectiveness of these applications is dependent upon the
accuracy of the geospatial input datasets. A comprehensive set of robust measures is necessary to provide
sufficient information to effectively assess the accuracy of these modeled geospatial datasets being produced.
Yet challenges in the availability of reference data, in the appropriateness of assessment methods to dataset
use, and in the completeness of assessment methods available have continued to hamper the timely and
consistent application of map assessments. In this study we present a suite of assessments that can be used
to characterize the accuracy of geospatial datasets of modeled continuous variables—an increasingly
common format for modeling such attributes as proportion or probability of forestland as well as more
traditionally continuous attributes such as leaf area index and forest biomass. It is a comparative accuracy
assessment, in which each modeled dataset is compared to a set of reference data, recognizing both the
potential for error in reference data, and probable differences in spatial support between the datasets. When
used together, this proposed suite of assessments provides essential information on the type, magnitude,
frequency and location of errors in each dataset. The assessments presented depend upon reference data
with large sample sizes. The U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA) database is
introduced as an available reference dataset of sufficient sampling intensity to take full advantage of these
assessments and facilitate their prompt application after modeled datasets are developed. We illustrate the
application of this suite of assessments with two modeled datasets of forest biomass, in Minnesota and New
York. The information provided by this suite of assessments substantially improves a user's ability to apply
modeled geospatial datasets effectively and to assess the relative strengths and weaknesses of multiple
datasets depicting the same forest characteristic.

Published by Elsevier Inc.

1. Introduction

Geospatial modeling with remotely sensed data is being used to
produce geospatial datasets of continuous variables such as proportion
of forest cover, biomass, leaf area index, and forest composition
variables (e.g. Cohen & Goward, 2004; Ohmann & Gregory, 2002).
Every one of those modeled datasets contains error, as both our
knowledge and the information available formodeling is imperfect. This
error can be the result of poor georeferencing of input datasets, a poor
relationship between the attribute being modeled and the input

datasets available, error in those input datasets, inappropriate assump-
tions made by the modeling technique used, and/or poor choice of
parameters in the application of that technique. Errors can take the form
of truncated distributions, loss of variability, and/or overestimation or
underestimation of values, and these errors can vary by subpopulation,
by regionandby scale. In addition, the errorwill be some combinationof
both random or unsystematic error, and systematic error or bias. Such
inaccuracies do not necessarily render a modeled dataset useless, but
they do affect the uses and questions to which it can be applied. To
support effective sharing and application of geospatial datasets, the
Federal Geographic Data Commission developed guidelines for provid-
ing detailed information regarding how a geospatial dataset was
produced (FGDC, 1998), and many widely available datasets provide
this information. However, while this information on dataset
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development is useful for understanding a dataset's objectives,
strengths, and limitations, it requires considerable experience to
interpret, particularly with respect to dataset accuracy for a specific
application.

Many measures of agreement have been developed for the
assessment of geospatial datasets; however, most research has
focused on measures for categorical variables such as land use or
forest type classes, rather than continuous variables (Lunetta & Lyon,
2004). There remains an urgent need for methods to effectively,
consistently, and efficiently determine the relative strengths and
limitations of geospatial datasets of continuous variables to better
inform the user community of their efficacy for various applications
and to comparatively assess two datasets of the same attribute
(Congalton, 2001; Congalton, 2004; Wardlow & Egbert, 2003).
Without valid accuracy assessment we cannot know which modeled
maps to use for estimates of biomass or deforestation or where red
oak is dominant. As Strahler et al. (2006) pointed out, “without proper
validation, any map, whether at global, regional, or local scale,
remains an untested hypothesis.”

Foody (2002) and Canters (1997) identified four characteristics of
error that each provide invaluable information toward understanding
the utility of a final geospatial product or toward iterative develop-
ment of a new geospatial dataset: the location of errors, the frequency
of errors, themagnitude of errors, and the type/nature of errors. This list
reflects a clear understanding that error does indeed vary across a
dataset, and that the frequency, magnitude, scale, and type of error
present, in addition to its location, dramatically affect whether that
error is tolerable or too high for a particular application. Yet few
assessment protocols currently exist for effectively characterizing all
of these components of error. The objective of this study is to build an
assessment protocol that addresses all of these characteristics—a
protocol that explicitly recognizes the variety of ways in which
geospatial datasets are used and is sufficiently complete to inform
most uses. In addition, the protocol includes measures of agreement
that recognize the uncertainty in reference as well as modeled
datasets, provide consistent and readily interpretable results, and are
capable of being applied quickly after datasets are developed.

1.1. Characteristics of effective assessments

1.1.1. Including multiple types of assessment
Both the understanding and implementation of accuracy assess-

ment or validation of modeled geospatial datasets has evolved
considerably over the years. Whereas once a single percent-
correctly-classified metric was considered sufficient, it is now
recognized that limiting map assessments to a few simple measures
does not provide the user with a full understanding of a map's quality
or usefulness, particularly when producing geospatial datasets of land
characteristics that may be used for multiple purposes and objectives
(Laba et al., 2002; Stehman et al., 1997). Strahler et al. (2006)
recommended that a suite of assessments be used for evaluating the
quality of global land cover maps and pointed out that statistical
observations, confidence maps, and qualitative-systematic accuracy
reviews all contribute to our understanding of the quality of a
particular geospatial dataset. Despite this understanding, however,
the approach has not yet been regularly implemented, particularly
with continuous datasets. Many continuous geospatial datasets are
still frequently provided with only a single measure of agreement—
e.g. a coefficient of determination (r2) or root mean square error
(RMSE) value. This is insufficient informationwith which to assess the
efficacy of a geospatial dataset for a particular application as it
provides no indication of the types of error present, or of any regional
variation in that error, nor is it always in a form that can be readily
compared across regions and datasets or clearly describes the
magnitude of error.

1.1.2. Describing characteristics relevant to how the dataset will be used
Eachmeasure of accuracy that has been employed over the years is

sensitive to different features and evaluates different components of
error (Foody, 2002). Thus, it is important when choosing assessment
procedures to consider the likely uses of a geospatial product to
ensure that the map assessment process is valid for those uses
(Congalton & Plourde, 2000; Congalton, 2004). For some applications,
this translates into an area-based assessment in which data
summaries are compared for a set of meaningful analysis units (e.g.,
Holden et al., 2003; Lowell, 2001; White et al., 2005 or Blackard et al.,
2008). In other instances, where modeled geospatial data are being
used as input for subsequent environmental modeling or decision
analysis, information on the spatial distribution of error is essential
(e.g. Binaghi et al., 1999; DeGloria et al., 2001), and errors in modeled
data distribution can be critical because of their effect on subsequent
interpretation of high and low threshold levels (Moeur & Riemann
Hershey, 1999). At other times, it is critical to understand the accuracy
of a map's depiction of spatial variability because of the effect of local
variability on the outcomes of forest management decisions (Smith
et al., 1991). For a general purpose geospatial dataset, one for which a
specific use has not been defined, a complete assessment should
include all those characteristics that affect a user's ability to discern
spatial features and patterns, accurately calculate summary statistics
for local areas, utilize threshold values, or overlay it with other
geospatial datasets at several potential application scales.

1.1.3. Describing the location of error
The effectiveness of many traditional assessments is limited by the

presence and significance of regional variation in error. Even
employing multiple relevant metrics may be of limited use when
these metrics are applied only to the dataset as a whole, providing no
information as to how that error varies across the landscape (Bastin
et al., 2002). Error can also vary by subpopulations defined by an
attribute, such as below and above an important percent-biomass or
percent-forest threshold. In thematic accuracy assessment, informa-
tion on individual class accuracy is available from the confusion
matrix, and many studies have long recommended developing
methods for effectively using this information (e.g., Aspinall, 2002;
Goodchild et al., 1992; Pontius, 2002). Of equal importance is
information about accuracy within different segments of a continu-
ously modeled dataset, either representing the variation of accuracy
in space or between subsets of the population (e.g., Fassnacht et al.,
2006; Holden et al., 2003; Janssen & van der Wel, 1994; White et al.,
2005).

1.1.4. Assessing across a range of scales
The effectiveness of many traditional assessments is also limited

by the scale of assessment applied, since differences observed in area
assessments frequently vary with the scale of assessment (e.g.
Blackard et al., 2008; Nelson et al., 2009). Assessment results are
typically presented at the scale at which the data are suspected of
being the most accurate, or at which accuracy results were highest for
the type of assessment being conducted, with the implication, in
either case, that it is the recommended scale of application for that
geospatial dataset. In contrast, calculating and comparing assessment
results across a range of scales would provide assessment information
for a wider variety of potential users, allowing each to determine if the
level and type of disagreement at that scale is too high for their
application.

1.1.5. Timely and consistent application of assessments
Timely availability of assessment results improves the speed with

which geospatial datasets can be put into effective application. Many
over the years have called for more funding and effort to be directed
regularly into the validation of all geospatial datasets produced (e.g.,
Goodchild et al., 1992; Strahler et al., 2006), yet complete and timely

2338 R. Riemann et al. / Remote Sensing of Environment 114 (2010) 2337–2352



assessments are still not commonplace. Evidenced by the wealth of
research that has gone into assessing the performance and accuracy of
the 1992 National Land Cover Dataset (NLCD), it can take many years
before a large-area dataset is fully understood even if it is as widely
used as NLCD (e.g., Galbraith et al., 2003; Stehman et al., 2003; Smith
et al., 2002, 2003; Wardlow & Egbert, 2003; Wickham et al., 2004;
Yang et al., 2001). Improving our ability to effectively utilize existing
data sources could dramatically improve the problem of timeliness.

Fassnacht et al. (2006) and others have observed that a variety of
accuracy results can be obtained, often accidentally, when minor
modifications are incorporated into the methods used to calculate
those accuracies. Comparability between assessments conducted at
different times would be improved with increased consistency in the
methods and computation of comparative accuracy assessments.
Comparability between assessments conducted on different datasets
or different regions is also improvedwhen themeasures of agreement
used are standardized or bounded, and not dependent on the
magnitude of data values, units, or scale (Ji & Gallo, 2006).

In short, current assessment practices for geospatial products are
incomplete and ineffective when they only rely on one or two
measures, use measures that do not address the scales or the way in
which the geospatial dataset will be used, apply only to the dataset as
a whole and ignore regional and subpopulation differences, are not
sufficiently timely, and/or do not lend themselves to comparability
across datasets.

1.2. Challenges limiting the interpretation of geospatial data assessments

1.2.1. Mismatches in spatial support
In cases where assessments involve a comparison of values from

an individual plot that occupies a small spatial footprint (like that of a
ground inventory plot) with values that represent a larger area of land
(like a MODIS pixel), results can be strongly affected by the spatial
mismatch between the area covered by a ground plot (typically
between 0.067 and 0.4 ha) vs. that covered by a 250-m pixel (6.25 ha)
(e.g., Congalton, 2004; Zhu et al., 2000). This mismatch in sample unit
size is particularly significant with discrete variables involving a high
contrast between classes, and with continuous variables when
environmental heterogeneity causes fine-scale spatial patterns
(Mayaux & Lambin, 1995; Moody & Woodcock, 1994; Townshend
et al., 1992; Riemann et al., 2000). In our view of accuracy assessment,
a large pixel can be thought of as containing a potentially
heterogeneous population from which a sample is taken using a
small inventory plot. Thus comparative assessments in locally
heterogeneous areas are most affected by this mismatch. To avoid
this complication, some studies have attempted to minimize mixed
areas in the assessment by using only single-condition plots—i.e. plots
identified on the ground as occurring completely in a single forest
type, land cover class, or standsize (e.g., Blackard et al., 2008).
However, this may bias an accuracy assessment towards those
homogeneous areas in which we tend to have more confidence
(Hammond & Verbyla, 1996), or may cause an assessment to miss a
substantial portion of the landscape in highly fragmented areas
(Fassnacht et al., 2006). Other studies have suggested providing an
associated dataset derived from plot and/or image data to indicate
levels of expected local spatial variability present and thus potential
difference due to differences in sample unit size (Hershey & Reese,
1999). Modeled uncertainties from geostatistical simulation are also
based on the unexplained local spatial variability at the plot level
(Hershey, 2000). In the last two approaches, the effects of local
heterogeneity are not removed from an accuracy assessment, but
instead additional information is provided to help users identify those
areas where local estimates are likely to be strongly affected by
differences in spatial support. Comparative assessments at the plot–
pixel level will be most strongly affected by differences in sample unit
size, with decreasing effect as the scale of assessment increases.

Comparisons between areal estimates derived from sample
plots vs. modeled datasets are also affected by a mismatch of a
second type—effectively a mismatch in “sampling intensity” when
calculating area summaries. In other words, when comparing a
ground plot dataset with a sampling intensity of one plot for every
3000 ha to a continuous modeled dataset at 250-m resolution which
provides a modeled estimate for every 6.25 ha, the difference
between 1:3000 ha and 1:6.25 ha is substantial. Thus in this
example, for a 10,000 ha area, the number of individual values
contributing to each mean value would be 1600 pixels for the 250 m
modeled dataset, compared to only 3–4 ground inventory plots
within the same area. Left uncorrected, differences in sampling
intensity of this magnitude primarily affect assessments examining
spatial variability and data distribution, and at the finer assessment
scales.

1.2.2. Error and uncertainty in the reference dataset
Any reference dataset used in an assessment typically contains

some error and uncertainty, whether that dataset was based on a
sample of ground measurements or modeled at a finer resolution
from a combination of remotely sensed, ground-based and other
spatial data layers. For estimates fromdesign-based inference such as
from a plot-based sample, one can calculate a precision metric such
as sampling error or confidence interval which is related to the
variability of observations in the sample. For a model-based dataset,
modeling techniques are increasingly able to produce uncertainty
values that calculate indices of the strength of correlation between
training data and predictor layers used in themodeling. In both cases,
incorporating these known errors explicitly into the assessment
improves the interpretability and applicability of accuracy assess-
ment results (e.g. Holden et al., 2003; Ji & Gallo, 2006).

When assessment results are interpreted, any discrepancies
between fine-scale observations from a sample of ground plots and
the relatively continuous broader scale estimates, such as biomass for
250-m pixels, are due to a combination of real error in the modeled
estimate, and uncertainty in the reference data, and artifacts
associated with the different levels of spatial support being compared
(Liu & Journel, 2009; Xu et al., 2009). To maximize the utility of an
accuracy assessment, it is extremely valuable to clearly distinguish
between these as much as possible.

2. Description of the assessment protocol

Based upon the gaps and recommendations observed above, we
have identified a need for a specific suite of metrics that a) together
effectively characterize the type, magnitude, frequency, and location
of error in each dataset, b) account for or consider in the
interpretation all mismatches in spatial support between modeled
and reference datasets, c) account for uncertainty in both datasets, d)
are ideally applied at more than one scale, and e) given sufficient
validation data, can be quickly and consistently applied to maps of
continuous estimates of some attribute. In order to accomplish this,
the protocol we recommend relies on four types of assessment that
incorporate both graphical and geographical visualizations and both
qualitative and quantitative measures of agreement. When used
together, these assessments provide the breadth of information
necessary to effectively assess a geospatial dataset for general use.
The selected assessments andmeasures of agreement are summarized
in Table 1 and described below. Section 3.2 presents examples of each
using test datasets of aboveground forest biomass.

2.1. Examining data distribution

An empirical cumulative distribution function (ecdf) describes the
distribution of values present in a dataset and is an effective tool for
comparing the distributions of modeled and reference datasets, a
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characteristic frequently affected, to varying degrees, by the modeling
methods used. Assumptions about distribution may be built into the
modeling technique used, resulting in a shift, often toward normality,
in the modeled output. Similarly, techniques involving averaging
commonly result in a loss of values at the tails of the distribution. Such
differences can affect a modeled dataset's ability to accurately depict
the very high, very low, or rare values that may be present in the real
population and picked up in the reference dataset. Evaluation of
dataset differences can be done qualitatively via a visual comparison
of the ecdf plots. Of interest is the general shape of the curves and
their distance from one another, the y-intercepts (that proportion of
the dataset that has zero values), flat sections in the ecdf curves
(missing classes of values), and at what value the ecdf plot reaches
100% (the max dataset value).

Differences in data distribution can also be quantified. For
comparison of continuous data distributions, the Kolmogorov–
Smirnov (KS) statistic quantifies the agreement between the
distributions of two datasets, in terms of the maximum difference
(D) in their empirical distribution functions. When comparing two
samples with cumulative distribution functions F(x) and G(x), the KS
statistic is defined as

DKS = max jF xð Þ−G xð Þj ð1Þ

Kolmogorov–Smirnov is a robust statistic that makes no
assumption about the distribution of data, and is independent of
scale changes (e.g. Lopes et al., 2007). A measure that captures the
average distance between the two curves might be even more
desirable as a quantitative measure of agreement between two data
distributions.

An ecdf assessment should be conducted both at the individual
points where plots and pixels intersect, and for area estimates at
several scales. Included should be one scale that is large enough to
contain sufficient reference data such that the confidence interval
associated with each estimate is acceptably small, plus one or two
scales above and below that. The size required will depend upon the
spatial intensity of reference data available and the spatial variability
of the attribute in question. Choosing this scale can be based on a
general threshold or based on an acceptable maximum or average
confidence interval size. Comparison of ecdfs at coarser scales will be
less affected by differences in spatial support than finer scales
because of the number of plots and pixels contributing to the mean
estimate.

2.2. Examining overall agreement of area estimates

Comparison of modeled pixel estimates to measurements from
reference data points, or of area estimates calculated from the
modeled vs. reference datasets, provides a way to evaluate several
other types of relative error that may be present. Two characteristics
of agreement evident in a scatterplot comparison that are worth
capturing are the proportion of difference that is systematic
disagreement or bias, and the proportion that is unsystematic or
random difference (lack of precision) (Fig. 1). The reduced major axis
(RMA) line (Mark & Church, 1977) or geometric mean functional
relationship (GMFR) regression line (Draper & Smith, 1998; Ricker,
1984) can be used to describe the relationship between two datasets,
X and Y. Unlike least squares regression, the GMFR is a symmetric
regression model

Ŷ = a + bX
� �

ð2Þ

Table 1
Summary of the types of assessment and measures of agreement used in the proposed protocol, with example scales.

Assessment type Graphics and measures of agreement used Purpose

Examine data distribution at several scales
• Plot:pixel
• 10 k hex (21,400 ha)
• 30 k hex (78,100 ha)
• 50 k hex (216,500 ha)
• By subpopulation or specific region of interest

• Empirical cumulative distribution function
(ecdf) (Fig. 3)

• Identify differences in data distribution (e.g., 0's, max values,
missing range of values…)

• Kolmogorov-Smirnov statistic (KS) • Metric summarizing the maximum distance between modeled
and reference ecdfs

Examine overall agreement of area estimates at several scales
• Plot:pixel
• 10 k hex (21,400 ha)
• 50 k hex (216,500 ha)
• By subpopulation or specific region of interest

• Scatterplot with 1:1 line and geometric
mean functional relationship (GMFR)
regression line (Fig. 4)

• Visualize areas of relative overestimation and
underestimation, and level of systematic and unsystematic
differences present

• Agreement Coefficient (AC) • Metric summarizing the level of agreement between the
two datasets (range: 0–1; affected by both systematic and
unsystematic error)

• Systematic AC (ACsys) • Metric summarizing the level of systematic agreement
(proximity of GMFR regression line to 1:1 line)

• Unsystematic AC (ACuns) • Metric summarizing the level of unsystematic agreement
(level of scatter about the GMFR regression line)

• Difference between means
• Root mean square error (RMSE)

• Metrics summarizing the difference between datasets in
data units (e.g. Mg/ha) both overall (RMSE) and at one
threshold of interest

• Maps of plot- and model-based estimates
by hex (Figs. 5, 6)

• Visual comparison of area estimates for assessing
spatial patterns

Examine spatial and distribution patterns of local differences
• 50 k hex (216,500 ha) scale • Comparison of estimates vs. plot-based

confidence interval (Fig. 8)
• Identify where modeled means fall with respect to
reference means and confidence intervals

• Choropleth map of modeled estimates
with respect to plot confidence intervals (CI)
(Fig. 9)

• Spatially identify areas where local differences are within
plot confidence intervals

• Identify direction and approximate relative magnitude of
local bias where local estimates are outside plot confidence
intervals

Examine local variability
• 50 k hex (216,500 ha) scale • Choropleth maps of standard deviation

of modeled estimates within 50 k hex
area (Fig. 7)

• Identify difference in modeled and plot local variation—
a characteristic that is often compromised in an effort to
improve the accuracy of area means.
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that assumes both X and Y are subject to error, and thus the
coefficients are determined by

a = �Y − b�X ð3Þ

and

b = F
∑n

i=1 Yi −
�Y

� �2

∑n
i=1 Xi −

�X
� �2

0
B@

1
CA

1
2
:

ð4Þ

In this equation, datasets X and Y can be interchanged without
changing the GMFR line. Systematic difference can be described as
that distance between the GMFR regression line and the 1:1 line.
Unsystematic difference is the scatter about the GMFR regression line
(Fig. 1). Overall agreement is affected by both systematic and
unsystematic differences.

Many quantitative measures of agreement have been developed
for the comparison of per-pixel or area estimates of continuous
variables, and Ji and Gallo (2006) provide a brief but useful summary
of many of the metrics that have been used to measure agreement
between two such datasets. The metrics r2 and RMSE are two that are
commonly reported with continuous geospatial datasets as a measure
of agreement, but they are not the best choice, particularly when used
in isolation. To facilitate cross-region and cross-dataset comparisons,
it is important that the metric be bounded (between fixed minimum
and maximum values) and standardized to non-dimensional units so
that the units of measurement of X and Y do not affect the measure.
Without this, metric values vary with data unit and scale as well as
with level of agreement, making comparison more difficult between
regions with substantially different amounts of the attribute of
interest. It may also be important that the metric be symmetric—i.e.
that interchanging datasets X and Y in the assessment calculations will
produce identical results. A metric that is symmetric allows for
agreement comparisons among datasets derived from different
sources that may each contain error—a typical situation in natural
resource applications. The coefficient of determination (r2) measures
the proportion of the total data variation explained by the least
squares regression model, which can be misleading when it is used to
measure data agreement as it fails to measure the actual difference
between the two datasets (Ji & Gallo, 2006). Root mean square error
(RMSE) does measure the actual difference between two datasets, but
it is neither standardized nor bounded, making comparisons of levels
of agreement between regions characterized by high vs. low values
difficult when RMSE is used on its own. Root mean squared
percentage error (RMSPE) is a standardized version of RMSE, however
it is not symmetric, and becomes unstable when Xi values are near

zero, a common situation both with remotely sensed data andmaps of
forest characteristics (Ji & Gallo, 2006).

In this paper we use the agreement coefficient (AC) developed by Ji
and Gallo (2006) for its ability to provide a symmetric, bounded, and
non-dimensional measure of agreement. Ji and Gallo (2006) provide a
full description, but briefly, AC is defined as

AC = 1− SSD
SPOD

ð5Þ

where SSD is the sum of square difference

SSD = ∑n
i = 1 Xi−Yið Þ2 ð6Þ

and SPOD is the sum of potential difference

SPOD = ∑n
i = 1 j�X− �Yj + jXi −

�Xj
� �

j�X− �Yj + jYi − �Yj
� �

ð7Þ

where X
—

and Y
—
are the mean values of datasets X and Y, respectively.

The AC ranges from ≤0–1, where AC=1 if agreement between X and
Y is perfect, and values less than or equal to zero indicate no
agreement. The agreement coefficient is symmetric because the
identical value is obtained if X and Y are interchanged, making the
assumption that neither dataset is more correct than the other. If we
do believe one dataset is substantially more accurate than the other,
then Willmott's Index of Agreement (d) can be used as a measure of
agreement that is bounded and non-dimensional, but is not
symmetric (Ji & Gallo, 2006; Willmott, 1981). Importantly, one can
calculate systematic vs. unsystematic difference separately, for either
d or AC. From Ji and Gallo (2006), the unsystematic sum of product-
difference (SPDu) is defined as

SPDu = ∑
n

i=1
jXi −X̂ij

� �
jYi −Ŷ ij

� �
ð8Þ

where X̂ and Ŷ are from the GMFR regression model, and SPDs can be
obtained by SPDs=SSD–SPDu. Using SPDs and SPDu in place of SSD in
the AC equation, one can calculate systematic and unsystematic
agreement coefficients by

ACsys = 1− SPDs

SPOD
ð9Þ

and

ACuns = 1− SPDu

SPOD
ð10Þ

where ACsys=1 if the GMFR line is perfectly in line with the 1:1 line,
and ACuns=1 if all points fall directly on the GMFR line. For a user,
systematic difference represents that difference which could be
predicted from the other dataset by a simple linear model.
Unsystematic difference represents those differences which appear
to be random and unrelated to the reference dataset. Using measures
of agreement that are standardized facilitates cross-site and cross-
dataset comparisons, while additional use of measures of agreement
in data units, such as RMSE or the difference betweenmeans, provides
complementary information that can facilitate interpretation of the
actual magnitude and potential impact of those differences.

Similar to evaluation of data distribution, assessments should be
conducted at the same set of scales. Assessments of area estimates at
finer scales will bemore affected by differences in spatial support than
at the coarser scales because of the number of plots and pixels
contributing to the mean estimate.

Fig. 1. Illustration of systematic and unsystematic differences in the relationship
between two datasets.
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2.3. Examining spatial and distribution patterns of local differences

Spatial variations in ground conditions, in the quality of input
datasets, and in the local applicability ofmodeling techniques inevitably
result in modeled geospatial datasets that vary in their level of error
across the region of interest. Assessment and reporting of relative
accuracy by regionor by subpopulation often reveals importantpatterns
of variation in the magnitude and direction of relative error.

This assessment should be conducted at that scale which is large
enough to contain sufficient reference data for associated confidence
intervals to be of an acceptable size, while also being small enough to
provide a reasonable spatial depiction of regional variation across the
area of interest—a compromise between precision and spatial distinc-
tion. Thiswill likely be a scale atwhichunsystematic agreement,ACuns, is
high in the assessment of the overall agreement of area estimates.
Although severalmeasures of agreement are possible, we have chosen a
simple difference in estimates of area means—essentially complement-
ing the assessment in Section 2.2 by choosing one scale and examining
the results by subpopulation or region and in comparison to the actual
size of the reference data confidence interval at each location. This
measure is in data units and thus the size of the confidence interval and
magnitude of difference is readily interpretable. Results can also be
depicted as being within or outside different confidence interval levels,
provided that the size of that confidence interval is also presented and
less precise estimates are regarded with less confidence. Presenting
results as a choropleth map facilitates qualitative interpretation of the
spatial pattern of dataset differences as well as the magnitude of
differences between the datasets. Presenting the results in graph form
provides readily interpretable information on the distribution of
differences across the range of values.

2.4. Examining local variability

Another characteristic often compromised in modeled geospatial
datasets is local variability. Loss of local variability can be an unintended
side-effect of optimizing for the accuracy of local or global means, a
result of a lack of input information at that scale, or it can be an intended
modification in some output datasets to improve the interpretability of
other spatial characteristics such as broad-scale trends. Meanwhile,
other techniques such as most-similar-neighbor may preserve local
spatial and/or attribute variability over other population characteristics
(Moeur & Riemann Hershey, 1999). Whatever the situation, the level of
local variability present impacts applications from the calculation of
local texture or diversity, to the cost-effectiveness of management
actions, to the choice of research sites.

Assessment of local variability should be conducted at the same
scale as the assessment of local differences in the previous section.
Presenting local variability as a choropleth map of local variance or
standard deviation facilitates qualitative interpretation of the magni-
tude and spatial patterns of differences between the datasets. Local
variability is one assessment that is highly affected by differences in
spatial support. Procedures for matching sampling intensity are
relatively straightforward, but differences in the sample unit size
remain, and the local variability of 6-ha means cannot match the local
variability of .06-ha ground inventory plots because they are
describing a different scale. Nevertheless, local variability is a
sufficiently important characteristic of modeled geospatial datasets
to warrant its assessment as a description of the level of local spatial
variability present in the modeled dataset and its relationship to the
local variability present in the reference data.

2.5. Choosing a reference dataset for maps of forest characteristics—the
FIA ground inventory data as a reference dataset

The assessments proposed in this paper depend upon a reference
data source of sufficient extent and intensity to provide reasonably

accurate summary statistics for comparison of agreement by region.
The reference data source should be able to provide unbiased
estimates (as in an equal probability sampling design), be in the
same time frame as the modeled dataset, and collected in a consistent
and well understood manner with known ground data accuracies. For
modeled maps of forest characteristics, the USFS Forest Inventory and
Analysis (FIA) database is a valuable resource. The FIA program has
created a database that can be used to generate a set of reference data
consisting of forest inventory information attached to georeferenced
plots. These plot data are relatively current, collected in a standard-
ized fashion, and distributed relatively uniformly across the conti-
nental United States, Hawaii, U.S. territories, and parts of Alaska. This
database provides useful training and accuracy assessment data for
large-areamapping applications (e.g., Blackard et al., 2008), providing
design-based estimates that are relatively free of assumptions as
compared with model-based estimates. Furthermore, the random
location of FIA plots within cells formed by a hexagonal tessellation of
the country ensures that the reference data provide an unbiased
characterization of the entire study area in which they are used
(Bechtold & Scott, 2005). This helps mitigate concerns that accuracy
results may be affected by an optimistic or pessimistic (“conserva-
tive”) bias due to sampling design (Hammond & Verbyla, 1996) or
sample placement (Congalton & Plourde, 2000). One factor that needs
to be considered when using FIA plots as reference data for accuracy
assessment across all lands, however, is that tree information is
currently not collected in areas that do not meet FIA's definition of
forest: a minimum current or past tree stocking of 10%, minimum area
of 0.405 ha, minimum width of 37 m, and not subject to a nonforest
use that prevents normal tree regeneration. Therefore, in nonforest
areas, FIA plots contain little or no information on vegetation
characteristics, which will affect the accuracy assessment of those
“nonforest” areas containing trees.

3. Application of the assessment protocol with two modeled
biomass datasets in Minnesota and New York

In order to illustrate the value of this protocol we have applied it in
the assessment of two modeled geospatial datasets of aboveground
tree biomass. In this application we use USFS Forest Inventory and
Analysis (FIA) ground plot data as the reference dataset. These data
are readily available to researchers within FIA, and to those outside
FIA via a Memorandum of Understanding (MOU) agreement or
through FIA's Spatial Data Services Center. Protocols developed in this
paper should be able to be readily incorporated into the services
provided by the Spatial Data Services Center. A full assessment of
these two modeled biomass datasets will be presented in another
paper.

3.1. Data

3.1.1. Modeled datasets
To demonstrate the performance of these assessments we applied

them to two different geospatial datasets of aboveground live forest
biomass using two different techniques. Both techniques were
modeled at a grain size of 250-m resolution, using Moderate
Resolution Imaging Spectrometer (MODIS) composites and other
ancillary information. Study areas were the states of Minnesota (MN)
and New York (NY). Both states have over 16 million ac of forestland
(Miles, 2010), but MN presents strong regionalization of forest and
biomass values, while NY presents a greater proportion of forest area
intermixed with nonforest.

The first dataset (Blackard et al., 2008) was created using the
classification and regression tree software Cubist (http://www.
rulequest.com, Quinlan, 1986, 1993) and included as predictor data
sources: MODIS composites (Justice et al., 2002), Landsat Thematic
Mapper image-derived National Land Cover Dataset (NLCD92,
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Vogelmann et al., 2001), raster climate data, and topographic
variables. Biomass was modeled for only those 250-m pixels
previously identified as forestland using See5 (http://www.rule-
quest.com, Quinlan, 1986, 1993). We refer to this dataset hereafter as
bCUB (Blackard CUBist) dataset (Fig. 2a).

The second modeled dataset of forest biomass was created using a
procedure modified from the gradient nearest neighbor (GNN)
technique developed by Ohmann and Gregory (2002). One primary
difference from themethods outlined byOhmannandGregory (2002) is
the use of MODIS composites from the entire growing season to take
advantage of phenological differences between species (Wilson et al.,
submitted for publication). Hence this dataset is referred to as the pGNN
(phenological-GNN) dataset in this study (Fig. 2b). This weighted
nearest neighbor approach uses the 2nd–7th nearest neighbors and is
moderated by the proportion of National Land Cover Dataset 2001
(NLCD2001) forest pixels within each modeled grid cell. This is in
contrast to thebCUBdataset inwhichonly forestedpixelsweremodeled.

3.1.2. Reference dataset—the FIA ground inventory data
The ground inventory data used in the comparative accuracy

assessment are from the annual FIA plots. FIA plots consist of a

0.067-ha (0.17-ac) plot cluster distributed over approximately 0.405 ha
(1 ac). They are collected at a standard sampling intensity of 1 plot per
2428 ha (6000 ac), as in NY, or 1214 ha (3000 ac) in double-intensity
states such as MN, resulting in 17,883 plots in MN and 5198 plots in NY
after a full cycle. In states on a 5-year cycle, one fifth of the plots are
measured each year, resulting in a full cycle of plots completed every
5 years. States on a longer cycle (such as NY for the first few years), will
have less than a full cycle of plots available after 5 years. For this study
2979 plots were available for NY for the years 2001–2005, approxi-
mately 60% of the full cycle. The plot data generally consist of direct
measurements of tree and site attributes and have a history of quality
assurance behind them (U.S. Forest Service, 2003). We generated plot-
level summaries of aboveground live biomass, which included biomass in
live tree bole, wood, top, and limbs, for trees 2.54 cm (1 in.) diameter at
breast height or larger, by summing tree-level biomass values generated
from regional and species-specific allometric equations (Fig. 2c).

3.1.3. Handling the mismatches in sampling intensity and sample
unit size

One could conceive of geospatial datasets such as the pGNN and
bCUB as area samples effectively generating continuous datasets with

Fig. 2. Maps of aboveground tree biomass as depicted by the two moderate spatial resolution (250-m) modeled biomass datasets compared in this study for Minnesota — (a) the
Blackard CUBist (bCUB) dataset, and (b) the phenological gradient nearest neighbor (pGNN) dataset, and (c) the 2001–2005 annual FIA plots.
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an estimate at each location. Each location is equal to the grid cell size
used in the modeling, which is typically the pixel size of one of the
primary image data sources—here 6.25 ha (15.44 ac), for a “sampling
intensity” of one modeled biomass value for every 6.25 ha. This is in
contrast to the sampling intensity of the FIA plots at one plot for every
2428 ha. Differences in sample intensity (si) should be corrected
before any assessments. In this study this was accomplished by
subsetting a new dataset from the full modeled datasets of only those
pixels that co-occurred with the FIA plots. This comparison dataset is
distinguished from the original continuous dataset by the suffix “si’—
thus the bCUB dataset being compared to the plots is referred to as
bCUBsi, and the pGNN dataset used for the comparison as pGNNsi. The
mismatch in sample unit size remains; however, the finer-scale
assessments are interpreted with this knowledge, and their relative
importance weighted accordingly.

3.2. Comparative assessments

The suite of assessments performed included all four types of
comparisons (Table 1), two of which were performed at both point
locations and area estimates at 3 scales.

3.2.1. Assessment scales used
Choice of scale is the result of a compromise between having

sufficient reference data points within each unit area such that
confidence intervals are adequately low, and having a sufficient
number of area estimates from which to generate ecdfs, calculate
GMFR regression lines and measures of agreement, and provide good
spatial regionalization of error when mapping dataset differences.
Additional consideration can be given to those scales at which the
data are commonly applied and the scales of variation present within
the dataset, if known. In this assessment we generated three polygon
datasets of tessellated hexagons, providing three scales of equal area
polygons. In the first dataset, hexes were generated around centroids
spaced 10 km apart, resulting in hexes 8660 ha (21,400 ac) in size,
and corresponding to the approximate size of the smallest counties
nationally. These hexes contain 3–4 FIA plots under standard
FIA sampling intensity (e.g., NY) and represent the minimum number
of plots (4) used by FIA to define its strata for estimation (Scott et al.,
2005). The remaining two datasetswere generatedwith hex centroids
separated by 30 km and by 50 km, resulting in hexes 78,100 and
216,500 ha in area, respectively. The 50 k hexes contain an average of
89 plots after a full cycle under standard FIA sampling intensity. In this
study, only 60% of the full inventory cycle was available in NY,
resulting in an average of 51 plots in each 50 k hex. In MN, where a
double-intensity plot sample was available, there was an average
of 178 plots per 50 k hex. At this scale, 90% confidence intervals
ranged from +/–0 to 1.09 Mg/ha for means ranging from 0 to
7.89 Mg/ha in MN for aboveground tree biomass. In this assessment
the 216,500 ha scale was chosen for those assessments conducted at
just one scale.

3.2.2. Assessment of data distributions, at four scales
Fig. 3 presents the ecdfs of each of the three datasets (FIA plots,

bCUBsi and pGNNsi) in MN (a–d) and NY (e–h), calculated at all four
scales, and plotted together for comparison. At the plot:pixel scale in
both MN and NY (Fig. 3a, e), the flat section of the line in the bCUB
dataset indicates that entire classes of values are missing—between 0
and about 5 Mg/ha biomass inMN and between 0 and 11 Mg/ha in NY,
almost certainly a difference created by the application of a nonforest
mask in the modeling that effectively eliminated all areas with
biomass b5 Mg/ha in MN. In contrast, the FIA plot ecdfs clearly
indicate the presence of some areas at each level of aboveground tree
biomass, even without having measured trees on nonforest plots. It is
also apparent that the pGNN dataset, which was developed using an
approach that models biomass at all pixels regardless of their forest/

nonforest status, results in the largest number of pixels with greater
than zero biomass, essentially predicting biomass into areas that were
not measured in the FIA plot database and thus which we know
nothing about from the reference dataset. Each of these effects could
have been roughly predicted from knowledge of the modeling
methods used, but an ecdf assessment summarizes the actual effect
on the output dataset. Examining maximum predicted values at the
216,500 ha scale, the FIA plot dataset reaches its maximum close to
9 Mg/ha (Fig. 3d), whereas the bCUBsi dataset reaches that value at
90% of the dataset, indicating that 10% of the bCUBsi estimates at that
scale in MN are above themaximum estimate in the reference dataset.
At the same scale in NY (Fig. 3h) the maximum value in the bCUBsi
area estimates is 22 Mg/ha while 27% of the area estimates calculated
from the reference plot data are above that level, indicating a relative
underestimation of biomass estimates in the bCUB dataset in NY at
that scale. These differences may be due to the spatial pattern of
biomass values in NY, in which high and low values are more spatially
intermixed throughout the state than in MNwhere both high biomass
and the tendency toward overestimation is more concentrated in the
northeastern portion of the state.

The KS distance quantifies the maximum difference between each
model ecdf and the ecdf of the FIA plot data. In this example, the KS
distance is largest at the plot:pixel scale for the pGNNsi dataset in both
MN and NY because of the much larger number of plots with very
small biomass values, however it decreases to close to zero by the
78,100 ha scale of aggregation as the two distributions become more
similar (Fig. 3 and Table 2). In contrast, the KS distance for the bCUBsi
dataset in MN is lowest at the plot:pixel scale and increases with
increasing scales of aggregation. Results for the bCUBsi dataset in NY
are less clear, with KS staying approximately the same and then
increasing at the 216,500 ha scale of aggregation to 0.286. Although
not picking up the detail described above, the KS results support the
visual conclusion from the ecdf plots that, between these two
modeled datasets, except for perhaps the plot:pixel scale, the pGNNsi
distribution is closest to the plots in terms of data distribution, and
that the distributions become more similar with increasing scale. A
metric capturing the mean difference over the entire distribution
would bemore specifically descriptive of data distribution agreement.

One important advantage of amulti-scale assessment is the clues it
provides or does not provide regarding the presence of dataset
disagreement over and above uncertainty and spatial support
differences. For example, the fact that the pGNNsi dataset becomes
more similar to the plot ecdf with increasing scale and is quite similar
by the 78,100 ha scale, suggests that the differences present at the
plot–pixel and 8600 ha scale may bemore due to differences in spatial
support and/or dataset uncertainty than real differences between the
modeled dataset and the true population from which the FIA
reference dataset is a sample. In contrast, differences between the
reference and bCUBsi dataset persist throughout all scales examined,
including those scales at which we are reasonably confident in the FIA
plot estimates. This situation can be interpreted as evidence that the
differences observed at all scales suggest real differences between the
datasets in addition to reference data uncertainties and differences in
spatial support.

3.2.3. Assessment of overall agreement of area estimates, at four scales
Fig. 4 presents the scatterplot comparison of modeled estimates vs.

estimates derived from the FIA plots, for both test states and at all four
scales. The 1:1 line and the GMFR regression lines for eachmodel–plot
relationship are added to aid visual interpretation, and the AC, ACsys,
and ACuns (Ji & Gallo, 2006) were calculated for each modeled dataset.
It was readily apparent that the GMFR line changed with increasing
scale, and that the two modeled datasets under examination in this
study each behaved differently with increasing scale. The GMFR line
associated with the pGNNsi:FIA relationship moved closer to the 1:1
line as scale increased—also reflected in increasing ACsys values. The

2344 R. Riemann et al. / Remote Sensing of Environment 114 (2010) 2337–2352



scatter about the GMFR line decreased with scale as expected,
resulting in increasing ACuns values with scale as well. Again, we
interpreted the steady increase in ACsys values all the way to 1.0 with
increasing scale to be an indication that the differences present at the
plot–pixel scale and 8660 ha scale were dominated by differences in
spatial support (.067 ha vs. 6.25 ha) and uncertainty in the reference
dataset, rather than differences between the modeled dataset and the
true population from which the reference data are a sample. Put
another way, the results of the assessment at the 78,100 and

216,500 ha scales at which we have reasonable confidence in
estimates derived from the FIA plots provided little indication that
the pGNN dataset contained substantial error, and if we assume that
the mathematical relationship between the plots and the predictors
developed for the modeling applies across scales, that confidence
could be cautiously transferred down to the lower scales as well. From
this assessment, the population depicted in the modeled dataset
(pGNN) appeared to be very similar to the population on the ground—
i.e. that sampled by the FIA plots. In contrast, ACsys values for the

Fig. 3. Empirical cumulative distribution functions (ecdf) of each geospatial dataset inMinnesota (a–d) and New York (e–h) at all four scales: plot:pixel (a,e), 8660 ha (b,f), 78,100 ha
(c,g), and 216,500 ha (d,h).
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modeled bCUB dataset decreased in MN with increasing scale and
remained relatively low at all scales in NY. We interpret this type of
behavior in the ACsys values—decreasing or remaining steady off the
1:1 line—to be an indication that there is likely to be real error present
over and above expected differences due to differences in spatial
support and uncertainty in the reference dataset. This interpretation is
stronger when the assessment includes scales at which there are
sufficient ground plots to be reasonably confident of reference data
estimates. The distance and direction of the GMFR line from the 1:1
line provides an approximate indication of the direction and
magnitude of the difference between the datasets at that scale. And
if the GMFR line crosses the 1:1 line, it indicates that the direction of
relative over- and underestimation changes at a threshold mean
biomass/ha value.

Table 2 also presents the r2 and RMSE values for each dataset and
scale. Our results support those found in Ji and Gallo (2006) that the r2

value does not reflect the level of systematic difference present in the
relationship and simply increases with increasing scale. Root mean
square error (RMSE) values reflect the effects of both systematic and

unsystematic difference and provide valuable information regarding
differences between the datasets in data units, however it is
impossible to tell, from the RMSE value alone, what proportion of
the difference is due to systematic versus unsystematic disagreement.

Mapping the resulting estimates at each scale provides a quick and
useful visualization of differences in the spatial pattern of area
estimates. Figs. 5 and 6 present mapped results of the 8660 ha
estimates for MN and NY, respectively. Differences between mean
biomass estimates calculated from the sample-intensity-corrected
modeled datasets (a and b), and those calculated from the FIA plot
data (c) reflect a combination of factors: differences in spatial support
(0.067 ha plots vs. 6.25 ha modeled pixels), uncertainty in the
reference dataset, and error in the modeled dataset. Figs. 5d–e and
6d–e illustrate the effect of not making the sampling intensity
correction. Both (d) and (e) appear more different from the FIA plot
results than is in fact true if sampling intensities are matched. To
generate a picture of the landscape as a dataset user, one would use
the approach used in figure (d) and (e) to take advantage of the full
population of modeled estimates (one for every 6.25 ha). However, to
assess how different a modeled dataset is from the FIA plot dataset,
one must make the comparison using the same sampling intensity,
particularly when assessing local spatial variability (figures a and b)
and data distribution at the finer spatial scales.

3.2.4. Assessment of differences in local means at the 216,500 ha scale
In the scatterplot comparisons across scales and in the assessment

of change in ACsys values with increasing scale, we were able to
interpret whether there was likely to be error present in the modeled
dataset over and above differences due to mismatches in spatial
support or uncertainty in the reference dataset. We could also identify
the direction of that potential error from the location of the GMFR line
with respect to the 1:1 line. Examining this difference with respect to
calculated confidence intervals associated with the reference data
provides additional information to identify where the observed
difference is likely to be real or whether it is less than the uncertainty
associated with the sample-based estimate.

Fig. 7 plots differences in estimated biomass per hectare values
within each 216,500-ha area in relation to the plot-based estimate
and 90% confidence interval. From Fig. 7, it is readily apparent how the
bCUBsi estimates fall substantially above even the 90% plot CI in most
of the areas with mean plot biomass greater than 5.5 Mg/ha, and
frequently fall below the 90% plot CI between plot biomass means of
1–3 Mg/ha. In contrast, the pGNNsi estimates generally fall within the
90% plot CI, and appear relatively evenly distributed above and below
the plot-based estimates. Fig. 8 presents this information in map form,
where the bCUBsi results show stronger regional patterns and higher
levels of relative overestimation and underestimation than the
pGNNsi dataset in both MN and NY. Mean biomass/ha values
calculated from the pGNNsi dataset fall within the 95% confidence
interval associated with the plot means for MN 88% of the time.
Estimates of mean biomass calculated from the bCUBsi dataset for MN
fall inside this 95% confidence interval 58% of the time. From Fig. 7 one
can also readily identify how the plot CI values increase with higher
biomass values, reflecting higher local variation in these areas. The
magnitude of the overestimation or underestimation error can be
identified only where uncertainty in the reference dataset has been
identified as sufficiently small.

Expressing dataset differences in terms of plot-based confidence
intervals explicitly integrates into the assessment the uncertainty in
our reference dataset, simultaneously alerting us to our level of
confidence in these estimates and where additional reference data
would be most useful. Presenting the results in map form indicates
spatially the direction and approximate magnitude of bias in the
modeled datasets for each hex area, while Fig. 7 highlights where in
the distribution of values the overestimation and underestimation are
occurring.

Table 2
Summary statistics comparing the bCUBsi and pGNNsi datasets at all four scales in
Minnesota and New York.

Minnesota New York

bCUBsi pGNNsi bCUBsi pGNNsi

plot:pixel n=17,883 n=2979

KSa 0.09 0.33 0.25 0.29
ACb 0.24 −0.33 0.22 −0.24
ACsys

c 0.99 0.75 0.85 0.75
ACuns

d 0.25 −0.08 0.37 0.01
Diff in meanse 0.40 0.03 −2.62 −0.04
r2f 0.43 0.37 0.34 0.37
RMSEg 4.85 4.81 11.66 11.01

8660 ha scale #hexes=2357 #hexes=1282
avg #plots per hex=7 avg #plots per hex=2

KS 0.10 0.28 0.23 0.17
AC 0.67 0.64 0.36 −0.01
ACsys 0.96 0.97 0.86 0.81
ACuns 0.71 0.67 0.51 0.18
Diff in means 0.41 −0.01 −2.72 0.15
r2 0.71 0.72 0.43 0.44
RMSE 2.34 1.89 9.33 8.76

78,100 ha scale #hexes=230 #hexes=118
avg #plots per hex=64 avg #plots per hex=18

KS 0.17 0.09 0.23 0.09
AC 0.83 0.94 0.71 0.76
ACsys 0.91 0.998 0.85 0.98
ACuns 0.92 0.94 0.87 0.79
Diff in means 0.38 −0.06 −3.19 0.26
r2 0.90 0.94 0.74 0.80
RMSE 1.47 0.70 4.60 2.91

216,500 ha scale #hexes=72 #hexes=35
avg #plots per hex=178 avg #plots per hex=51

KS 0.21 0.07 0.29 0.11
AC 0.86 0.999 0.80 0.89
ACsys 0.91 0.998 0.84 0.99
ACuns 0.95 0.98 0.96 0.90
Diff in means 0.37 −0.05 −3.30 0.10
r2 0.94 0.98 0.90 0.90
RMSE 1.29 0.40 3.90 1.97

a Range: 0–1; 0=perfect agreement.
b Range: ≤0–1; 1=perfect agreement, ≤0=no relationship.
c Range: 0–1; 1=GMFR regression line is identical to the 1:1 line.
d Range: 0–1; 1=no scatter; all points line up on the GMFR regression line.
e Positive=relative overestimation (Mg/ha).
f Range: 0–1; 1=perfect agreement.
g range: 0–unbounded; 0=perfect agreement.
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3.2.5. Assessment of differences in local variability at the 216,500 ha scale
In addition to biomass totals and means, local spatial variability is

an important factor affecting both management and research
applications and contributing to the uncertainty associated with FIA

plot-based estimates in each area. Local spatial variability is a
characteristic of spatial datasets that is sometimes compromised in
an effort to improve area means. In this study we compared the local
variability of each geospatial dataset in terms of the standard

Fig. 4. Scatterplots of modeled estimates vs. plot-derived estimates for Minnesota (a–d) and New York (e–h) at all four scales: plot:pixel (a,e), 8660 ha (b,f), 78,100 ha (c,g) and
216,500 ha (d,h).
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deviation of plot:pixel biomass per hectare values within each
216,500 ha area (Fig. 9). This statistic in particular is strongly affected
by the mismatch in sample unit size—the 0.067 ha area measured by
the FIA plot vs. the 6.25 ha area covered by the model input data and
output estimate. In this example assessment, the local variability of
the bCUBsi dataset was more similar to the FIA plots than was the
pGNNsi dataset in either MN or NY, at this scale.

4. Discussion

4.1. How did this suite of assessments perform?

The suite of accuracy assessment metrics presented here provided a
substantial amount of information on the nature, location, magnitude,

and frequency of error in the geospatial datasets examined, picking up
the four important characteristics of error identified by Foody (2002).
From the information provided one could discern where the error was
occurring, both spatially (Figs. 5–6 and 8–9) and in what portions of the
distribution (Fig. 7). We could also begin to identify how much of this
observed error was an artifact of differences in spatial support or
reference dataset uncertainty and howmuchwas probably the result of
real differences between the modeled dataset and the true population
on the ground. The assessment provided information regarding the
magnitude and direction of that error across the range of distribution of
biomass values (Figs. 4, 7) or in different regions of each state (Fig. 8).
With these assessments we could identify the type of error—whether it
was in terms of biomass estimates (Figs. 4–6 and 7–8), the frequency
distribution of values (Fig. 3), or in the local spatial variability of the

Fig. 5.Mapped results of area estimates at the 8660 ha scale for Minnesota, including summaries calculated from the full datasets (a) pGNN and (b) bCUB, summaries calculated from
(c) the plot data, and summaries calculated from the sample-intensity corrected datasets (d) pGNNsi and (e) bCUBsi.
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Fig. 6.Mapped results of area estimates at the 8660 ha scale for New York, including summaries calculated from the full datasets (a) pGNN and (b) bCUB, summaries calculated from
(c) the plot data, and summaries calculated from the sample-intensity corrected datasets (d) pGNNsi and (e) bCUBsi.

Fig. 7. Differences in modeled area estimates with respect to plot-based confidence intervals at the 216,500 ha (50 k hex) scale in Minnesota.
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modeled geospatial dataset (Figs. 5–6 and 9).We could identify at what
scale(s) these errors persisted or changed, and what proportion of the
relative error could be attributed to systematic vs. unsystematic
differences (Fig. 4 and Table 2). Often a single error type, such as the
tendency to overestimate the high biomass values and underestimate
the low values in MN, appeared in several assessments such as the ecdf
plots, the scatterplots, and the maps. When multiple metrics or metrics
at multiple scales reported the same results, this redundancy of
information allowed corroboration of the results.

If one had to choose just one scale at which to examine geospatial
datasets using FIA plots, the 216,500 ha scale appears to provide useful
and readily interpretable results. Even at 60% of current standard FIA
sampling intensities, this size area captures an average of 50 plots per
hex, which provides a robust, spatial (Fig. 8), graphic (Fig. 7), and
statistical examination of where a modeled dataset is overestimating
or underestimating the real population with respect to aboveground
forest biomass. Similarly, ecdf and scatterplot assessments at this scale
provide a reasonably clear assessment of dataset differences because
of our confidence in the FIA plot estimates at this scale.

For areas smaller than 216,500 ha in NY and likely 78,100 ha inMN
(due to double-intensity samples available there), the accuracy
assessment becomes more comparative and some of the observed
difference between model-based and FIA plot-based estimates will be
due to differences in sample unit size mismatch and reference data
uncertainty rather than real error in the model-based estimate.
Assessments at these scales are informative, particularly if they match
the scale of application, and can highlight and quantify artifacts in the
dataset resulting from decisions made in dataset development, such
as whether to use a forest/nonforest mask. However, at the same time
they need to be interpreted in association with results from broader
and finer scales. For example, when an error present at the 216,500 ha
scale also occurs at finer scales, it is more likely to indicate that the
difference observed at the finer scale contains a large component of
real bias over and above uncertainty in the plot-based estimate. For
assessments of 250-m modeled datasets, plot:pixel comparative
assessments are less valuable than area comparisons and may be
inappropriate when a large amount of local spatial variance is present
(Xu et al., 2009). Whatever the reference dataset used, assessing

Fig. 8. Mapped differences in modeled area estimates at the 216,500 ha (50 k hex) scale with respect to plot-based confidence intervals.

Fig. 9. Mapped results of local variability of plot (or sample pixel) values in each 216,500 ha area.
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datasets at multiple scales appears to improve our ability to
distinguish these artifacts, and increase our understanding of the
source and persistence of each type of disagreement, bringing us
closer to understanding the real error in the modeled dataset—its
difference from the population on the ground—in addition to its
relative error with respect to the reference dataset.

Addressing theneed for timely accuracy assessment results,wewere
able to calculate these assessments relatively quickly and easily because
we were using existing FIA plot data, corrected for the mismatch in
sampling intensity. Using a ground plot reference dataset collected
using an equal probability sampling design, with its ability to provide
unbiased estimates and known sampling error, allowed us to clearly
identify the levels of uncertainty present and use the reference dataset
error in our assessments. A mismatch in sample unit size between the
reference and modeled datasets is always an essential consideration in
any assessment. By examining assessments at several scales, including
one atwhich the plot confidence intervals are considered acceptable for
this location and variable, one has a strong reference point from which
to tease apart real difference from comparative uncertainty in the
observed error. The protocol here makes use of several relatively basic
assessments whose strength comes in their application together. This is
important when a geospatial dataset can be very similar to FIA plot data
in one respect (and report high comparative accuracies) and may differ
substantially in another.

One aspect this study did not tackle was the significance of the
errors, primarily because significance is defined in terms of a
particular application. For example, Holden et al. (2003) examined
the significance of forest/nonforest error with respect to its impact on
stratified estimation, and Shao and Jianguo (2008) noted how
landscape index values are altered by both the magnitude and spatial
distribution of classification errors. Understanding what types of error
affect a particular application, what magnitudes of error translate into
a significant impact on the results, and whether the error is occurring
over a critical or less important range of values is the next step in
interpreting assessment results for a specific application.

4.2. The potential for modeled datasets to be more accurate than the
reference data

FIA plots are a rich and robust source of data on forest composition
and structure. Alone they are able to provide design-based, statistical
estimates of the forest resource without assumptions and with
standard errors. When this plot information is combined with
remotely sensed imagery and other relevant geospatial datasets in a
modeling framework, it allows for the estimation of forest character-
istics at much finer scales. These modeled geospatial datasets thus
have the potential to providemore information in some areas than the
FIA plot estimates because they supplement the limits of sampling
intensity with additional information at all unsampled locations. This
can allow for increased spatial resolution of estimates of forest
characteristics and potentially more accurate area estimates of
biomass at scales where the standard error of plot estimates is too
high (Ghosh & Rao, 1994; Rao, 2003). This is particularly likely where
the predictor data are of sufficient resolution and quality, where there
is a strong relationship between the forest characteristics and the
predictor data being used, and assumptions are well-founded.
Complete assessments such as the protocol presented in this paper
begin to offer some insight into where a modeled dataset is consistent
with FIA plot estimates at scales we have confidence in, and where it
differs in ways that suggest it could be adding to what we know about
the true population from the FIA data alone.

4.3. Additional benefit of model uncertainty layers

Some modeling techniques generate an uncertainty layer along
with the modeled output, which can provide valuable per-pixel

information both to the user community and to the iterative
improvement of the dataset by its developers (Aspinall 2002;
Blackard et al., 2008; Hershey, 2000; Strahler et al., 2006; Woodbury
et al., 1998; Woodbury, 2003). These modeled uncertainty values will
be affected largely by the quality of the input layers and the
relationship between the features they describe and the variable
being modeled (e.g. biomass). An accuracy assessment of these
datasets may (and actually should if it's a quality uncertainty layer)
corroborate the information provided in the uncertainty layer(s). If so,
the uncertainty layer itself can be used to provide additional
information on the fine-grained spatial distribution of error, and if
not, the uncertainty layer should probably be questioned.

5. Conclusions

To use any geospatial dataset effectively, one must have a
comprehensive and effective accuracy assessment that provides
information regarding as many characteristics of the dataset as will be
used in subsequent analyses or decision-making. To date, assessments
of continuous variables have tended to focus on one or twometrics, like
RMSE, which provide the user with little information when used alone.
Complementing RMSE, the assessments and measures proposed in this
paper provide information on the location, magnitude, frequency, and
type of error in geospatial datasets of continuous variables. Many of
these assessments are amenable to automation using scripting in
commonly-used software like R or SAS. The ease of application of this
suite of assessments and their general purpose coverage should
facilitate their consistent application, addressing concern that methods
for accuracy assessment must be consistent if they are to be readily
comparable.With this protocol one shouldbeable to assess the accuracy
of any modeled dataset of continuous variables regardless of its
resolution, with the only limit being the ability of the reference data
(in this case FIA plots) to accurately characterize the landscape at small
scales and in nonforest areas. In addition, thesemeasures can be applied
to many variables that have been traditionally modeled as categorical
classes, such as “forest” vs. “nonforest,” but which are now often being
more effectively and flexibly modeled and used in the form of a
continuous variable such as percentage of forest (Blackard et al., 2008;
Cohen et al., 2001). It is worth noting that reference data collected with
sufficient sampling intensity using an equal probability sampling design
can be most readily used with these assessments. The assessment
framework provided here should help both researchers and managers
improve and more effectively use modeled map products.
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