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We quantified the scaling effects on forest area estimates for the conterminous

USA using regression analysis and the National Land Cover Dataset 30 m

satellite-derived maps in 2001 and 1992. The original data were aggregated to: (1)

broad cover types (forest vs. non-forest); and (2) coarser resolutions (1 km and

10 km). Standard errors of the model estimates were 2.3% and 4.9% at 1 km and

10 km resolutions, respectively. Our model improved the accuracies for 1 km by

0.6% (12 556 km2) in 2001 and 1.9% (43 198 km2) in 1992, compared to the forest

estimates before the adjustments. Forest area observed from Moderate

Resolution Imaging Spectroradiometer (MODIS) 2001 1 km land-cover map

for the conterminous USA might differ by 80 811 km2 from what would be

observed if MODIS was available at 30 m. Of this difference, 58% (46 870 km2)

could be a relatively small net improvement, equivalent to 1444 Tg (or 1.5%) of

total non-soil forest CO2 stocks. With increasing attention to accurate monitoring

and evaluation of forest area changes for different regions of the globe, our results

could facilitate the removal of bias from large-scale estimates based on remote

sensors with coarse resolutions.

1. Introduction

Understanding the consequences of management of spatial and temporal homo-

geneity of land surfaces on both processes and management is a primary focus in

landscape ecology and environmental sciences (Risser et al. 1984). The emergence

and widespread use of geographical information systems and remote sensing in

recent decades has provided an effective tool for data analyses, resources monitoring

and modelling from local to global scales (DeFries et al. 1997, Goodchild and

Quattrochi 1997). Such applications have prompted interest in scale as a generic

issue. The widespread use of remotely sensed data requires development and

implementation of methods for dealing explicitly with scale because those data have

a wide range of spatial resolutions (pixel resolution or pixel size) from 1 m resolution

IKONOS to the 1 km Moderate Resolution Imaging Spectroradiometer (MODIS)

and Advanced Very High Resolution Radiometer (AVHRR) to even coarser

resolutions of many meteorological sensors.

Reliable information on land cover is necessary to improve our ability to address a

wide range of place-based environmental and ecological problems, such as climate

change, quantifying or understanding carbon cycles, and resource management over

large areas (Townshend et al. 1991, Heath and Birdsey 1993, Running et al. 1994,

Gibbard et al. 2005, USEPA 2007, Zheng et al. 2008). As spatial resolutions of the
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mapping units increase, commensurate with the needs of ecological studies at various

scales from local to global, it becomes more difficult to verify the accuracy of data

inputs or to validate model outputs using ground-based observations or measure-

ments, such as land-cover classification and net primary production (NPP).

Previous studies have demonstrated that changes in spatial resolution, thematic

resolution and observation scale, together with other factors, can affect attribute

estimates and pattern analyses (Li and Reynolds 1993, Turner et al. 2000, Saura

2004, Wu 2004, Wu and Li 2006, Buyantuyev and Wu 2007). While more complete

reviews on the scaling issue have been conducted (Bierkens et al. 2000, Dungan et al.

2002, Wu and Li 2006), hierarchical theory asserts that a useful way to deal with

complex, multi scaled systems is to focus on a single phenomenon (O’Neill 1988). In

this study, we focus on changes in pixel resolution. The spatial resolution is the

minimum size of mapping unit, and can be aggregated or disaggregated to pixel sizes

that are larger or smaller than the original one depending on study purposes and the

extent of the study area. Thematic resolution is the number of land-cover types used

for land-cover classification across the landscape. The observation scale is the level

at which the samples are measured.

While the satellite-derived 30 m National Land Cover Dataset (NLCD) is

preferred by many users, others working at the national scale may find the number

of pixels in the original map to be computationally challenging for their applications.

Although it is reasonable to assume that maps or datasets obtained at fine

resolutions are more accurate and verifiable than those obtained at coarse

resolutions, coarser-resolution data are more manageable for efforts over large

areas that require complex computations and manipulations (Vogelmann et al.

2001). An appropriate resolution should be used for a particular project, that is, the

resolution should be applicable to the scale of the object being studied and the

geographical area being observed. For example, MODIS data would often be

preferred over the 30 m Thematic Mapper (TM) data for mapping a given attribute

of interest at the national level. More importantly, the NLCD is updated

approximately every 10 years, while many forest attributes (e.g. land-cover change

and forest area) need to be evaluated or monitored at a finer temporal scale (Liknes

et al. 2004); thus, the annualized MODIS land-cover maps at coarse resolution

(1 km) are more useful to meet such a need at state or national level, although other

remote sensing-derived land-cover maps at finer spatial resolutions are more

appropriate for local land-use planning (Vogelmann et al. 2001).

Consequently, we want to know how increases in pixel size can affect area

estimation for a given cover type of interest, compared to its area estimated at 30 m

resolution. Previous studies compared US forest area estimates between inventory

data and satellite-derived land-cover datasets with different classification schemes

(Turner et al. 1993, Nelson et al. 2005). Nelson et al. (2002) and Liknes et al. (2004)

evaluated how classified NLCD and MODIS products could be used as stratification

tools in the Lake States of the USA, but these studies did not discuss scaling effects.

Zheng et al. (2008) suggested that forest area estimation varies with pixel size, with

differences in forest cover percentages based on maps of 30 m and 1 km resolutions

ranging from 0% to 17% within a 95% confidence interval using county-level data for

several US states. Ahl et al. (2005) reported a difference of up to 7% on NPP

estimates as land-cover data were aggregated from 15 m to 1 km resolution. These

studies, however, did not quantify the scaling effects on forest area estimates through

a full range of forest cover at the national level. It is important to understand and
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quantify the impacts of using coarse resolution (1 km)-based land-cover data,

compared to fine resolution-based data, for improving ecological applications over

large areas.

Scaling effects, including changes in sensor spatial resolution, inevitably alter

representation or understanding of ecological patterns and processes within a given

entity of interest (Jelinski and Wu 1996, Buyantuyev and Wu 2007) and can bring

errors or uncertainties in discovering the ‘true’ conditions observed at finer scales

(Katz 2002, Li and Wu 2006). A complete exposition of the errors in forest cover

estimates would also need to address bias and variance arising from misclassification

error. In this study, we do not seek to provide a comprehensive accounting for all

errors in forest cover estimates, which could be helpful for specific applications

(McRoberts et al. 2002). Rather, our focus is on the changes in pixel resolution that

play a substantially important role in estimation and interpretation of landscape

attributes and patterns (Woodcock and Strahler 1987, Turner et al. 2000, Wu 2004).

It is not our intention to compare forest area estimates among maps from different

sources with different methodologies in land-cover classification, nor to evaluate the

accuracy of existing land-cover maps. Our general goal is to determine how estimates

of forest area in remote sensing-derived land-cover products can be affected for

broad cover types (forest vs. non-forest) by changes in pixel resolution (from 30 m to

1 km and 10 km resolutions focusing on 1 km analyses) at state and national levels.

We focus on administrative levels because, in the USA, land-use planning and

resource management strategies are usually implemented at administrative levels,

including data collection at county and state levels. This research has three specific

objectives. The first is to develop empirical models, given our study purpose and

extent, using state-level observations to quantify the average scaling effect and its

variability for forest cover percentage at 1 km resolution in comparison with 30 m

resolution. This approach eliminates all other possible error sources, but the scaling

on forest area estimates, such as differences in classification methods and criteria

used for aggregating detailed land-cover classes into broader cover types (e.g. forest

vs. non-forest), because we always compare the ‘same’ map but at different spatial

resolutions (e.g. 30 m, 1 km and 10 km). The second objective is to evaluate expected

scaling-effect differences between the MODIS land-cover map and its hypothetically

equivalent 30 m map at the state and national levels using our developed models. The

third objective is to show the general trend in forest area estimates as 30 m pixel size

increases to 1 km and 10 km. Finally, the fourth objective is to compare the scaling

effects on forest area estimates between the state level-based observations and county

level-based observations.

2. Material and methods

2.1 Study area and NLCD land-cover data

The conterminous USA comprises 48 states with a total area of about

7.8 million km2, including inland water. Forest cover, categorized as deciduous,

evergreen and mixed, accounted for about 29% and 27% respectively for 1992 and

2001 based on the 30 m NLCD maps (Vogelmann et al. 2001, Homer et al. 2004).

The states range in size from 2820 km2 for Rhode Island to 685 610 km2 for Texas,

with forest cover percentages ranging from 0.4% in North Dakota to 90.3% in West

Virginia based on the aggregated 2001 1 km NLCD map, covering virtually the

entire profile of possible cover percentages. The digital NLCD maps were
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downloaded from the US Geological Survey Multi-Resolution Land Characteristics

(MRLC) Consortium website (MRLC 2007). We do not conduct any land-use

change detection between the years because that was not our focus. Instead, we use

2001 NLCD data for model development and the other 1992 data for model

validation (figure 1).

While the NLCD 2001 map was developed from Landsat 7 imagery with 29

classes, the 1992 map with 21 classes was completed primarily based on 1992 vintage

Landsat 5 TM imagery purchased and pre-processed through MLRC (Loveland and

Shaw 1996). Although there were slight adjustments in agriculture, urban and barren

classes, the 2001 map featured definitions of water, forest, shrub and others nearly

identical to those of NLCD 1992 for the continental USA (Homer et al. 2004).

Therefore, our approach using the 1992 data to validate the scaling-effect model on

forest area estimation established from the 2001 data was appropriate, especially at

two broad categories (forest vs. non-forest).

Figure 1. General distributions of forest vs. non-forest in the 48 states of the conterminous
USA based on the NLCD 1992(a) and 2001(b) 30 m maps. The 2001 data were used for model
development and the 1992 data were used for evaluating the model performance.
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We do not assume that the NLCD map is completely accurate. Previous accuracy

assessments of the NLCD data have been reported (Vogelmann et al. 2001, Homer et al.

2004). The NLCD map may not even be the ‘best possible’ map for our study, but

it is easily available and is likely to be used widely for a range of applications.

Therefore, it serves as a useful reference standard for comparison with maps

generated from data obtained at or aggregated to coarser resolutions. Were one to

compare the NLCD map with a hypothetical ‘best possible’ map, there would

certainly be differences in classification for many individual pixels, and some

differences in forest cover percentages as those data were aggregated to county,

state and national extent. It is not necessary for the purposes of this study to

assume that those two maps would be identical, or to attempt an accounting of the

errors associated with differences between them.

2.2 Data processing and model development

Both 30 m maps were registered to Albers Equal Area projection. We aggregated

the general classes into two broad cover types: (1) forest (classes 41 – deciduous

forest, 42 – evergreen forest and 43 – mixed forest) and (2) non-forest (all the other

classes including inland water). Such aggregation could reduce errors in estimating

forest area over large areas (McRoberts et al. 2002). The boundary map for the 48

states was obtained from the Environmental Systems Research Institute (ESRI).

The 30 m NLCD 2001 map was aggregated to 1 km and 10 km pixel sizes,

respectively, using majority rule (ESRI n.d.), a commonly used aggregation

scheme in scaling-up processes, which finds the pixel value that appears most

often within the specified windows, such as 161 km2 and 10610 km2, and assigns

it to corresponding cells as the output grid. The majority rule is much more

widely used than other schemes (such as random or nearest-neighbour) for scaling

up discrete variables derived from remotely sensed data in ecological studies

(Stuckens et al. 2000, Ahl et al. 2005). Majority rule aggregation can be viewed as

a label-based assignment by a classifier, while actual remote sensing-derived land-

cover maps with coarse spatial resolution involve spectral aggregation before

classification. Label aggregation is more widely used, however, because spectral

aggregation requires training a classifier at each spatial scale, a non-trivial work

(Moody and Woodcock 1994, Wu and David 2002, Ju et al. 2005). All three land-

cover maps at different resolutions were overlaid with the states’ boundary map.

For each of the 48 states, areas of forest and non-forest lands were extracted and

forest cover percentages were calculated at the three resolutions. For the purposes

of this study, the scaling effect for any subdomain of the study area is defined as

the difference between forest proportions observed from coarse resolution maps

and those observed from the 30 m map as reference. This effect is attributable

solely to changes in pixel size, because that is the only thing that has been

manipulated.

Using regression analyses, we developed models to predict scaling effects (defined

in equation (1)) for the 48 states on area estimation based on forest proportions from

coarse resolutions, 1 km and 10 km, respectively. We consider the 2001 NLCD 30 m

data as ‘observations’ – indeed, they are the remote sensing observations at the 30 m

resolution. Our analyses, however, focus on the 1 km resolution. This is the finest

resolution that is most often used for ecological applications at national and

continental scales.
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Percentdiff~Fcover% coarse{Fcover% 30m ð1Þ

The standard error (SE) of the model estimate was calculated as:

SE~
P

Yiobs{Yipre

� �� ��
n{2ð Þ

� �0:5
, where Yiobs and Yipre were the observed and

predicted differences in forest percentages between two spatial resolutions for state i,

and n was the total number of states used in the analysis (Clark and Hosking 1986).

2.3 Model validation

We tested the performance of models developed from the NLCD 2001 data using the

independent NLCD 1992 data in two ways. First, we compared forest cover

percentages in each of the 48 states observed at the NLCD 1992 30 m map with the

predicted percentages using the models at both 1 km and 10 km resolutions. This

should illustrate how changes in pixel size could affect error identifications in area

estimation as range of the change increases from 30 m to 1 km and from 30 m to

10 km. Secondly, we used the 1 km model to test whether the relationship of scaling

effect is the same for different years using state and conterminous US data because

1 km remote sensing products are most commonly used for large-scale ecological

applications.

2.4 Model application using the MODIS data

We used the MODIS 2001 1 km land-cover map to illustrate how and how much

forest area estimates at the state and national levels could be improved using our

model. Although the AVHRR data have also been used successfully for various

terrestrial ecosystem studies over large scales (Tucker et al. 1984, DeFries and

Townshend 1994), the MODIS products have become the most commonly used

remote sensing data for terrestrial ecosystems studies at large scales since 2000. This

is because MODIS data have higher spectral and radiometric resolutions, which are

required for improvements in atmospheric corrections to remove haze, aerosols and

clouds from land surface images (King et al. 1992, Running et al. 1994). We

downloaded the MODIS 2001 land-cover data (MOD12Q1, type 2 University of

Maryland (UMD) classification) for the conterminous USA from the Land

Processes Distributed Active Archive Center (USGS-NASA n.d.). For the model

application, we aggregated the 13 land-cover classes of the MODIS map into two

broad cover types: (1) forest including evergreen needleleaf forest, evergreen

broadleaf forest, deciduous needleleaf forest, deciduous broadleaf forest, and mixed

forest; and (2) non-forest, which includes all the other classes. Finally, we compared

the scaling-effect models developed from the different observation scales of state vs.

county for 1 km and 30 m only to illustrate some important ecological implications

of using these different resolutions.

3. Results and discussion

Significant correlations between forest area estimates, in decimal fraction at fine

pixel resolution (30 m) and coarse resolutions (e.g. 1 km and 10 km) were observed

with R2 values of 0.984 and 0.938 (P,0.001), respectively (figures 2(a, b)). These

strong relationships provided solid background information to examine quantita-

tively the scaling effects on forest area estimates between different resolutions.
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Cubic models allowed us to reasonably and quickly quantify the scaling effects on

forest area estimates if forest area percentage for a given entity at 1 km or 10 km

resolution was known, compared to what it would be for the corresponding

hypothetical 30 m map (figure 3). The SE of scaling effects was 2.3% and 4.9% for

1 km and 10 km resolutions, respectively (table 1). With all other conditions kept

constant, increasing pixel size resulted in a larger difference and variation of forest

Figure 2. (a) Relationship between forest area estimates (in decimal fraction) of the NLCD
2001 30 m and 1 km maps. The latter was aggregated from the former using majority rule. (b)
Relationship between forest area estimates of the NLCD 2001 30 m and 10 km maps. Each dot
represents a state.
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area estimates (table 1). Mean observed scaling effect of the 48 states in absolute

value without area weighting increased from 3.0% to 6.5% when pixel resolution

increased from 1 km to 10 km. Taking the conterminous USA as a whole, after area

weighting for each of the 48 individual states, the scaling effect increased from 2.2%

to 3.3% for 1 km and 10 km pixel resolutions, respectively. The predicted scaling

effects were smaller than observed ones in terms of both mean values and variations

Figure 3. Empirical models developed from the NLCD 2001 maps for quantifying scaling
effects on forest area estimates (%) between 30 m and 1 km and between 30 m and 10 km for
the conterminous USA. Both models have P values ,0.001. Each dot or empty square

represents a state. For the 1 km model,
y1km~{12:6x3z35:5x2{8:7x{1:8

r2~0:704
and for the

10 km model,
y10km~{33:1x3z62:9x2{3:4x{6:6

r2~0:706
.

Table 1. Statistics of observed and predicted scaling effects on forest area estimates as
differences in percentage (%) of total land area between 30 m and 1 km resolutions (1km%–
30m%) and between 30 m and 10 km (10km%–30m%, values in the parentheses) at state and

national levels for the US 48 conterminous states based on the 2001 NLCD map.

Scale

Observed, Predicted scaling effects in %

Min. Mean* Max. SD* Error**

State 29.7, 22.3 3.0, 2.3 9.4, 10.1 2.5, 2.1 2.3%
(224.7, 26.3) (6.5, 6.4) (22.6, 16.1) (6.0, 3.6) (4.9%)

USA N/A 2.2 N/A N/A N/A
(3.3)

*Mean and standard deviation in absolute value.
**Standard errors of model estimates.
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at 1 km and 10 km resolutions (table 1). Differences in and variability of forest area

estimates caused by the scaling process increased in general as pixel size increased,

especially as forestland becomes less prevalent across landscapes (figure 3). The

scaling effects tended to be smaller when forest cover percentages at coarser

resolutions approached medium values.

Our empirical models improved the forest area estimates observed on coarse

resolution maps. Examining the 1 km model, for example, we improved forest area

estimates in 32 of the 48 states in 2001, compared to the area estimates obtained on

the NLCD 2001 30 m map (table 2). Ten of the 16 states that did not show

improvement were in the western USA. This was not unexpected due to larger state

sizes in the western USA with large areas of non-forest. A previous study indicated

that in general the suggested precision for area estimates in the western USA was

three times less than that in the eastern USA (Bechtold and Patterson 2005). The

30 m based forest area estimates at state and national level were in general less than

those reported by the USDA Forest Service Forest Inventory and Analysis (FIA,

data not shown) because the percentage land cover for the conterminous USA

averaged around 30%, which was on the lower end. This phenomenon was also found

in the Brazilian Amazon, where estimates of deforested areas were generally larger

based on ground surveys than estimates from satellite data (Andersen et al. 2002,

Ometto et al. 2005). However, this issue is outside the scope of this study. Pursuing

that issue would make the analysis more complicated because (1) FIA estimates are

point-based observations using statistically derived expansion factors, while the

satellite-derived estimates are spatially explicit, and (2) definitions of forest land differ

between FIA and NLCD datasets. Therefore, we compared the coarse-resolution

forest area estimates with the fine-resolution estimates to make our analyses simpler

and more consistent, although using the FIA estimates as reference numbers could

raise the accuracy of our model predictions. Within the conterminous USA, forest area

of 2 029 086 km2 observed from the NLCD 1 km map was 44 693 km2 less than that

observed from the NLCD 30 m map (table 2), while our model overestimated forest

area by 32 138 km2. As a result, the model brought a net improvement of 12 555 km2

on forest area estimation across the conterminous USA. The improvement accounted

for 16% of the difference between the total simulated forest area of 2 105 917 km2 and

the observed 2 029 086 km2 forest areas for the conterminous USA (table 2).

According to the NLCD 2001 maps, the top six states gaining forest area during

the scaling-up process from 30 m to 1 km were Maine, Oregon, Washington, West

Virginia, Virginia and Alabama, with average forest cover of 58% on the 30 m

NLCD map and average gaining area per state of 5986 km2. The top six states losing

forest area during the process were Texas, Illinois, Oklahoma, Kansas, Michigan

and Florida, with average forest cover of 18% on the 30 m NLCD map and average

losing area of 9474 km2 (table 2). Our adjusted forest cover (%) estimates at state and

national levels incorporating scaling effects could provide more accurate and useful

information for research concerning forest carbon sequestration, resources

monitoring and management at the corresponding scales.

Forty-two of the 48 states showed consistent patterns of scaling effect on changes

in forest area estimates, that is, either continually increasing or decreasing, as pixel

sizes increased from 30 m to 1 km and 10 km (table 2). Whether area was increased or

decreased primarily depended on whether forestland for a given state was the

dominant type or not, given two cover types. California, Louisiana, Massachusetts

and Mississippi, four of the six states with an inconsistent scaling-effect trend, were
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Table 2. Comparisons of 2001 1 km NLCD and MODIS forest area estimates (km2) before
and after scaling effects adjustment for the conterminous 48 states of the USA.

State NLCD30 NLCDkm NLCDkm* MODIS MODIS* NLCD10 km

Alabama 71 842 75 716 72 507 59 817 59 391 84 100
Arizona{ 44 960 44 493 51 329 16 172 22 498 41 600
Arkansas{ 63 337 67 208 65 858 52 565 53 409 74 000
California{§ 97 347 98 422 106 535 92 081 100 562 97 200
Colorado{ 77 925 81 780 85 790 45 754 51 908 85 800
Connecticut 7303 8055 7593 10 045 9135 9500
Delaware 1281 781 900 795 915 0
Florida 30 288 24 189 27 551 41 039 43 524 16 300
Georgia{{ 72 883 70 616 69 733 54 191 55 613 66 000
Idaho{ 71 618 74 844 77 118 71 957 74 544 78 700
Illinois 22 330 14 458 17 809 3752 6630 4000
Indiana 21 486 16 763 18 879 8387 10 517 13 200
Iowa 10 111 4364 7279 332 2944 200
Kansas 7915 1280 5166 1351 5242 0
Kentucky{ 54 843 56 226 54 280 41 785 42 181 57 000
Louisiana{{§ 25 914 25 595 28 181 55 983 55 302 25 900
Maine 58 932 66 859 60 619 76 903 68 227 77 700
Maryland 9803 8352 8692 9160 9410 5800
Massachusetts§ 11 085 11 434 11 018 16 666 15 115 11 200
Michigan{ 53 678 47 312 49 386 67 086 66 635 41 800
Minnesota 59 776 57 050 61 077 58 398 62 320 56 500
Mississippi{§ 48 723 49 002 49 503 49 525 49 960 48 900
Missouri 66 609 61 644 63 611 34 775 38 774 59 300
Montana{ 85 630 85 803 93 675 76 738 85 044 86 100
Nebraska 4028 1050 4690 354 3935 0
Nevada{ 31 606 30 813 37 428 6209 11 776 22 800
New Hampshire 18 751 20 796 18 604 22 496 19 881 23 100
New Jersey 7420 6704 6915 8150 8176 6000
New Mexico{ 52 558 51 841 59 064 19 237 26 077 48 800
New York{ 66 560 67 580 65 258 69 890 67 130 70 100
North Carolina 57 995 54 072 54 132 53 963 54 036 50 400
North Dakota 3174 702 4008 418 3699 300
Ohio 33 467 29 735 31 560 22 908 25 177 28 100
Oklahoma 38 984 32 346 36 432 8224 12 015 25 400
Oregon{ 94 199 101 714 102 465 105 147 105 412 106 500
Pennsylvania 70 672 74 271 69 858 67 063 64 116 82 300
Rhode Island 1302 1382 1356 2206 2005 1500
South Carolina 33 098 30 161 30 707 30 578 31 071 24 900
South Dakota{ 6949 5509 9473 3886 7737 5000
Tennessee{{§ 55 490 54 986 53 624 42 207 42 804 56 300
Texas 72 547 49 314 64 514 30 822 45 161 26 500
Utah{§ 54 933 56 216 60 350 15 392 20 250 54 700
Vermont 17 842 19 442 17 667 20 252 18 293 21 000
Virginia 63 024 67 404 63 112 57 953 55 591 76 400
Washington 75 097 81 380 80 341 93 386 90 253 87 500
West Virginia 50 747 56 685 50 367 53 955 48 312 60 800
Wisconsin 55 641 52 293 53 573 43 045 45 298 50 900
Wyoming{ 32 076 30 444 36 330 24 596 30 400 26 200
Total 2 073 779 2 029 086 2 105 917 1 747 594 1 828 405

The 2001 30 m NLCD estimates were used as references to compare with those observed at
1 km and 10 km resolutions and to evaluate the model performance among the NLCD
products at state level only, not for cross-comparison between the NLCD and MODIS
estimates. NLCD estimates from Homer et al. (2004) and MODIS estimates from MOD12Q1,
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adjacent to oceans where the accuracy in calculation of land areas and the trend

detection could be affected as pixel size increased to 10 km. The state of Tennessee

had the most balanced forest and non-forest proportions (50.8% vs. 49.2%), so its

estimated changes may be due to the second level of controlling factors, such as

landscape configuration and patch size distributions (Moody and Woodcock 1995).

The average difference in forest area estimates between 1 km and 10 km among the

six states was 1.6%, with the maximum of 2.7% in Utah.

Model validation indicated there were strong relationships between the observed

forest cover percentages from the NLCD 1992 30 m map and the predicted forest

percentages at 30 m using both the 1 km and 10 km models. For instance, the slope

(0.99) of the relationship between observed and predicted percentages using the 1 km

model was very close to 1 (figure 4(a)). Although the slope between observed and

predicted percentages using the 10 km model was slightly lower (0.92) than that for

the 1 km model, it was still statistically significant (P,0.001) (figure 4(b)). Compared

to the observed scaling effects between 30 m and 1 km at the state level based on the

NLCD 1992 maps, 33 of the 48 states, or 69%, had adjusted 1 km forest area

estimates closer to their corresponding estimates from the 30 m map (table 3). For

the continent, the total forest area observed on the 1 km cover map, 2 232 587 km2,

was 45 614 km2 less than that observed from the 30 m cover map. Our adjusted total

forest area, 2 275 785 km2, was 2416 km2 less than that observed for the 30 m map,

suggesting a net improvement of 43 198 km2, or 100% of the difference between the

1992 1 km estimates before and after the adjustment (table 3).

We applied our 1 km model to examine possible scaling effects on forest area

estimates in the MODIS 2001 1 km land-cover map across the conterminous USA.

Our modelling results suggested there was about a 80 811 km2 difference between

unadjusted (1 747 594 km2) and adjusted (1 828 405 km2) forest area estimates based

on the MODIS 2001 map (table 2). Since ‘true’ 30 m MODIS did not exist, we used

the mean percentage 58% of the improvements achieved in the NLCD 1992 (100%)

and 2001 (16%) maps to calculate the potential net forest area improvement in the

MODIS 1 km land-cover map. Using the mean improvement rate of 58%, our model

improved the forest area estimation in the MODIS 2001 1 km map for the

conterminous USA by 46 870 km2, that is, 80 811 km260.58. At the state level, 88%

or 42 of the 48 states, showed the same scaling-effect trends on forest area estimates

between the MODIS 1 km numbers before and after adjustment as those observed

between the NLCD 1 km before and after adjustment (table 2). Our scaling-effect

models always identify the difference in forest area estimates of an equivalent base

map but at different spatial resolutions so that there is no cross-comparison issues

between maps from different sources with possibly different classification schemes.

However, it is valid to compare the trends of area changes caused by scaling effects

detected from different datasets.

r

UMD classification system (http://lpdaac.usgs.gov/main.asp).
*Adjusted estimates using the scaling-effect model.
{The states without improvement after adjustments based on the NLCD data.
{The states with detected trends of scaling effects before and after adjustment on the MODIS
2001 1 km map were in the opposite direction to the trends detected from the NLCD 2001
1 km map before and after adjustment.
§The states with inconsistent trends of scaling effects on forest area estimates as pixel
resolution increases from 30 m to 1 km and 10 km.

Grain-size effects on US forest area estimation 3107



The net improvement of 46 870 km2, about 2.7%, of the MODIS 2001 1 km forest

estimation was equivalent to 1444 Tg, or 1.5% of total non-soil forest CO2 stocks in

the conterminous USA (after area weighting) based on values of unit CO2 per square

kilometre reported by the US EPA (2007).

Figure 4. Comparisons of observed and predicted forest area estimates (in decimal fraction)
at 30 m resolution based on the NLCD 1992 map: (a) predicted using the 1 km model

y~1:13x{0:05

r2~0:984

� �

; and (b) using the 10 km model
y~1:29xz0:10

r2~0:938

� �

presented in figure 2.

Each dot represents a state in the conterminous USA.
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Table 3. Validating the 2001 NLCD-based model using the 1992 NLCD observations for
forest area estimation (km2) for the 48 states of the conterminous USA.

State

NLCD30 m NLCDkm NLCDkm*

1992 1992 1992

Alabama 90 045 95 947 88 441
Arizona{ 48 496 46 268 53 081
Arkansas 70 701 73 869 71 334
California{ 112 925 111 371 118 575
Colorado{ 76 612 78 039 82 390
Connecticut 7587 8457 7908
Delaware 1321 696 817
Florida 36 403 30 368 33 531
Georgia 84 637 86 550 82 828
Idaho{ 73 619 77 805 79 728
Illinois 19 310 9892 13 103
Indiana 17 632 12 338 14 519
Iowa 11 014 3951 6839
Kansas 6224 1545 5452
Kentucky{ 62 298 62 102 59 021
Louisiana{ 41 049 42 944 44 086
Maine 67 748 74 658 66 533
Maryland 10 555 9023 9289
Massachusetts 12 638 13 790 12 896
Michigan 61 670 54 727 55 986
Minnesota 48 573 42 628 47 449
Mississippi 62 459 66 548 64 213
Missouri 66 339 59 079 61 336
Montana{ 86 108 84 868 92 793
Nebraska 4828 921 4550
Nevada{ 26 241 24 738 31 222
New Hampshire 19 381 21 776 19 338
New Jersey 8713 7989 8038
New Mexico{ 51 214 49 343 56 610
New York 79 087 81 832 76 643
North Carolina{ 72 487 73 977 70 589
North Dakota{ 2473 1101 4440
Ohio 33 624 28 351 30 284
Oklahoma 38 891 31 272 35 392
Oregon 111 326 115 244 113 976
Pennsylvania 76 424 79 634 74 062
Rhode Island 1683 1779 1674
South Carolina 42 460 43 276 41 749
South Dakota{ 6920 5298 9248
Tennessee{ 66 445 68 125 64 223
Texas 104 099 81 963 97 888
Utah{ 44 243 44 195 48 995
Vermont 18 084 19 843 17 982
Virginia 67 939 72 645 67 201
Washington 84 926 91 586 88 783
West Virginia 52 440 57 170 50 739
Wisconsin 57 631 53 990 55 061
Wyoming{ 30 679 29 076 34 950
Total 2 278 201 2 232 587 2 275 785

*Estimates were adjusted using the 2001 NLCD-based model.
{The states without improvement.
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We hypothesize that when forest proportions of a given entity observed from

coarse resolution maps were less (more) than 50%, the actual forest proportions at

finer resolutions will likely increase (decrease) if forest and non-forest patch sizes and

spatial arrangement are evenly and uniformly distributed across the landscape. In

reality, such a landscape is probably rare. Our modelled results demonstrated that

some states with forest cover smaller than 50% at fine resolution could still gain area

while some states with forest cover larger than 50% at fine resolution could still lose

area through the scaling process (figure 3). This suggests the configuration of forest

and non-forest patches and patch size distributions across the landscapes could be

the secondary factor affecting forest area estimates (the primary factor was forest

cover percentages on coarse resolution maps). Possible error sources of our models

included: (1) relatively small sample size (48 states), that is, relative to the entire

profile of forest-cover percentages ranging from 0 to 100 after being binned to the

nearest whole number; (2) uneven sample distribution across the entire profile – 77%

of the 48 states had forest proportions ,50% based on the 2001 NLCD 1 km map

(figure 3); and (3) our simplified models did not include a secondary level of

controlling factors, such as patch size distributions and arrangement. Our models

predicted there were ‘no’ scaling effects where forest proportions were about 43%

and 40%, respectively, from 1 km and 10 km maps, rather than at 50% as expected.

This difference could be reduced with an increase in sample size (see later discussion

for figure 5). Despite these less-than-ideal situations, our models are a simple tool

with reasonable accuracy that can be used to assess quickly the scaling effects on

forest area estimates on coarse resolution maps. Using these models, we

demonstrated that forest cover percentages from the coarse-resolution map alone

could explain more than 70% of the variance of scaling effects across the landscape

(figure 3).

Figure 5. Comparison of 1 km scaling-effect models developed using state-level observations in
this study and the county-level observations from three Lake States of the USA (Zheng et al. 2008).
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We compared the 1 km model developed in this study, using observations at the

state level, with the model from another study that used observations at the county

level within the Lake States region of the USA (Zheng et al. 2008). Both models are

statistically significant (figure 5, p,0.001) and provide the best fits for their

corresponding scales of study. However, the relationship between forest cover and

scaling effect are quite different because of difference in sample sizes (or the

observation levels at which the models were developed). These two terms are

negatively correlated only if the study extent is fixed. For example, the sample size

for the conterminous USA is over 3000 with the county-level observations, while the

sample size is 48 with the state-level observations. The county level-based model

(n5242) had larger variation but was more symmetrical than the state level-based

model (n548). The mean predicted scaling effect using the county level model was

4.0%, ranging from 29.8% to 9.8% with SD of 5.9%, while the mean predicted

scaling effect using the state level model was 2.3%, ranging from 22.3% to 10.1%

with SD of 2.1% (table 1). Our findings agree well with previous studies that effective

scale investigation required the scale of analysis be commensurate with the intrinsic

scale of the phenomenon under study and that multiple observation sets at different

scales usually are necessary (Allen et al. 1984, Bloschl and Sivapalan 1995, Wu 1999).

The model developed from county-level observations showed that the division

percentage was closer to 50% and somewhat symmetrical, as compared to the state

level-based model. This is expected because the area gaining in one type translates to the

area losing in the other type (and vice versa) given two broad types across a landscape.

The difference between models developed using data from various observation scales

suggests that (1) scaling-effect models should be applied to the corresponding scales

from which the observational data are obtained for model development to minimize

possible model bias; (2) although these resulting regression models can best represent

the ecological conditions of the study areas at a given observation scale, models

obtained from smaller sample sizes tend to have less value for general applications; and

(3) scaling-effect models derived from larger sample sizes that include ‘all’ possible

variations in patch size distributions and spatial arrangements across the entire 0–100%

cover percentage profile are desirable. With adequate samples, variability of scaling

effects on area estimates within each whole percentage bin can be examined. In addition

to forest percentage observed from coarse resolution land-cover maps, which is the

primary model predictor, landscape pattern characteristics, such as patch size

distributions and spatial arrangements, can also affect the accuracy of pixel size-

dependent error identifications in area estimation across landscapes (Moody and

Woodcock 1995). A theoretic model of scaling effect from an ‘ideal’ sample size should

show the smallest effect on forest area estimates at 50% cover point; or no effect when

size and arrangement of forest and non-forest patches are distributed perfectly evenly

and uniformly across a landscape. The scaling effect on area estimates, given two types,

should increase as the area percentages at coarse resolutions diverged from 50% in

either direction until reaching peak values, either negative or positive, before declining

in absolute value (see figure 5). The theoretical curve is expected to be symmetrical

because area gain in one type is equal to the loss in the other. A symmetrical curve is

also more feasible for general application (Zheng et al. 2008).

4. Conclusions

The effect of various satellite sensors with different spatial resolutions on forest area

estimation deserves more attention on ecological applications over large areas
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because of their complexity and multi-scale nature. We provided meaningful and

practical models to improve forest area estimates observed from coarse-resolution

maps (e.g. 1 km or 10 km) that are more appropriate and commonly used for

continental and global applications. We recommend that empirical models be

applied on a scale similar to the scale of observations from which the models were

developed. Our results provide useful implications for a range of resource and

environmental monitoring, modelling, carbon studies and management activities.
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