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A B S T R A C T

The presence of invasive species is often not realized until well after

the species becomes established. Discovering the location and

extent of infestation before the invasive species causes widespread

damage typically requires intensive monitoring efforts. In this

paper, we analyze the problem of controlling an invasive species

when there is imperfect information about the degree of infestation.

We model the problem as a partially observable Markov decision

process in which the decision-maker receives an imperfect signal

about the level of infestation. The decision-maker then chooses a

management action to minimize expected costs based on beliefs

about the level of infestation. We apply this model to a simple

application with three possible levels of infestation where the

decision-maker can choose to take no action, only monitor, only

treat, or do both monitoring and treatment jointly. We solve for

optimal management as a function of beliefs about the level of

infestation. For a case with positive monitoring and treatment costs,

we find that the optimal policy involves choosing no action when

there is a sufficiently large probability of no infestation, monitoring

alone with intermediate probability values and treatment alone

when the probability of moderate or high infestation is large. We

also show how optimal management and expected costs change as

the cost or quality of information from monitoring changes. With

costless and perfect monitoring, expected costs are 20–30% lower

across the range of belief states relative to the expected costs

without monitoring.
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1. Introduction

The movement of people and goods around the globe has increased the movement of species into
novel environments often far removed from their place of origin. Some newly introduced species
become invasive species that establish and spread because they lack effective competitors, pathogens,
or predators to keep the population in check, and cause ecological or economic harm. Harm can occur
because an invasive species reduces populations of native species, damages crops or forage (e.g.,
cheatgrass, Bromus tectorum), damages infrastructure (e.g., zebra mussels, Dreissena polymorpha, and
their impacts on water intake pipes) or causes other forms of damage. Measures of the economic cost
of invasive species are imprecise but these costs may be quite large. Some estimates of damage are in
the billions of dollars annually (e.g., Lovell et al., 2006; OTA, 1993; Pimentel et al., 2000, 2005). The US
government spends over $1 billion dollars annually on invasive species control efforts (US National
Invasive Species Council, 2006). Allocating control efforts so that costs associated with invasive
species are minimized is an important issue.

In this paper, we analyze the problem of controlling an invasive species when there is imperfect
information about the degree of infestation. The presence of invasive species is often not realized until
well after the species becomes established (Costello and Solow, 2003). Infestations often start with
small populations that may go unnoticed for some time. Detection may not occur until the population
has grown larger when it is easier to detect the species through search efforts or because there are
observable damages that can be linked to the presence of the species. Even when the presence of a
species is detected, the actual extent of the infestation may still be unknown. Optimally controlling an
invasive species whose presence or degree of infestation is not known involves choosing a level of
monitoring effort to learn about the degree of infestation as well as choosing a level of treatment to
reduce or eliminate the invasive species in the environment. Because damage grows as the population
of the invasive species grows, there is value to monitoring to be able to spot an invasion early. Because
treatment is costly, there is value to monitoring to gain information about the scale of the problem to
know when and where to apply treatment. However, because monitoring itself is costly, monitoring
should only be done when monitoring costs are low relative to the probability of infestation and
expected damages from infestation, and there is effective (but costly) treatment.

We model the problem of controlling an invasive species with imperfect information about the
level of infestation as a partially observable Markov decision process (Cassandra, 1994). The process is
partially observable because the decision-maker receives a signal about the degree of infestation but
this information is imperfect. The signal (information) may be from reported observations of the
species, but these reports may contain both false positive and false negative signals. There might also
be observed damage to vegetation associated with the presence of an invasive species. However,
damages may go unobserved for some time and some observed damage may be due to other causes.
Higher infestation levels make it more likely that the decision-maker will get a correct signal of
infestation but the signal is still not likely to be perfect, especially with respect to the degree of
infestation. The decision problem of controlling an invasive species in this context is a Markov process
because the degree of infestation in the next period is a function of the degree of infestation and
management actions taken in the current period. The objective of the decision-maker is to try to
minimize the sum of discounted costs associated with management (monitoring and treatment), and
damages caused by infestation of the invasive species in the environment. Based on the beliefs about
the probability distribution about the level of infestation, the decision-maker chooses whether to do
nothing (no action), only monitor, only treat, or do both monitoring and treatment jointly. Monitoring
improves the information about the degree of infestation while treatment reduces the level of
infestation.

The introduction of imperfect information about the degree of infestation increases the complexity
of solving for optimal management, as compared to the case with complete information where
optimal policy only involves comparisons of benefits and costs of treatment. With incomplete
information, the set of decisions includes monitoring and treatment. But optimal monitoring and
treatment decisions require an assessment about the likely degree of infestation. Probability
distributions of the degree of infestation should incorporate information on management action and
probability distributions of the degree of infestation in the prior period, plus any new information
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received, to update probabilities. The combination of imperfect information and a dynamic model, in
which past states and actions influence the likelihood of current states, requires Bayesian updating
(learning) and greatly increases model complexity.

In this paper we show how to apply the partially observable Markov decision process and to solve
for an optimal management strategy involving both monitoring and treatment. We describe a partially
observable Markov decision process for controlling invasive species in Section 2 and apply it to a
specific example in Sections 3 and 4. The optimal management action depends upon the beliefs about
the likely state of infestation. For the base case in the application in Sections 3 and 4, we find that the
optimal policy involves choosing no action when there is a sufficiently large probability of no
infestation, monitoring alone with intermediate probability values and treatment alone when the
probability of moderate or high infestation is large. We also show how optimal management and
expected costs change as the cost or quality of information from monitoring changes. We calculate the
value of information from monitoring by comparing expected costs in a case with perfect and costless
monitoring versus a case without monitoring. Expected costs are 20–30% lower across the range of
belief states relative to the expected costs obtained without monitoring. The value of monitoring
quickly declines as the costs of monitoring rises or imperfection in the information from monitoring
increases.

There is a rapidly expanding literature on the economics of invasive species (see Perrings et al.,
2000; Lovell et al., 2006; Olson, 2006 for reviews). Prior research on invasive species management
includes work on preventing introductions (e.g., Costello and McAusland, 2003; Horan et al., 2002;
McAusland and Costello, 2004; Sumner et al., 2005), the optimal control of an existing population of an
invasive species (e.g., Eiswerth and Johnson, 2002; Eiswerth and van Kooten, 2002; Olson and Roy,
2002), spatial aspects of controlling the spread of an invasive species (e.g., Brown et al., 2002; Heikkila
and Peltola, 2004; Sharov, 2004; Sharov and Liebhold, 1998), and models that combine prevention and
control in a unified model (Finnoff and Tschirhart, 2005; Finnoff et al., 2007; Leung et al., 2002, 2005;
Olson and Roy, 2005, Polasky, 2010).

Only a few prior papers analyze imperfect information about the status of an invasive species.
Costello and Solow (2003) analyze a model in which the probability of observing an invasive species
depends on population size, where population grows over time from the date of introduction. Their
focus is on describing the pattern of discoveries of invasive species for a constant search rate rather
than characterizing optimal management. They show that the observed increased in the number of
invasive species may not be the result of increasing rate of invasions but rather a reflection of
delayed discovery of past invasions. Mehta et al. (2007) and Polasky (2010) analyze optimal
management in models with detection and control that are similar to the present paper. However,
both papers make simplifying assumptions and do not use partially observable Markov decision
processes or Bayesian updating. Mehta et al. (2007) characterize optimal intensity of search for a
single invasive species assuming a known date of introduction and deterministic population
growth. Polasky (2010) simplifies the information structure so that at the beginning of each period
the manager knows whether the species was present or absent in the prior time period. Monitoring
information is valuable only in that it allows observation of an invasion prior to widespread
establishment so that treatment costs are lowered. There is also a related literature on decision-
making under uncertainty in pest management with several papers that analyze the value of
information about pest infestation (Feder, 1979; Swinton and King, 1994, and see King et al., 1998
for a review of empirical papers on value of information in weed management). These models are
typically simpler than the context considered here and do not involve learning through Bayesian
updating.

2. The model

In this section, we describe the partially observable Markov decision process (POMDP) for
controlling an invasive species with imperfect information about the level of infestation. The model
described here is quite general including potentially many management actions and levels of
infestation. In Section 3, we apply the POMDP to a specific case with four mutually exclusive
management actions, including monitoring and treatment, and three possible levels of infestation.
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Suppose there are n possible states of the ecosystem representing different levels of infestation,
indexed by i, i=1, . . ., n. At the beginning of each period, t=1, . . ., T, the decision-maker does not know
for sure the current state of the ecosystem and instead has a set of beliefs represented by a probability
distribution (p1t, . . ., pnt), where pit equals the probability of being in state i at the start of period t,
pit�0,

P
ipit ¼ 1. Each period t, the manager chooses a management action, a, from the feasible

management set A, based on the current vector of belief probabilities (p1t, . . ., pnt). Following the
management action, the state of the infestation may change, and we define an n�n transition matrix
Pa where each element pa

i j equals the probability of moving from state i in period t to state j in period
t+1 after taking action a.

Recognizing that the manager may not observe the true state of the infestation, we define an index
u=1, . . ., n for the states that the manager may observe in period t+1 after taking an action in period t.
Further, we define an n�n matrix Ra with elements ra

ju , j=1, . . ., n and u=1, . . ., n where each element
ra

ju is the probability that the manager observes an infestation state u in period t+1 given an actual
infestation state j after taking action a in period t, with ra

ju �0 and
Pn

u¼1 ra
ju ¼ 1. The probability of

correctly observing infestation state j is ra
j j. For u 6¼ j, ra

ju is the probability of observing an incorrect
infestation state. The matrix Ra represents the probability distributions of observations for all of the
potential states j=1, . . ., n.

We use the matrix Ra of probabilities of observing the infestation in different states to update the
manager’s belief probabilities from period t to period t+1. Given an observed state u after taking action
a in period t and the set of prior belief probabilities (p1t, . . ., pnt), Bayes’ rule provides an estimate of the
updated belief probability, pjt+1, of being in state j period t+1:

p jtþ1ju; a ¼
Pn

i¼1 pit pa
i jr

a
juPn

i¼1

Pn
k¼1 pit pa

ikra
ku

(1)

The updated probability of being in state j in period t+1, pjt+1ju, a, depends on the observed state u
after taking action a in period t. The updated belief probability is the ratio of the probability of
observing state u given the true state is j (numerator) and the probability of observing state u over all
possible states k=1,. . ., n (denominator). Without a perfect signal there will be some uncertainty about
the true state. If the manager were to always observe the true infestation state, then the observation
matrix Ra would be an identity matrix and there would be no uncertainty about the state.

In our model, the manager faces two types of costs: damage costs and management costs. Let da
i be

the damage costs for a time period starting in state i and taking management action a. Let ma
i be the

management cost for a time period (e.g., the cost of monitoring and/or treatment) starting in state i

and taking management action a.
At the beginning of each period t=1, . . ., T�1, the manager’s problem is to determine the best action

given the set of beliefs about the infestation state. We define an optimal value function Vt(p1t, . . ., pnt)
as the minimum discounted cost of optimal actions beginning period t with belief state (p1t, . . ., pnt)
until the terminal period T. With this notation, the manager’s problem can be formulated as a discrete-
time dynamic program:

Vtðp1t ; . . . ;pntÞ ¼min
a2A

Xn

i¼1

pitðda
i þma

i Þ þ d
Xn

i¼1

Xn

j¼1

Xn

u¼1

pit pa
i jr

a
juVtþ1 ðp1tþ1ju; aÞ; . . . ; ðpntþ1ju; aÞð Þ

2
4

3
5

t ¼ 1; . . . ; T � 1 (2)

with terminal condition,

VT p1T ; . . . ;pnTð Þ ¼ min
a2A

X
i

piTðda
i þma

i Þ
" #

(3)

The first term inside the brackets of Eq. (2) is the expected cost in period t of taking action a given the
current belief probabilities (p1t, . . ., pnt). The second term inside the brackets of Eq. (2) is the expected
discounted cost in period t+1 after taking action a in period t, where d is the discount factor. Expected
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discounted cost in period t+1 is the weighted sum of the optimal values associated with all possible
sets of updated belief states where each weight, pit pa

i jr
a
ju , represents the probability of beginning in

state i, moving to state j, and making observation u, after taking action a.
We use a discrete, stochastic dynamic programming algorithm to find approximately optimal

solutions to the POMDP problem represented by Eqs. (1)–(3). Although numerical procedures based
on linear programming have been developed to find exact solutions to POMDP problems (see
Monahan, 1982 and Cassandra, 1994 for reviews), these procedures are complicated and require
custom software.

The stochastic dynamic programming algorithm works as follows. For computational reasons, we
define discrete classes for the belief probability for each infestation state i. Each element pit of the
probability distribution of beliefs in period t (p1t, . . ., pnt) is assigned to one of the discrete probability
classes. Increasing the number of classes means we come closer to the probabilities calculated using
Bayes’ rule (Eq. (1)) and more closely approximate the optimal answer. The dynamic program (Eq. (2))
is solved backward starting from the terminal period T (Eq. (3)). In each period t, the optimal value
function Vt(p1t, . . ., pnt) is calculated for each belief state (p1t, . . ., pnt) by choosing the management
action with the minimum expected discounted cost. To calculate the expected discounted cost of a
given management action a, we first calculate the expected cost of the action in period t (first
summation inside the brackets in Eq. (2)). Then, we use Bayes’ rule (Eq. (1)) to calculate pjt+1ju, a, the
updated belief probability of being in state j in period t+1 given observation u after management
action a was applied. The updated belief pjt+1ju, a is then assigned to one of the discrete probability
classes. Repeating this procedure for all states j=1, . . ., n, we obtain the updated belief state ((p1t+1ju,
a), . . ., (pnt+1ju, a)). Finally, the optimal values associated with the updated belief states, Vt+1((p1t+1ju,
a), . . ., (pnt+1ju, a)), for all possible state transitions and observations are used to calculate the expected
discounted cost starting in period t+1 from taking action a in period t (second summation inside the
brackets in Eq. (2)).

The backward recursion is solved iteratively from period T to period 1. The result is an optimal
policy that gives the best action to take in each period t for each belief state along with the optimal
value of that action. Strictly speaking, our dynamic programming algorithm finds approximately
optimal rather than exactly optimal solutions because the updated beliefs calculated using Bayes’ rule
(Eq. (1)) are classified into discrete probability classes. While simple in concept, this dynamic
programming algorithm is very time consuming when applied to problems with many system states
and actions. In the next section we solve for optimal solutions in the case where there are three
possible states of the ecosystem and four mutually exclusive actions.

3. Application

We illustrate the partially observable Markov decision process for controlling an invasive species
with imperfect information about level of infestation with a simple application that involves an
ecosystem with three possible states: no infestation (i=1), moderate infestation (i=2), and high
infestation (i=3). The set of actions, A, includes four mutually exclusive actions: no action (a=1), only
monitoring (a=2), only treatment (a=3), and both monitoring and treatment (a=4). The state
transition matrix depends on whether or not treatment occurs. Without treatment (a=1 or a=2), the
state transition matrix is:

P1 ¼ P2 ¼
0:8 0:2 0:0
0:0 0:8 0:2
0:0 0:0 1:0

2
4

3
5

With treatment (a=3 or a=4), the state transition matrix is:

P3 ¼ P4 ¼
0:9 0:1 0:0
0:8 0:2 0:0
0:6 0:4 0:0

2
4

3
5

With choice of either no action or monitoring, there is a 20% chance of the system moving from no
infestation to moderate infestation and from moderate to high infestation each year. The system will
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remain at high infestation unless there is treatment. With treatment, there will either be no infestation
or moderate infestation with probabilities of each state dependent on the initial state of the system.
Treatment is not always fully effective as indicated by the fact that elements in the first column of P3

and P4 (no infestation) are not all equal to 1 and elements in the second column (moderate infestation)
are not all equal to zero.

The observation matrix depends on whether or not monitoring occurs. Without monitoring (a=1 or
a=3), the observation matrix is:

R1 ¼ R3 ¼
0:5 0:5 0:0
0:3 0:4 0:3
0:1 0:4 0:5

2
4

3
5

With monitoring (a=2 or a=4), the observation matrix is:

R2 ¼ R4 ¼
1:0 0:0 0:0
0:0 1:0 0:0
0:0 0:0 1:0

2
4

3
5

With no monitoring, if there is actually no infestation, there is a 50% chance that the decision-
maker correctly observes that there is no infestation, and a 50% chance that the decision-maker
incorrectly observes a moderate infestation (false positive). For example, sometimes a forester
observes dead leaves and incorrectly concludes that the forest is infected with a pest. If there is
actually a moderate infestation, the decision-maker has a 30% chance of failing to observe the
infestation, a 40% chance of correctly observing the moderate infestation, and a 30% change of
incorrectly concluding that it is a high infestation. Finally, if there is actually a high infestation, the
decision-maker has a 10% chance of incorrectly observing there is no infestation, a 40% chance of
incorrectly observing there is a moderate infestation and a 50% chance of correctly observing a high
infestation. With monitoring, we assume that observations return perfect information about the
actual state of the ecosystem. We relax the assumption of perfect information from monitoring in
Section 4.3 below.

In this application, we assume that damage cost depends on the level of infestation at the start of
the period but not the action taken. We assume there are zero costs for no infestation, a cost of 10 units
for moderate infestation and a cost of 20 units for high infestation:

d1
i ¼ d2

i ¼ d3
i ¼ d4

i ¼
0
10
20

2
4

3
5

Management costs are the sum of monitoring costs and treatment costs. We assume that
both monitoring and treatment costs are same regardless of the state of the ecosystem; they
only depend on the action taken. We assume that monitoring costs in a time period are zero units
with no monitoring and 4 units with monitoring. Treatment costs in a time period are zero
units with no treatment and 20 units with treatment. In general, we could make monitoring
or treatment costs a function of the level of infestation, but in this application we assume that
there is a single level of monitoring and treatment costs. Adding together monitoring and
treatment costs, management costs for this application are: m1

i ¼ 0;m2
i ¼ 4;m3

i ¼ 20;m4
i ¼ 24,

for all i.
Finally, we assume a discount factor, d, of 0.95 and a time horizon, T, of 20 years. We use a 20-year

horizon because we found that the optimal policy was invariant for all but the final few years
approaching year 20. We solve the model using a stochastic dynamic programming algorithm that we
designed and coded in Fortran. The program is executed on a Lenovo T60 laptop computer with an
Intel Core 2 central processing unit. We used 20 discrete probability classes. Solutions to this problem
with three infestation states and four actions are obtained in seconds.
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4. Results

4.1. Optimal policy in the base case

The optimal policy for the POMDP described above is a state-dependent feedback rule that gives
the best action to take in each period t for each belief state (p1t, p2t, p3t). We present the optimal policy
for year one of a 20-year horizon. To illustrate the optimal policy, we present the belief state in two
dimensions (Fig. 1). The x-axis represents the decision-maker’s current belief about the probability of
moderate infestation and the y-axis represents the decision-maker’s current belief about the
probability of no infestation. One minus the sum of these probabilities represents the decision-
maker’s current belief about the probability of high infestation. For example, if the manager’s belief
state includes probabilities of no infestation and moderate infestation of 0.20 and 0.40, respectively,
the probability of high infestation is 0.40.

For the application described in Section 3, the optimal policy involves choosing no action when
there is a sufficiently large probability of no infestation, monitoring in intermediate cases, and
treatment when the probability of moderate or high infestation is large (Fig. 1). No action is optimal
when the probability of no infestation is greater than 0.60 regardless of the probability of moderate or
high infestation. Monitoring in these belief states doesnot add enough information to the system to
justify its cost and the high probability that treatment is not necessary means that its cost is not
justified. Monitoring enters the optimal policy when the probability of no infestation is between 0.50
and 0.60 regardless of the probability of moderate or high infestation. Monitoring is also optimal for
combinations of probability of no infestation between 0.40 and 0.45 and moderate infestation
between 0.15 and 0.60. Monitoring in these belief states resolves the uncertainty about the current
state in the subsequent period so that treatment is avoided when there is no infestation but occurs if it
is revealed that there is either a moderate or high infestation. Treatment is the optimal action
whenever the probability of no infestation is less than 0.40, i.e., when the combined probabilities of
having moderate or high infestation is sufficiently large (>0.60). In this case, the expected damages are
high enough to justify the expense of treatment. For the set of parameter values set out in Section 3,
there is no combination of beliefs for which it is optimal to choose both treatment and monitoring in
the same period (i.e., action 4). With treatment, the probability of no infestation at the beginning of the
next period will be at least 0.60 so that the benefits of combining monitoring with treatment to learn

Fig. 1. Optimal policy in year one as a function of the belief state. Monitoring costs 4 units per application. 1=no action;

2=monitor; 3=treat.
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the treatment outcome are not sufficient to justify the additional cost of monitoring. For some
combinations of parameter values and beliefs it will be optimal to do both treatment and monitoring
in the same period as we will see in Section 4.2 below.

The optimal value function associated with the policy in Fig. 1 reports the expected discounted cost
over 20 years for each belief state in period one. Similar to Fig. 1, we illustrate the discounted costs of
optimal actions in two dimensions (Fig. 2) where the x-axis represents the decision-maker’s current
belief about the probability of moderate infestation and the y-axis represents the decision-maker’s
current belief about the probability of no infestation. The highest discounted cost (160 units) occurs in
the lower left hand cell where the likelihoods of no and moderate infestation states are low and the
likelihood of high infestation is large. For a given probability of moderate infestation, discounted cost
decreases as the probability of no infestation increases (going up any column in Fig. 2). Similarly, for a
given probability of no infestation, discounted cost decreases as the probability of moderate
infestation increases (moving from left to right in any row of Fig. 2). Note that the difference in cost
from lowest to highest expected cost in column one is higher than the one-time treatment cost (20
units). If treatment was always perfectly effective in removing all infestation then this difference
would decline.

4.2. The value of a perfect monitoring system

To estimate the value of a monitoring system that provides perfect information about the state of
the infestation, we compare the optimal value function for the case with two potential actions (no
action and treatment) versus the case where monitoring is also possible. We assume that monitoring
(when it can be done) is costless and allows the manager to observe the true infestation state (i.e., the
observation matrix Ra is an identity matrix). By estimating the optimal value function for the case
where monitoring is costless and returns perfect information and comparing it to the case where
monitoring is not allowed, we obtain the value of information, the difference between being fully
informed about the infestation state versus not, which is an upper bound on the value of the
monitoring system.

The optimal policy for the case without monitoring is to take no action when the probability of no
infestation is greater than 0.45 and to treat when the probability of no infestation is less than 0.40
regardless of the probability of moderate infestation (Fig. 3). Between 0.40 and 0.45 probability of no
infestation, no action is optimal when the sums of the probabilities of no and moderate infestations are

Fig. 2. The expected discounted cost over 20 years of the optimal action taken in year one for each belief state when monitoring

costs 4 units per application.
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greater than 0.65 (i.e., the probability of high infestation is less than 0.35). The expected discounted
costs of the optimal actions as a function of the belief state in year one are shown in Fig. 4. The highest
expected cost (162 units) occurs if the manager is sure the infestation state is high, and expected costs
decrease as the belief probabilities of no or moderate infestation increase.

When monitoring without cost is possible, it is always optimal to monitor as there may be some
benefit from improved information and there is no cost (Fig. 5). The optimal policy is to monitor and
treat when the probability of no infestation is less than 0.30 and only monitor when the probability of
no infestation is higher than 0.35 regardless of the probability of moderate infestation. Between these
probabilities, monitoring but not treating is optimal when the sums of the probabilities of no and

Fig. 3. Optimal policy in year one as a function of the belief state when monitoring is not allowed. 1=no action; 3=treat.

Fig. 4. The expected discounted cost over 20 years of the optimal action taken in year one for each belief state when monitoring

is not allowed.
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moderate infestation are greater than approximately 0.60. Note that the range of beliefs over which it
is optimal to treat is smaller when monitoring is costless compared to the case of costly monitoring
(Fig. 1). In the case when monitoring is free, it makes sense to reduce the range of belief states in which
treatment is prescribed because costless monitoring will be done and may reveal that costly treatment
is not needed. Note that although monitoring is undertaken each period and reveals perfect
information about the state of the system, the timing of decisions and information revelation means
that the manager will have some uncertainty about the level of infestation when deciding on
treatment. Monitoring in period t reveals the state of infestation in period t. However, there is a
probabilistic state transition to period t+1 so that at the time the manager chooses treatment in period
t+1 there is some uncertainty about the level of infestation.

Allowing the manager to employ monitoring without cost greatly reduces the expected costs of
management (Fig. 6). In this case, costs are reduced not only because monitoring costs fall to zero but
also because treatment is more finely targeted to cases when it is needed, thereby reducing treatment
costs as well as damages from high infestation. Expected costs are 20–30% lower across the range of
belief states relative to the expected costs obtained without monitoring (Fig. 4). For example, when the
manager believes there is 0.40 chance of no infestation and 0.20 chance of moderate infestation, the
expected discounted cost associated with the optimal policy that includes monitoring (108 units) is
24% less than the expected discounted cost of the optimal policy that does not allow monitoring (142
units). These cost reductions represent the value of the option to employ a monitoring system that
provides perfect information at no cost.

The value of a monitoring system, and the cases in which it would be applied, are reduced as the
cost of monitoring increases. The impacts of increasing the cost of monitoring from 0 to 4 units are
seen by comparing Figs. 1 and 5. When a monitoring action costs 4 units, monitoring is the optimal
action in a smaller range of belief states, and no action is preferred when the probability of no
infestation is relatively high. Increasing the cost of applying the monitoring system from 0 to 4 units
increases the expected discounted cost of management (compare Figs. 2 and 6). With the higher cost
of monitoring, the expected discounted cost of management is almost as high as the cost of
management when monitoring is not allowed (Fig. 4). When monitoring costs more that 5 units per
application, monitoring does not enter the optimal policy. In this case, the value of information
obtained from monitoring is less than the cost of monitoring.

Fig. 5. Optimal policy in year one as a function of the belief state. Monitoring is costless and provides perfect information.

2=monitor; 4=monitor and treat.
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4.3. The value of an imperfect monitoring system

The value of a monitoring system also depends on the accuracy of the information it provides. In
the cases examined above, we assumed that monitoring provides perfect information about the state
of the system (i.e., the observation matrix is an identity matrix). Here, we assume that a monitoring
activity costs nothing and provides imperfect information (i.e., the diagonal elements of the
observation matrix are less than 1.0). We determined optimal policies using the following observation
matrices:

R1 ¼ R3 ¼
0:5 0:5 0:0
0:3 0:4 0:3
0:1 0:4 0:5

2
4

3
5R2 ¼ R4 ¼

0:75 0:25 0:00
0:15 0:70 0:15
0:05 0:20 0:75

2
4

3
5

Whereas the observation matrices for no action (R1) and treatment alone (R3) are the same as
before, the observation matrix for monitoring alone (R2) and monitoring and treatment (R4) now
provides imperfect information. The observation matrix associated with monitoring indicates that a
manager is more likely to observe the correct infestation state than without monitoring but that the
signal received with monitoring is no longer perfect.

The optimal policy for this case in which monitoring provides imperfect information at no cost is to
monitor and treat when the probability of no infestation is less than 0.35 and monitor alone when the
probability of no infestation is higher than 0.40 regardless of the probability of moderate infestation
(Fig. 7). Between these probabilities, monitoring alone is optimal when the sums of the probabilities of
no and moderate infestation are more than about 0.60 (i.e., the probability of high infestation is less
than 0.40). Comparing the outcomes with imperfect monitoring versus perfect monitoring, both at no
cost, shows that the range of beliefs over which it is optimal to treat are greater with imperfect
monitoring (Fig. 5 versus Fig. 7). The range of beliefs over which it is optimal to treat, however, is not as
large as the case when monitoring is not possible (Fig. 4). Imperfect monitoring provides an
intermediate case between perfect monitoring (Fig. 5) and no monitoring (Fig. 4). Compared to no
monitoring, it makes sense to reduce the range of belief states in which treatment is prescribed
because even imperfect monitoring reveals some information about whether costly treatment is
needed. Imperfect monitoring does not provide as good of a signal as when monitoring generates
perfect information so treatment occurs over a wider range of parameter values with imperfect as
compared to perfect information.

Fig. 6. The expected discounted cost over 20 years of the optimal action taken in year one for each belief state when monitoring

is costless and provides perfect information.

R.G. Haight, S. Polasky / Resource and Energy Economics 32 (2010) 519–533 529



The expected discounted costs for the case where monitoring provides imperfect information at no
cost (Fig. 8) are 3–6% less than the expected costs obtained without monitoring (Fig. 4), indicating that
monitoring is still an efficient activity even though it does not always provide accurate information.
However, when the cost of applying the monitoring action increases from 0 to 4 units, it is no longer
optimal to use the imperfect monitoring action in any belief state. The expected discounted costs of
management when monitoring provides imperfect information (Fig. 8) are 25–35% higher across the
range of belief states relative to the expected costs obtained when monitoring provides perfect
information (Fig. 6). For example, when the manager believes there is 40% chance of no infestation and
20% chance of moderate infestation, the expected discounted cost associated with the optimal policy
that includes the option to monitor and obtain imperfect information (135 units) is 25% more than the

Fig. 8. The expected discounted cost over 20 years of the optimal action taken in year one for each belief state when monitoring

is costless and provides imperfect information.

Fig. 7. Optimal policy in year one as a function of the belief state. Monitoring is costless and provides imperfect information.

2=monitor; 4=monitor and treat.
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expected discounted cost of the optimal policy when monitoring provides perfect information (108
units). This difference in expected cost is an estimate of the value of improving the accuracy of the
monitoring system.

5. Conclusions

In this paper, we modeled the problem of controlling an invasive species with imperfect
information about the level of infestation as a partially observable Markov decision process. This
approach allowed us to find optimal management solutions when information about the degree of
infestation is imperfect and allowed us to address issues of updating beliefs about the state of the
infestation and the value of improved information through monitoring. We solved for the optimal
management strategy in a simple application with three states (no infestation, moderate infestation,
and high infestation) and four potential management choices (no action, monitoring alone, treatment
alone, and joint monitoring and treatment).

We showed how the choice of optimal management action depends on beliefs about the likely
degree of infestation and how this choice is affected by the cost and accuracy of monitoring. For the
base case in the application in Sections 3 and 4, we found that the optimal policy involves choosing no
action when there is a sufficiently large probability of no infestation, monitoring alone with
intermediate probability values and treatment alone when the probability of moderate or high
infestation is large. We also show how optimal management and expected costs change as the cost or
quality of information from monitoring changes. For low costs of monitoring and large probabilities of
moderate or high infestation it is optimal to both monitor and treat. We calculate the value of
information from monitoring by comparing expected costs in a case with perfect and costless
monitoring versus a case without monitoring. Expected costs are 20–30% lower across the range of
belief states relative to the expected costs obtained without monitoring.

Besides shedding light on optimal policy for controlling invasive species, our results also fit into
a larger literature on optimal management and investment under uncertainty (e.g., Dixit and
Pindyck, 1994), adaptive management (e.g., Walters, 1986) and the value of information (e.g.,
Hanemann, 1989). Other studies have solved for the value of information to improve management
in a variety of other resource management contexts such as fisheries management (e.g. Costello
et al., 1998), climate change and agriculture (e.g., Adams et al., 1995; Solow et al., 1998),
exhaustible resource extraction (e.g. Polasky, 1992), and pest management (e.g., Feder, 1979; King
et al., 1998; Swinton and King, 1994), among other applications. Information is valuable when it
improves management decisions. In our case, improved information about the degree of
infestation allows application of treatment to reduce damages when infestation levels are high and
avoids costly treatment when there is no infestation. We also showed that the value of monitoring
quickly declines as the costs of monitoring rises or imperfection in the information from
monitoring increases.

A promising direction for future research is to combine data from specific invasive species with a
POMDP model to provide insights into optimal management for these cases. A potential application is
the management of emerald ash borer infestations of urban forests. Emerald ash borer (Agrilus

planipennis Fairmaire), a phloem-feeding beetle native to Asia, was discovered near Detroit, MI in
2002. As of October 2009, isolated populations of emerald ash borer (EAB) have been detected in 12
additional states. EAB is a highly invasive forest pest that has the potential to spread and kill native ash
trees (Fraxinus sp.) throughout the United States and cost homeowners and local governments billions
of dollars for tree removal and replacement (Kovacs et al., 2010). The presence of EAB is usually not
realized until well after the species is established and discovering the location and extent of
infestation requires intensive monitoring. Urban forest managers rarely have perfect information
about the state of an EAB infestation and must decide how much, if any, resources should be allocated
to monitoring and treatment. While monitoring with insect traps is relatively inexpensive, it does not
provide accurate information about the infestation state. Treatments such as insecticide application
and tree removal are expensive and may not eradicate the infestation. An application of the POMDP
model to an EAB infestation could provide useful information about the value of monitoring and
guidance for treatment application.
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The partially observable Markov decision process model described in Section 2 is quite general and
can be used to provide insights into how well various management approaches might work in more
realistic and complex situations. For example, the model could be used to solve for optimal
management with more levels of infestation, and with differing levels of intensity of monitoring or
treatments, all of which would lead to more sophisticated Bayesian updating of beliefs. Other
additional aspects that would be useful to add would include strategies to reduce the probability of
introduction and the spatial pattern of infestation. However, adding more complexity increases the
difficulty of finding solutions. Another necessary direction for future research is to find heuristic
methods that find good, but not necessarily optimal, solutions for complex models.
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