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ABSTRACT

The objective of this method paper was to examine a com-
putational algorithm that may reveal how vessel length
might depend on vessel diameter within any given stem or
species. The computational method requires the assump-
tion that vessels remain approximately constant in diameter
over their entire length. When this method is applied to
three species or hybrids in the genus Populus, vessel length
is sometimes a linear function of vessel diameter and some-
times an exponential function of vessel diameter within a
stem, based on R’ values. Our results give within-species
variation of vessel length versus diameter, and we compare
this to between-species variation of mean diameter versus
mean length.

Key-words: aspen; cottonwood hybrids Northwest and
P38P38; vessel diameter; vessel length; Weibull functions.

Abbreviations: A, vessel cross-sectional area; D, vessel
diameter; D,, mean vessel diameter in a stem; d.,, bin diam-
eter width; k, Weibull probability density function (PDF)
constant Eqn 1; L., vessel length in a bin diameter size
class; [, mean vessel length in a stem; NV, number of rubber-
filled vessels per unit area; N., number of rubber-filled
vessels per unit area in a bin diameter size class; N,, number
of rubber-filled vessels per unit area at 2 mm from injection
surface; Py, probability of vessels in length interval dx; x,
distance from infusion surface (rubber or paint); x;, bin
diameter increment = D.d,; A, Weibull PDF constant
Eqn 1; A, exponential coefficient in Eqn 2.

INTRODUCTION

Skene & Balodis (1968) provided the first rigorous treat-
ment of vessel length distribution, although a few older
papers talk about maximum vessel length (Grenidge 1952)
or ‘average’ vessel length (Scholander 1958). A cinemato-
graphic technique used by Zimmermann (1971, 1978) pro-
vides accurate vessel length distributions, but is too labour
intensive for general use. Hence, the preferred approach is
to: (1) visualize the length of cut-open vessels measured
from the cut surface of a stem by injecting with some easily
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observed substance; and (2) use a computational algorithm
to deduce vessel length distributions based on a few
assumptions (Zimmermann & Jeje 1981; Ewers & Fisher
1989; Tyree 1993). Vessel lengths can be evaluated in any
plant axis (stem, root or petiole).

The accurate evaluation of vessel lengths (or vessel
length distributions) has attracted increased interest,
because vessel size has influence on vessel vulnerability to
cavitation (e.g. Wheeler et al. 2005). In addition, conduit
length is a consideration in theories about optimization of
conduit structure for hydraulic efficiency (e.g. Lancashire &
Ennos 2002; Wheeler et al. 2005), and is used in hydraulic
models (e.g. Loepfe et al. 2007).

When examining mean vessel lengths (L,) among

species, [, seems to increase with mean vessel diameter
(D,), for example Ewers, Fisher & Chiu (1990) reported
that the maximum vessel diameter correlated linearly with
maximum vessel length among species of woody vines and
shrubs (R?=0.62; P =0.001). Hacke et al. (2006) have sum-
marized between-species values (28 species) of [, and D,,
and showed that a plot of log(L,) versus log (D,) has a
slope of 1.48 and R?>=0.63. In this paper, we propose a
computational algorithm that addresses a related question:
‘Are wide vessels also long vessels?’ within a species. In this
paper, we use L. and D. to mean the vessel length and vessel
diameter in a bin size class, respectively.

METHODS
Silicone rubber injection

Stem segments about 30-50cm long were collected
from two cottonwood hybrids: cv P38P38 (Populus
balsamifera x Populus simonii) and cv. Northwest (Populus
deltoides x P. balsamifera) and from seedlings of aspen
(Populus tremuloides Michx). Hybrid clones were grown
from cuttings and P. tremuloides from seeds in a greenhouse
for 4 months, and were 1-2 m tall when harvested. Stem
segments were injected with silicone rubber using the tech-
nique described in Sperry, Hacke & Wheeler (2005) and
Wheeler et al. (2005). Briefly, silicone rubber was freshly
mixed from liquid silicone and hardener in the ratio of 10:1
(10 g RTV141 part A plus 1 g RTV141 part B) (Rhodorsil
RTV-141; Rhodia USA, Cranbury, NJ, USA; imported
by Walco Materials, Escondido, CA, USA). Uvitex, a
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fluorescent whitening agent (Ciba Uvitex OB; Ciba Spe-
cialty Chemicals, Tarrytown, NY, USA), was added to make
the silicone visible under UV light. The Uvitex was dis-
solved in chloroform (1% w/w) and 10 drops added to the
silicone mix (Hacke, Sperry & Field 2007).

Five stem segments per species were first flushed with
100 mm KCI solution filtered to 0.2 um at 0.05 MPa for
30 min in order to remove air bubbles that would interfere
with the injection of silicone rubber solution. After the
water flush, the stems were injected with silicone at
0.05 MPa for 24 h, and then the silicone was allowed to cure
(harden) for 3 more days at room temperature (22 °C) prior
to sectioning. The cured stems were cross-sectioned at
several distances (0.2, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 cm) from the
injection surface, and photographs were taken for vessel
diameter measurement and count as described below.

Vessel diameter measurements

Diameters of rubber-filled and, sometimes, non-rubber-
filled vessel were measured as a function of distance away
from the injection point. A microtome (Reichert-Jung 2030
Biocut; Leica, Heidelberg, Germany) was used to cut
30-mm-thick cross-sections from rubber-filled stems. These
sections were mounted in water on a glass slide and placed
on a microscope (Zeiss Axioskop 40; Carl Zeiss Microlmag-
ing GmbH, Goéttingen, Germany), and photographed with a
digital camera (Infinityl-5C; Regent Instruments Inc,
Quebec City, Canada) at 40x magnification under UV and
visible light to make the rubber dye fluoresce brightly while
still being able to see the walls. Then, image analysis soft-
ware (Win CELL 2007; Regent Instruments Inc) was used
to measure the diameter of every filled or unfilled vessel in
three pie-shaped wedges in different (evenly distributed)
directions around the cross-section. At least 1000 vessels
were measured in one section, and the cross-sectional area
of the wedges was recorded.

The diameter was computed from vessel cross-sectional
area (A) for a circle of equal area D =./4A/x. Using the
Microsoft Excel histogram function, the vessel diameters
were divided into bin diameters (diameter size classes, D,
of 10 um width), and the counts in each diameter size
class were used to compute frequency distributions, and
probability density functions (PDFs) were fitted to these
distributions.

We found that ‘frequency distributions’ of % vessels in
different diameter size classes could be fitted with Weibull
PDF:

£ A k) = %(%)H exp{—("")k } )

where k and A are fitting constants, and x is the bin diameter
. D, . . .
increment defined as x,=—, where d,, is the bin width

(typically 5 um), and D, is the diameter at the centre of the
vessel diameter size class, for example D, =12.5 um for the
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vessel diameter size classes from 10 to 15 um, and hence
xp = 2.5 for vessel diameter size classes of 10-15 um.

Computational algorithm for vessel length

The normal computation algorithm is to count the number
of vessels per unit cross-sectional area in pie-shaped wedges
N =n/(cross-sectional area) and plot In(/N) versus distance
from the injection surface (x) to compute A. The exponen-
tial extension of vessel ends is given by

N =N,exp(L,x) 2)

where N, is the number of vessels filled at x = 0, and N is the
number at x>0 and A, is a fitting coefficient (a negative
quantity for an exponential decay), hence a natural log
transform plot can be used to estimate A,. As pointed out by
Cohen, John Bennink & Tyree (2003) and Sperry et al.
(2005), the second derivative of Eqn 2 gives the PDF:

P.=xA% exp(A,x)dx 3)

In Eqn 3, P, is the probability of vessels in the length inter-
val dx. Cohen (personal communication) has determined
that Eqn3 is a gamma PDF with shape factor=2,
mode = -1/ and mean vessel length L, =-2/A,.

The modified computational algorithm assumed that
vessels in a given size class maintain approximately con-
stant diameter over their entire length. Vessel widths were
divided into bins based on diameter size classes, and the
counts in each size class (N.) were used for the plots of
In(N.) versus x. Size classes where N, at x =0.2 cm was less
than 50 were excluded from analysis diameter.

Replication and statistical methods

Vessel counts in each diameter size class (N.) were obtained
on five replicate stems for each species at various distances,
x, from the injection surface. Mean N. (N,) and standard
errors were used in plots of In(N,) versus x from which
slopes were obtained in each size class (4, in Eqn 2).
The value of A, for each diameter size class (A) was then
used to compute the mean vessel length in that size class
(ch =-2/2.). L. was plotted versus the diameter size
classes (D.). Linear and two-parameter non-linear regres-
sions of L. versus D. were obtained using SigmaPlot
(version 11), and the resulting statistics were used to evalu-
ate if trends were significantly different from zero slope.

RESULTS

The number of vessels filled with injected silicone rubber
fell exponentially with distance from the injection surface
as frequently found by others (data not shown, see Sperry
et al. 2005). Vessel diameters were measured in filled and
unfilled vessels at 2 cm from the injection surface, and
turned into frequency histograms. Histograms were fitted to
a Weibull PDF (Eqn 3). Two examples at 2 cm from the
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injection point are shown in Fig. 1 for cottonwood clones
P38P38 and Northwest. In all cases examined, the PDF was
shifted to the right for filled versus unfilled vessels. From
this, it follows that wide vessels tend to be long vessels.
Two examples of log-transformed vessel count with stan-
dard error bars are shown in Fig. 2. The slopes of these lines
yielded A, from Eqn 2, and mean vessel diameter in each
size class was computed from L =-2/A,. Figure 3 shows
plots of L. versus diameter size class, D.. Plots in Fig. 3 have
non-zero slopes that are significantly different from zero.
The computational methods and assumptions provide no
theoretical guidance on the likely functional dependence of
L. on D.. Plots appeared linear to slightly exponential,
hence both linear and two-parameter exponential functions
were fitted to see which had higher R? values. The regres-
sions with the higher R? are reported. The slopes suggest
that in all species, vessel length increases with vessel width,
and that this dependence on width is more highly expressed
in Northwest than in P38P38, and aspen is intermediate.

The values of L, and D, computed by the traditional
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Figure 1. (a) Vessel diameter probability density functions
(PDFs) of P38P38 hybrid cottonwood vessels filled (closed
symbols) and unfilled (open symbols) with silicone rubber at

2 cm from the injection point. (b) Vessel diameter PDFs of
Northwest hybrid cottonwood vessels filled (closed symbols) and
unfilled (open symbols) with silicone rubber at 2 cm from the
injection point.
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Figure 2. Two examples of natural log-transformed plots of
vessel count per unit area in a diameter size class versus distance
from the injection surface. Shown are means and standard error
of counts in five stems for cottonwood clones Northwest
(squares) and P38P38 (circles). The slopes of these lines are used
to evaluate 4, in Eqn 2 for a vessel diameter size class.

algorithm (Cohen et al. 2003; Sperry et al. 2005) fall within
the range of L. and D, for each clone (stars in Fig. 3).

DISCUSSION

The algorithm used in this paper is based on the assumption
that vessel diameters do not change much over their length.
What proof is there that vessels maintain more or less
constant width over their length?

In one published study of Cedrela fissilis stems, vessel size
and location had been measured in serial sections and
recorded by the cinematographic method. The published
scale drawings showed plots of vessel width and position.
Careful examination of the plot reveals that narrow vessels
remain narrow over their entire length in the analysed
block of wood, and wide vessels remain wide over their
length (see fig. 2.2 in Tyree & Zimmermann 2002).

If wide vessels are long vessels, then we would expect the
PDF of rubber-filled vessels to contain a higher frequency
of wide vessels than in the PDF of unfilled vessels when
evaluated at a non-zero distance from the injection surface.
This is confirmed by our data in Fig. 2 where we evaluated
the PDFs of filled and unfilled vessels at 2 cm from the
injection surface. Qualitatively, similar curves (not shown)
were evaluated at other distances where wide vessels were
more commonly rubber filled. In addition, if vessels of any
diameter can be any random length, then the slopes of the
plots of In(N.) versus x should be the same for any diameter
size class. However, the contrary is true as evidenced by the
strong dependence of L. on vessel width (Fig. 3).

The algorithm used in this paper provides an indication
that wide vessels tend to be long vessels in cottonwood
hybrids and aspen. This information has some useful impli-
cations provided the pit area hypothesis is true. According
to the pit area hypothesis, the vulnerability of a vessel to
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Figure 3. (a) Mean vessel length in a diameter size class,

L. versus vessel diameter size class (D.) is shown for two
cottonwood clones: Northwest (squares) and P38P38 (circles).
The regressions are: Northwest: I, =1.235 exp(0.0228D.)
(R*=0.997 SE of slope = =0.0011 P =0.0003) and P38P38:
L.=0.0206 D.+3.314 (R*>=0.804 SE of slope = £0.006 P =0.04).
The star points are at the coordinates for L, and D, for each
clone. (b) Similar data for aspen. Only four diameter bin sizes are
shown because the range of diameters was less than in (a).
Regression L,=1.681 exp(0.0126D,) (R*=0.890 SE of

slope = £0.0033 P =0.05).

embolism increases with the surface area of all pits in that
vessel. Our data lend additional support to the notion
(Wheeler et al.2005) that there is a trade-off between vessel
efficiency for water transport and vulnerability to drought-
induced xylem embolism. The Hagen—Poiseuille equations
predict that hydraulic conductivity should increase with D*,
and long vessels will have less end wall resistance because
of increased surface area for pit membranes. Both of these
factors make wide and long vessels very efficient transport-
ers of water. The trade-off between efficiency and vulner-
ability to cavitation might drive a shift in vessel length of
wide vessels away from the optimum value for hydraulic
efficiency within a species.
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The theoretical dependency of L versus D for optimized
vessel design has been discussed at length (Lancashire &
Ennos 2002, Wheeler et al. 2005; Hacke et al. 2006), and is
postulated to follow eqn 6 in Hacke et al. (2006). Full dis-
cussion of this equation is beyond the scope of this paper,
but the form of the equation is:

Fxr V2
L=0.125| ——"—| D¥ 4)
nxF,x Fy

where F is the ratio of the lumen-to-wall hydraulic resis-
tance, r,, is the pit membrane resistance, 1 is the viscosity of
water, F, is the pit fraction (total pit area per area of vessel
wall) and Fy, is the length fraction (length of vessel in
contact with adjacent vessels to vessel length). If the half-
power term in Eqn 4 is constant, then a plot of log(L) versus
log(D) should have a slope of 1.5. Given that there are so
many parameters in the half power term in brackets that
might scale with D, it is surprising that a plot of log(L)
versus log(D) had a slope of 1.48 in Hacke et al. (2006). Our
values from Populus species show a much lower slope when
a regression of the form L = aD? is performed. For P38P38,
NW and aspen, the value of b, which is the slope of the
log—log transform, equals 0.17, 0.77 and 0.36, respectively.
All that can be said at this point is that the computational
algorithm used in this paper produces a much smaller
scaling relationship between vessel length and vessel diam-
eter within a species (cottonwood hybrid and aspen) than
found by Hacke eral. (2006) between species. If Eqn 4
applies within a species, then the difference could be
accounted for by saying: (1) that the parameters in the half
power term do scale with D within a species; (2) vessel
diameter and length within a species do not follow an opti-
mized hydraulic pattern within a species for reasons of
safety; (3) the new assumption in the computational algo-
rithm (that vessel diameter is constant along the length
of a vessel) is qualitatively correct, but not quantitatively
correct; or (4) a combination of (1) through (3) is true.
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