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Abstract
Material costs when cutting solid wood parts from hardwood lumber for secondary wood products manufacturing account

for 20 to 50 percent of final product cost. These costs can be minimized by proper selection of the lumber quality used. The
lumber quality selection problem is referred to as the least-cost lumber grade mix problem in the industry. The objective of this
study was to create a least-cost optimization model using a design that incorporates a statistical approach to address
shortcomings of existing models using linear optimization methods. The results of this study showed that optimal solutions
tend to use as much low-quality lumber as possible to minimize costs. Comparison of results from this new least-cost grade mix
model with other existing least-cost lumber grade mix models has shown that the new model results in lower-cost solutions.

In rough mills of the secondary wood products industry,
secondary hardwood manufacturers cut hardwood boards
into parts of specified sizes, qualities, and quantities
according to customer orders, called cutting bills (Buehl-
mann et al. 1999). This is an economically important
process since raw material costs contribute up to 70 percent
of total product cost (Carino and Foronda 1990, Wengert
and Lamb 1994, Mitchell et al. 2005).

Cutting lumber into smaller components is a typical
cutting stock problem (Dyckhoff 1990). The problem exists
in many industries, such as in the paper, glass, or car
manufacturing industries. In the 1960s, Gilmore and
Gomory (1961, 1963, 1965, 1966) proposed a series of
solutions to the cutting stock problem using linear and
dynamic programming. Since then, numerous additional
research efforts have been made to address the problem in
different numbers of dimensions, such as in one, two, three,
and more dimensions (Haessler 1975, Ferreira et al. 1990,
Goulimis 1990, Sweeney and Haessler 1990, Fayard et al.
1998, Harjunkoski et al. 1998, Wagner 1999, Belov and
Scheithauer 2002, Liang et al. 2002, Umetani et al. 2003).
Furthermore, Hinxman (1979) and Haessler and Sweeney
(1991) studied the problem in 1.5 dimensions. Generally
speaking, solving the cutting stock problem has involved
three different methods: algorithm method (Harjunkoski et
al. 1998, 1999; Westerlund et al. 1998), heuristic method
(Eisemann 1967, Haessler 1975, Coverdale and Wharton
1976, Goulimis 1990, Haessler and Sweeney 1991), and
metaheuristic method (Glover 1986, Feo and Resende 1995,

Fayard et al. 1998, Liang et al. 2002). Besides theoretical
models, many empirical models have been developed to
resolve the problem for specific industries, such as the steel
industry (Karelahti 2002), the glass industry (Arbib and
Marinelli 2004), the paper industry (Goulimis 1990,
Harjunkoski et al. 1996, Ostermark 1999), and the wood
products industry (Ronnqvist and Astrand 1998, Wagner
1999), to name a few.
In the wood products industry, the cutting stock problem

exists throughout the whole supply chain from felling trees,
cutting logs, sawing lumber, and processing small parts of
furniture or cabinets. To optimize the bucking and
allocation of logs, Faaland and Briggs (1984) and Eng and
Daellenbach (1985) made use of dynamic programming,
while Brunner et al. (1989), Foronda and Carino (1991),
Klinkhachorn et al. (1993), and Carnieri et al. (1993, 1994)
used heuristic methods to determine the optimal lumber cut-
up patterns for higher yield. Later, more complex models
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that include lumber defects in the cutting process were
developed to provide more realistic solutions (Astrand and
Ronnqvist 1994, Ronnqvist and Astrand 1998).
Wood products manufacturers are sensitive to changes in

lumber quality (referred to as lumber grade in the industry;
National Hardwood Lumber Association [NHLA] 1998) and
price. Matching cutting bill requirements (e.g., the size of
individual parts in a cutting bill, the distribution of these
sizes, and the individual quantities of parts required;
Buehlmann et al. 1999) with the most appropriate lumber
grade or lumber grade combination minimizes material
purchasing and processing costs. Finding the best match
between cutting bill and lumber grade composition for least
cost is usually referred to as the least-cost lumber grade mix
problem in the industry. Using the least-cost lumber grade
mix implies that a mill processes an optimal lumber grade
combination minimizing costs while satisfying cutting bill
requirements. Efforts to solve the least-cost lumber grade
mix problem started in the late 1960s (Englerth and
Schumann 1969). Since then, much research (Hanover et
al. 1973, Martens and Nevel 1985, Carino and Foronda
1990, Steele et al. 1990, Timson and Martens 1990, Harding
1991, Fortney 1994, Suter and Calloway 1994, Lawson et
al. 1996) has been conducted to find solutions for the
problem. Hamilton et al. (2002) advanced the linear
programming approach that addressed the nonlinearity
issue. However, their research focused on filling a cutting
order from a given lumber stock with a defined lumber
grade mix. Most, if not all, solutions developed to date rely
on linear programming methodology. Reasons for this focus
on linear programming methodology may have been the
seemingly linear relationship between lumber grade or
grade combinations and yield as well as the speed of
performing the necessary calculations on computers (Bethel
and Harrell 1957). However, even if true optimal solutions
were obtained from linear programming models, the
solution may not always be applicable on the manufacturing
floor because the actual constraints, such as limited storage
space, random machine downtime, and random raw material
inputs in the plants, could not be included in the linear
programming model (Sampson 1979). Also, the yield
nomograms used for yield estimation in most least-cost
lumber grade mix optimization models may be inaccurate
because of the advancement of processing technologies and
changes in the wood resource (Hoff 2000).
The primary requirement for applying linear program-

ming is that both the objective and the constraint functions
be simple linear (Winston 1994). Thus, solving the least-
cost lumber grade mix problem using linear programming
technologies requires that the relationship between yield and
lumber grade or grade combinations be simple linear. Zuo et
al. (2004) found that the relationship between yield and two
and/or three lumber grade combinations are not always
linear. In fact, it was shown that the simple linear
relationship between yield and lumber grade mix does not
hold for an estimated 90 percent of the cutting bill–grade
combinations tested. Also, the study by Zuo et al. (2004) did
not find a simple rule to predict if a cutting bill–grade mix
combination behaves linearly. Thus, linear programming
models apply only in selected cases that require narrow and
short parts with relatively even distribution.
The violation of the linearity assumption limits the validity

of the solutions produced by all major least-cost lumber
grade mix models relying on linear programming. The

objective of this study then was to use a statistical method to
search for the least-cost lumber grade or grade combination
without violating the simple linearity assumption.

Materials and Methods
A major problem in finding the least-cost lumber grade

mix is to estimate the expected yield of required parts
obtained from the various lumber grades and grade mix
combinations. For this purpose, existing simulation software
(Thomas 1999) and digital representations of lumber boards
(Gatchell et al. 1998) were used.

Lumber cut-up simulator
The USDA Forest Service’s ROMI-RIP 2.0 (RR2)

simulation software (Thomas 1999) was used to collect
simulated lumber cut-up yields for this study. RR2 simulates
the cut-up of lumber in rip-first rough mills (Thomas and
Buehlmann 2002). In rip-first processing, narrow strips are
cut from the board first. These are subsequently cut to the
lengths required by the cutting bill (Buehlmann et al. 1999).
The RR2 simulation software was set up to reflect real world
conditions. In particular, the settings used are the following:

! All-blades—movable arbor type
! Salvage cut to primary lengths and widths
! No excess salvage yield included
! Complex dynamic exponential part prioritization
! No random-width or random-length parts
! Continuously updated part counts
! ¼-inch end and side trim

Cutting bill
Buehlmann’s cutting bill (Buehlmann et al. 2008a,

2008b), a theoretical representation of the ‘‘average’’
industrial cutting bill with respect to size and quantity
requirements, was used in this study. Proportional adjust-
ments of part requirements were made to fit the lumber
samples used for this study (Table 1).

Additionally, 10 industrial cutting bills were used
(Wengert and Lamb 1994, Thomas 1996). Table 2
summarizes all 11 cutting bills and shows their relative
difficulty ranking in respect of obtaining all parts from given
lumber (Thomas 1996, Zuo et al. 2004).

Lumber data
Because of its economic importance to the hardwood

lumber industry and the volume of red oak processed in
secondary hardwood dimension mills, digital representa-
tions of red oak lumber boards were used for this study. The
following lumber grades were used: FAS, SELECTS (SEL),
1 Common, 2A Common, and 3A Common (NHLA 1998).
These five grades are listed in decreasing order of quality

Table 1.—Cutting bill requirements of the Buehlmann cutting
bill.

Part
width (in.)

Part length (in.)

10 17.5 27.5 47.5 72.5

1.50 136 297 433 243 103

2.50 152 298 480 262 98

3.50 46 102 146 88 57

4.25 49 99 158 85 40
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and price. Each lumber grade was used as a factor in the
model. To control the model’s computing time, lumber
grade mix increments of 10 percent were used for creating
the lumber grade combinations. To allow for three replicates
of each lumber cut-up simulation to smooth out random
variation, three lumber grade or grade combination samples
with 1,000 board feet of lumber each were randomly
selected from the 1998 Kiln Dried Red Oak Data Bank
(Gatchell et al. 1998) using RR2 0s MAKEFILE utility
(Thomas 1999) for each lumber grade combination.

Experimental design
The volume of each lumber grade in any given lumber

grade combination is between 0 and 100 percent of the total
lumber volume used in each lumber set. The sum of all
lumber grade proportions is 100 percent. A five-factor
mixture design (Myer and Montgomery 2002) was applied
with the five factors being the proportion of each grade
utilized in a given lumber sample. An upper bound of 80
percent was placed on 3A Common lumber because of its
lack of capacity for producing the large parts in cutting bills.
In fact, during preliminary testing, it was found that cutting
bills G, I, and J were extremely difficult to satisfy with the
combination of 80 percent 3A Common and 20 percent 2A
Common lumber (the lowest-quality grade combination
permitted under the rules discussed previously). Therefore,
the upper bound for 3A Common lumber was adjusted to 60
percent for these three bills. Tables 3 and 4 show the details
of the lumber grade mixture design executed for the 11
cutting bills (Tables 3 and 4, first six columns).

Analysis
Cost calculations.—In order to determine the grade

combination that satisfied each cutting bill at the lowest
lumber cost, cost information for each grade combination
was acquired to build a lumber grade–cost response surface.
The simulated yields (Table 3, last eight columns, and Table
4, last three columns) from the 25 initial grade combination
sample runs on RR2 were used to build a response surface.
However, since the lumber grade combination with the least
cost was the outcome of interest, Equation 1 had to be used
for the transformation of yields to cost. Equation 1
correlates yield, the grade distribution, and the market price

for each lumber grade with costs:

COSTj ¼

X5

i

Gi 3Mi

YIELDj
ð1Þ

where

Gi ¼ the proportion of each lumber grade;

Mi ¼ the market price per thousand board feet (MBF) of
each lumber grade; i¼ 1 for FAS, 2 for SEL, 3 for 1
Common, 4 for 2A Common, and 5 for 3A
Common; and

j ¼ observation of a grade combination run.

To calculate total lumber costs per MBF for satisfying a
given cutting bill, 4/4-inch-thick, kiln-dried red oak lumber
prices from January 2002 were used (Weekly Hardwood
Review 2002). Data from 2002 were used to fit research
described in this article with work done by Zuo et al. (2004)
and by Buehlmann et al. (2008c). The price for SELECTS,
which is not reported in Weekly Hardwood Review, was
estimated through industry contacts. The prices used were as
follows: FAS, $1,570 per MBF; SEL, $1,350 per MBF; 1
Common, $1,000 per MBF; 2A Common, $748 per MBF;
and 3A Common, $500 per MBF.
An optimal lumber grade combination (e.g., a minimum

cost lumber grade combination) found using Equation 1
minimizes raw material cost without consideration of
processing costs. Processing costs, in this study, were
defined as all nonlumber (raw material) costs incurred when
producing dimension parts in the production process. Thus,
production costs, i.e., the sum of lumber and processing
costs, must be optimized (minimized) to find the true lowest-
cost lumber grade mix for a given cutting bill. Research
conducted in a dimension mill has shown that adding $200
per MBF of input lumber to lumber costs is a good
approximation of true processing costs in a state-of-the-art
dimension mill (Buehlmann and Zaech 2001). This approach
assumes that the processing costs are related to yield. Thus,
for lumber inputs that yield more usable parts per MBF of
input lumber, processing costs are lower because less lumber
is needed to fulfill the cutting bill. Although this finding may
not be true for all dimension mills depending on operational
setup and technology used, Buehlmann and Zaech’s findings
were used for the development of this model. Modifications
to this cost assumption can easily be incorporated into the
model should a particular rough mill have proprietary
processing cost estimates. For a mill having more detailed
cost information, Equation 2 can be used and the specific
processing costs (Pi) be applied for each grade:

COSTj ¼

X5

i

Gi 3ðMi þ PiÞ

YIELDj
ð2Þ

where

Gi ¼ the proportion of each lumber grade;

Mi ¼ the market price per MBF of each lumber grade;

Pi¼ the processing cost per MBF of each lumber grade;

i ¼ 1 for FAS, 2 for SEL, 3 for 1 Common, 4 for 2A
Common, and 5 for 3A Common; and

j ¼ observation of a grade combination run.

Table 2.—Length and width summary and difficulty ranking for
the 11 cutting bills used in this study.

Cutting bill
Difficulty
rankinga

No. of
parts

No. of
widths

No. of
lengths

A 1 5 3 4

B 2 10 4 9

C 3 25 7 16

D 4 5 3 5

E 5 4 4 4

F 6 12 4 6

Buehlmann 7 20 4 5

G 8 20 7 12

H 9 8 2 8

I 10 16 4 11

J 11 9 5 4

a The cutting bills were ranked from easiest to hardest as defined in
Thomas’s (1996) study; the rankings for the Wengert and Lamb (1994)
and Buehlmann (1998) cutting bills were based on the same criteria as
used in Thomas’s study.
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Table 3.—Design matrix for five-factor mixture design with 80 percent upper bound for 3A Common lumber and average yield
response from three replicates for eight cutting bills tested.

Run no.

% for each grade Average yield (%)

FAS SEL 1Com 2ACom 3ACom A B C D E F Buehlmann H

1 0 0 0 20 80 29.31 37.39 44.17 37.16 15.59 8.92 27.03 19.65

2 0 0 0 60 40 36.71 47.70 49.38 43.02 24.88 18.29 37.06 35.52

3 0 0 0 100 0 42.99 54.98 54.76 48.36 30.95 26.67 47.93 46.29

4 0 0 20 0 80 32.59 44.65 46.37 39.72 21.41 16.45 36.02 31.18

5 0 0 50 50 0 50.09 60.74 60.76 54.14 43.90 43.62 57.68 54.57

6 0 0 50 50 0 49.54 60.36 60.38 53.96 44.37 41.57 57.21 54.68

7 0 0 60 0 40 45.30 56.49 56.68 50.10 38.62 40.79 52.46 50.24

8 0 0 100 0 0 56.43 65.61 65.50 60.08 53.60 54.03 63.83 60.79

9 0 20 0 0 80 33.80 46.40 45.80 40.50 24.37 23.76 39.02 34.97

10 0 50 0 50 0 49.23 62.47 60.17 55.46 48.32 52.93 59.78 56.53

11 0 50 0 50 0 48.30 63.12 60.76 55.88 49.03 52.66 59.09 57.35

12 0 50 50 0 0 55.39 67.37 66.28 60.75 59.95 59.78 65.83 63.34

13 0 50 50 0 0 55.38 67.32 66.03 60.93 58.25 59.30 65.11 62.57

14 0 60 0 0 40 44.00 58.96 54.83 51.17 44.79 48.21 53.98 52.49

15 0 100 0 0 0 54.59 69.56 64.01 61.78 63.34 61.13 66.16 64.95

16 50 0 0 50 0 56.50 66.74 67.00 61.24 60.03 58.78 65.28 60.93

17 50 0 0 50 0 56.24 66.75 66.69 61.14 60.51 59.70 64.70 61.08

18 50 0 50 0 0 63.39 71.01 71.42 66.81 66.33 67.60 70.92 66.49

19 50 0 50 0 0 63.79 70.99 71.36 67.02 66.41 67.30 70.66 67.04

20 50 50 0 0 0 62.86 72.93 72.26 67.81 68.02 68.72 72.45 68.57

21 50 50 0 0 0 62.13 71.97 71.33 67.33 66.78 68.19 71.83 67.67

22 60 0 0 0 40 53.63 64.35 63.92 59.06 58.50 55.49 61.31 58.75

23 60 0 0 0 40 53.16 64.36 63.98 58.73 57.92 55.65 61.55 58.60

24 100 0 0 0 0 70.11 76.08 76.05 73.21 72.64 75.50 76.68 71.80

25 100 0 0 0 0 69.85 76.21 76.61 73.55 72.43 75.61 76.96 71.92

Table 4.—Design matrix for five-factor mixture design with 60 percent upper bound for 3A Common lumber and average yield
response from three replicates for three cutting bills tested.

Run no.

% for each grade Average yield (%)

FAS SEL 1Com 2ACom 3ACom G I J

1 0 0 0 40 60 25.42 13.11 5.21

2 0 0 0 70 30 34.84 14.77 6.88

3 0 0 0 100 0 42.35 22.64 12.63

4 0 0 40 0 60 39.60 32.44 24.68

5 0 0 50 50 0 52.48 45.92 40.68

6 0 0 50 50 0 52.14 45.19 38.84

7 0 0 70 0 30 50.30 47.18 38.22

8 0 0 100 0 0 60.13 57.52 48.38

9 0 0 100 0 0 60.36 58.93 49.38

10 0 40 0 0 60 43.47 36.72 27.38

11 0 50 0 50 0 55.90 50.97 40.49

12 0 50 0 50 0 55.79 51.96 41.76

13 0 50 50 0 0 63.42 60.88 52.09

14 0 50 50 0 0 63.35 60.94 51.90

15 0 70 0 0 30 55.30 51.99 41.33

16 0 100 0 0 0 66.57 64.74 55.33

17 40 0 0 0 60 48.45 42.18 42.04

18 50 0 0 50 0 60.82 59.07 56.07

19 50 0 0 50 0 59.82 59.44 56.89

20 50 0 50 0 0 69.14 68.32 62.22

21 50 0 50 0 0 68.52 68.62 61.08

22 50 50 0 0 0 69.94 68.97 63.13

23 50 50 0 0 0 70.32 69.15 61.79

24 70 0 0 0 30 61.49 61.11 57.92

25 100 0 0 0 0 75.75 75.09 70.86
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In this study, production costs thus become the sum of
market price of lumber (Mi) plus $200 processing costs (Pi),
e.g., FAS, $1,770 per MBF; SEL, $1,550 per MBF; 1
Common, $1,200 per MBF; 2A Common, $948 per MBF;
and 3A Common, $700 per MBF. By adding a uniform
dollar amount per unit of input as processing cost to each
lumber grade, a penalty for processing lower-grade lumber
is created since more input volume of lower-grade lumber is
needed to meet a cutting bill.

Model generation.—The objective of this research was to
find a global optimal solution for individual cutting bills
with regard to minimum raw material costs or minimum
production costs. To fit the lumber grade–cost response
surface, a second-order polynomial model (Eq. 3) was
generated for each cutting bill using SAS 8.2 (SAS Institute
Inc. 2002):

uy ¼ b
&
0 þ

X5

i¼1

b
&
i xi þ

X X

i, j

b
&
ij xixj ð3Þ

where

uy ¼ the cost of satisfying a given cutting bill;

xixj ¼ the proportions of each lumber grade;

b&0 ¼ the intercept;

b&i ¼ the coefficients of linear terms; and

b&ij ¼ the coefficients of the interaction terms; ij ¼ 1 for
FAS, 2 for SEL, 3 for 1 Common, 4 for 2A
Common, and 5 for 3A Common.

Using this lumber grade–cost response surface, an
exhaustive search using SAS was conducted to locate the
lowest cost point of the surface within the experimental area
(Zuo 2003). The lumber grade or grades corresponding with
the minimum cost point provide the optimal grade
combination associated with minimum costs to satisfy given
cutting bill requirements.

Results and Discussion
First, results from testing Buehlmann’s cutting bill

(Buehlmann et al. 2008a, 2008b) are presented followed
by results for the 10 industry cutting bills (Wengert and
Lamb 1994, Thomas 1996).

Buehlmann’s cutting bill
The full model for the lumber grade–raw material cost

response surface for Buehlmann’s cutting bill is shown in
Equation 4:

COST ¼ 1; 886þ 157:843 FASþ 171:863 SEL
' 313:383 1Com' 348:023 2ACom
' 107:213 FAS3 SELþ 29:143 FAS3 1Com
' 29:093 FAS3 2ACom
' 504:293 FAS3 3ACom
' 81:183 SEL3 1Com
' 130:953 SEL3 2ACom
' 730:823 SEL3 3ACom
' 134:073 1Com3 2ACom
' 796:843 1Com3 3ACom
þ 6393 2ACom3 3ACom: ð4Þ

Based on this fitted response surface, an iterative search
for the minimum cost point was conducted using SAS 8.2.

For each search step, 10 percent grade increments were
applied. The lowest cost grade combination for the
Buehlmann cutting bill to minimize raw material costs
according to the statistical model shown in Equation 4 is a
grade mix of 70 percent 1 Common and 30 percent 3A
Common lumber. The same procedure was followed to
obtain the least-cost grade combination that minimizes total
production cost (e.g., lumber plus processing costs). The
production cost response surface for the Buehlmann cutting
bill is shown in Equation 5:

COST ¼ 2; 607' 302:503 FAS' 238:703 SEL
' 718:003 1Com' 662:003 2ACom
' 139:203 FAS3 SELþ 6:473 FAS3 1Com
' 132:203 FAS3 2ACom
' 999:303 FAS3 3ACom
' 111:703 SEL3 1Com
' 218:603 SEL3 2ACom
' 1; 272:703 SEL3 3ACom
' 186:903 1Com3 2ACom
' 1; 236:903 1Com3 3ACom
þ 821:103 2ACom3 3ACom: ð5Þ

The optimal grade combination for minimum production
costs for the Buehlmann cutting bill is 80 percent 1
Common and 20 percent 3A Common lumber. Because of
the many large parts that are difficult to obtain from 3A
Common lumber, a high proportion of 1 Common lumber
was included in the minimum total cost grade mix.
Including processing costs indicated that cost inefficiency
was associated with cutting the 3A Common lumber; thus,
10 percent more 1 Common lumber was recommended to
minimize overall production costs. This shift in lumber
grade distribution is the result of the advantage of lower
processing cost per unit output for higher-grade lumber.

Actual industrial cutting bills
Each cutting bill has specific individual part size and

quantity distributions (Buehlmann 1998) resulting in
differing yield results for different lumber grades. There-
fore, there is no uniform model that can be used for all
cutting bills. Hence, for each cutting bill, a specific lumber
grade–yield cost response surface has to be created on the
basis of estimated yields obtained from RR2 (Thomas
1999). Table 5 presents the parameters for each factor
(grade) and each factor interaction for the 10 cutting bills
studied for the case when no processing costs are included.
When processing costs were included, the lumber grade–
cost response surface, and thus the regression model
parameters changed. Using these lumber grade–raw material
or production cost response surface models, iterative
searches were conducted for both minimum material costs
and minimum material and production costs using SAS 8.2.
Table 6 shows the optimal lumber grade combinations that
minimize raw material costs for the 10 industrial cutting
bills according to the statistical models. Results for
Buehlmann’s cutting bill are included in Table 6 to allow
for comparisons. The cutting bills are listed by order of
difficulty as ranked in a previous study (Zuo et al. 2004) and
cited in Table 2. Table 6 shows that lower-grade lumber, 2A
Common and 3A Common, are the only grades required to
satisfy the first four cutting bills (A, D, C, and B) at
minimum costs. These cutting bills were defined as easy-to-
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cut cutting bills in Zuo et al.’s (2004) study. With increasing
levels of cutting bill difficulty, more higher-grade lumber is
required for the least-cost solution. However, lower-grade
lumber (e.g., low-cost lumber) is kept as much as possible in
the grade mix.
The consistent inclusion of a proportion of lower-grade

lumber (i.e., 2A and 3A Common) in the optimal lumber
grade combinations derived by the model is explained by
the variation in lumber cost between lumber grades.
According to the market prices used in this study for red
oak lumber in January 2002 (Weekly Hardwood Review
2002), the price gap between FAS and 2A common was
$822 per MBF ($1,570 per MBF vs. $748 per MBF) and
$1,070 per MBF for FAS and 3A Common ($1,570 per
MBF vs. $500 per MBF). Thus, using 2,090 board feet (BF)
of 2A Common or 3,140 BF of 3A Common lumber costs
the same as using 1,000 BF of FAS lumber. Put another
way, a cutting bill that needs 1,000 BF of FAS lumber to
meet the requirements could be satisfied more cheaply if
less than 2,090 BF of 2A Common or less than 3,140 BF of
3A Common lumber were used. This is the scenario
observed for the easy-to-cut cutting bills (A, D, C, and B)
that require smaller parts and that, therefore, can be satisfied
efficiently using lower-grade lumber.

However, when cutting bills are difficult to cut, i.e., when
they either require large parts (cutting bills I, F, and J) or
have unevenly distributed part sizes or quantity require-
ments, better lumber qualities are needed. For example, in
cutting bill J, 70 percent of the part lengths are shorter than
41 inches, while 25 percent are longer than 71 inches. There
are no part requirements for lengths between 41 inches and
70 inches in cutting bill J. Either such cutting bills cannot be
satisfied by lower-grade lumber only, or they require large
quantities of lower-grade lumber, thus putting the lower
grades in an economically inferior position. Processing
more of the higher-grade lumber is economically advanta-
geous in such cases. For example, cutting bills F and J, the
two most difficult-to-cut cutting bills, require 50 percent
SEL and 40 percent FAS lumber, respectively, to minimize
raw material costs.

Table 7 presents the solutions that minimize total
production costs (processing cost plus raw material cost).
The least-cost lumber grade mix solutions for cutting bills
A, C, B, H, and I are unchanged from the raw material–
based cost scenario (Table 6) despite the fact that processing
costs of $200 per 1,000 BF are now included in the cost
calculation. It is likely that the optimum grade composition

Table 5.—Regression parameters for raw material cost surfaces of the 10 industrial cutting bills.

Factor

Cutting bill

A B C D E F G H I J

Intercept 1,876.75 1,393.75 1,222.88 1,461.22 3,587.85 5,598.41 2,196.86 2,589.52 2,800.77 4,852.68

FAS 3.67 6.68 8.34 6.78 '14.23 '35.21 '1.01 '4.05 '7.07 '25.37

SEL 6.04 5.54 8.86 7.25 '14.23 '32.39 '1.55 '4.66 '7.14 '23.75

1Com '1.06 1.36 3.03 2.04 '17.06 '37.10 '5.31 '9.19 '10.88 '27.95

2Acom '1.44 '0.45 1.45 0.86 '12.21 '29.75 '4.78 '10.43 5.17 9.51

FAS 3 SEL '0.01 0.00 '0.02 '0.00 0.00 '0.03 0.01 '0.00 0.01 '0.02

FAS 3 1Com 0.02 0.01 0.00 0.01 '0.04 '0.03 '0.01 '0.00 '0.01 '0.04

FAS 3 2ACom 0.03 0.01 0.01 0.02 '0.14 '0.16 0.01 0.01 '0.30 '0.80

FAS 3 3ACom 0.02 '0.01 0.03 0.03 '0.32 '0.59 '0.08 '0.17 '0.13 '0.58

SEL 3 1Com '0.00 0.00 '0.02 0.00 '0.01 '0.06 0.00 '0.01 0.01 '0.00

SEL 3 2ACom 0.02 0.01 '0.00 0.01 '0.04 '0.20 '0.00 0.00 '0.27 '0.64

SEL 3 3ACom 0.01 '0.02 0.04 0.03 '0.25 '0.86 '0.07 '0.22 '0.09 '0.31

1Com 3 2ACom 0.00 0.00 '0.00 0.01 '0.06 '0.08 '0.00 '0.00 '0.24 '0.69

1Com 3 3ACom '0.02 '0.03 0.00 0.01 '0.23 '0.64 '0.08 '0.22 '0.10 '0.35

2ACom 3 3ACom '0.00 0.01 '0.00 '0.00 '0.03 0.16 0.10 0.04 0.66 2.44

Table 6.—Optimal lumber grade mix to minimize raw material
cost based on the five-factor statistical model with interactions
(without consideration of processing costs).

Cutting
bill

Difficulty
ranking

% without processing cost

FAS SEL 1Com 2ACom 3ACom

A 1 100

D 2 20 80

C 3 20 80

B 4 100

H 5 70 30

G 6 80 20

E 7 10 70 20

Buehlmann 8 70 30

I 9 80 20

F 10 50 20 30

J 11 40 40 20

Table 7.—Optimal lumber grade mix to minimize total produc-
tion cost based on the five-factor statistical model with
interactions (with processing costs included).

Cutting
bill

Difficulty
ranking

% with $200/MBF processing cost

FAS SEL 1Com 2ACom 3ACom

A 1 100

Da 2 100

C 3 20 80

B 4 100

H 5 70 30

Ga 6 90 10

Ea 7 50 30 20

Buehlmanna 8 80 20

I 9 80 20

Fa 10 60 10 30

Ja 11 60 10 30

a Cutting bills for which the optimal least-cost lumber grade mix shifted
when processing costs were included in the model.
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for these cutting bills changed slightly, but since the search
was done in 10 percent increments, the change was not
detected. The least-cost lumber grade mix for the other six
cutting bills shifted toward higher-quality lumber. Using the
total cost model, cutting bill D now requires 100 percent 2A
Common lumber to minimize production cost, thus
eliminating 3A Common from the mix. Cutting bills G, E,
and F and Buehlmann also require more higher-grade
lumber to minimize overall production cost than when no
processing costs were included (Table 6). The most
significant change in grade combinations occurred for
cutting bill E. When minimizing total production cost, it
requires 50 percent FAS, 30 percent 1 Common, and 20
percent 3A Common lumber, while 10 percent FAS, 70
percent 1 Common, and 20 percent 3A Common lumber
was required to minimize raw material cost only.

Cutting bill J’s grade mix shifted toward higher-grade
lumber (60 percent FAS when processing costs are included
vs. 40 percent FAS when no processing costs are included),
but at the same time, the amount of lower-grade material
required also increased (30 percent 2A Common when
processing costs are included vs. 20 percent 2A Common
when no processing costs are included). This change
occurred because relative production costs for the lower-
grade portion of the lumber inputs decreases when the larger
parts are obtained from higher-grade lumber (e.g., from the
60 percent FAS in the case of cutting bill J). When the large
parts are readily obtained using higher-grade lumber, yield
from lower grades increases since only smaller part sizes
need to be cut from the lower grades.

The importance of placing a reasonable boundary on the
maximum allowable use of low-quality lumber (e.g., 3A
Common) is demonstrated by cutting bill F. When setting
the upper boundary for 3A Common for cutting bill F at 80
percent, the least-cost lumber grade mix model returns a
solution of 60 percent SEL, 10 percent 1 Common, and 30
percent 3A Common. However, iterative testing showed that
a better solution is 90 percent 1 Common and 10 percent 3A
Common (Buehlmann et al. 2008c). When large quantities
of low-grade lumber can be used in the model’s initial tests,
the least-cost lumber grade mix generates low yield figures
(8.92 percent yield when using 20 percent 2A Common and
80 percent 3A Common; Table 3), skewing the response
surface of the model. Thus, the minimum cost solution
cannot be found. However, the problem can be corrected by
reducing the maximum amount of low-grade material
permitted in any solution or by imposing a limit for the
minimum yield obtained from any lumber grade or lumber
grade combination. A more detailed discussion can be found
in Buehlmann et al. (2008c).

The changes in grade composition observed when adding
processing costs to lumber costs demonstrates the sensitivity
of the model. When $200 per MBF processing costs are
added to total lumber costs, a more serious ‘‘penalty’’ for
processing lower-grade lumber is introduced. Under the
total production cost scenario, the relative total cost of 3A
Common lumber increases 40 percent and increases 27
percent per MBF for 2A Common lumber. However, the
relative cost increase is only 12 percent for FAS lumber.
The total production cost ratio between FAS and 2A
Common is 1:1.87. The ratio between FAS and 3A Common
lumber is 1:2.53. Thus, for a cutting bill that uses 1,000 BF
of FAS, the volume of lower-grade lumber required has to
be less than 1,870 and 2,530 BF for 2A Common and 3A

Common lumber, respectively, to result in lower cost.
Compared with the ratios based on lumber costs only (2.09
and 3.14), the lower-grade lumber in the total cost scenario
has to produce higher yields to be cost competitive with
higher-grade lumber. For the easy-to-cut cutting bills (A, D,
C, and B), lower-grade lumber still achieves yields that are
sufficiently high to be more economical than higher-grade
lumber despite the less favorable ratios.
The least-cost lumber grade mix model discussed in this

article is expected to become an important tool for rough mill
managers to use in scrutinizing their lumber grade mix
decisions to find lower-cost solutions. Therefore, the
validation of the model and the development of software
incorporating the model was a high priority. As extensive
testing showed, the new methodology to solve the least-cost
lumber grade mix problem yields better (e.g., cheaper and
more realistic) lumber grade mix solutions than earlier models
that were based on the assumption of a linear relationship
between yield and lumber grade(s) (Buehlmann et al. 2008c).

Conclusions
A statistical model to find the least-cost lumber grade mix

was developed. The new model uses a mixture design to
establish a test protocol to obtain simulated yields from the
USDA Forest Service’s ROMI-RIP 2.0 rough mill simulator.
These simulated yields are then used to build a polynomial
cost response surface that allows for an exhaustive search for
the lowest-cost grade mix. The model searches for the lowest
material cost grade mix or the lowest total production cost
(e.g., lumber plus processing costs) grade mix.
The optimal least-cost lumber grade mix solutions

generated by the statistical model discussed in this article
tend to use as much low-grade lumber (2A and 3A
Common) as possible, as long as the cutting bill require-
ments (in particular, large parts) still can be satisfied. The
model indicated that low-grade lumber was preferred to
fulfill the part requirements for easy-to-cut cutting bills.
Difficult-to-cut cutting bills’ requirements (e.g., cutting bills
that require significant amounts of large parts) were satisfied
by combining higher-grade lumber (SEL and FAS) with
lower-grade lumber (2A Common and 3A Common). When
processing costs are included in addition to the lumber costs,
lower-grade lumber becomes more expensive relative to
higher grades. Therefore, the more economical solution is to
process more higher lumber grades. However, all these
observations apply only within certain price differentials
between different lumber grades.
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