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Satellite imagery is being used increasingly in association with national forest

inventories (NFIs) to produce maps and enhance estimates of forest attributes.

We simulated several image spatial resolutions within sparsely and heavily

forested study areas to assess resolution effects on estimates of forest land area,

independent of other sensor characteristics. We spatially aggregated 30 m

datasets to coarser spatial resolutions (90, 150, 210, 270, 510 and 990 m) and

produced estimates of forest proportion for each spatial resolution using both

model- and design-based approaches. Average-based aggregation had no effect

on per-image estimates of forest proportion; image variability decreased with

increasing spatial resolution and local variability peaked between 210 and 270 m.

Majority-based aggregation resulted in overestimation of forest land in a heavily

forested landscape and underestimation of forest land in a sparsely forested

landscape, with both trends following a natural log distribution. Of the spatial

resolutions tested, 30 m was superior for obtaining estimates using model-based

approaches. However, standard errors of design-based inventory estimates of

forest proportion were smallest when accompanying stratification maps which

were aggregated to between 90 and 150 m spatial resolutions and strata

thresholds were optimized by study area. These results suggest that spatially

aggregating existing 30 m land cover datasets can provide NFIs with gains in

precision of their estimates of forest land area, while reducing image storage size

and processing times; land cover datasets derived from coarser spatial resolution

sensors may provide similar benefits.

1. Introduction

Satellite remote sensing provides image data for mapping and estimating land cover

characteristics. While estimates of forest composition and structure may be derived

directly from image-based datasets, it is difficult to determine the precision of those

estimates. Therefore, national forest inventories (NFIs) of many countries use

design-based approaches based on samples of field data for estimating forest

attributes. Because natural variability in the resource and budgetary constraints

limit the sufficiency of sample sizes for some variables, simple random sampling
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(SRS) techniques may be insufficient for achieving NFI precision standards. Various

forms of stratification are used by NFIs to reduce the variance of estimates

produced using design-based approaches. Stratified sampling provides for greater

precision than post-sampling stratification approaches, but does not serve the needs

of NFIs that remeasure permanent plots and produce estimates for a wide variety of

forest attributes. Stratified estimation may be used with post-sampling stratification

or post-stratification to reduce uncertainty of design-based estimates, even when

sampling designs are predetermined. Increased precision occurs when (1) stratum

weights are unbiased, (2) within-strata variances are smaller than the overall

variance, (3) strata with smaller weights capture plots with more uncertainty, or (4)

georectification of imagery and horizontal accuracy of plot location coordinates

lead to correct assignment of plots to strata (McRoberts et al. 2002, 2006).

Stratifications based on 30 m spatial resolution Earth Observing System Landsat

5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus

(ETM + ) imagery are effective as ancillary data in reducing uncertainty of NFI

estimates of forest land area (McRoberts et al. 2002, 2006). However, classification

of TM or ETM + imagery across large geographic regions, temporally coincident

with NFI reporting intervals, requires substantial cost and poses considerable data

management challenges. In addition, Landsat 5 has already exceeded its projected

mission lifespan and is expected to cease operations in the near future. The ETM +
imaging sensor onboard Landsat 7 has encountered technical problems with the

scan line corrector system, resulting in gaps of missing data on each ETM + image.

As a result, there is a need to assess the potential utility of satellite imagery from

alternative satellite-borne imaging sensors.

Coarser spatial resolution satellite imagery, such as that using the 250–500 m

Moderate Resolution Imaging Spectroradiometer (MODIS), 1 km MODIS and 1 km

Advanced Very High Resolution Radiometer (AVHRR), is receiving increased

consideration for mapping and stratifying regions encompassing large geographic

extents because such products can be produced more easily and with lower cost than

for datasets derived from finer spatial resolutions. In a comparison of stratification

maps derived from 30 m TM, 500 m MODIS and 1 km MODIS products, Liknes et al.

(2004) reported the smallest standard errors for stratified estimates of forest land area

with 30 m pixel resolution stratification maps, although their study did not separate the

effects of nonspatial sensor characteristics (e.g. spectral, temporal and radiometric

resolution; classification or estimation models) from the effects of spatial resolution.

In this study, only spatial resolution is evaluated; the effects of spectral, temporal

and radiometric resolution are held constant within study areas of fixed extent. We

assessed the effects of simulated spatial resolutions on the potential utility of satellite

imagery for providing estimates of forest land area derived from (1) estimates

obtained using model-based approaches, that is directly from satellite image-based

datasets, and (2) design-based inventory estimates stratified using the same satellite

image-derived maps for post-sampling stratification. We simulated effects of spatial

resolution by aggregating a 30 m pixel dataset of forest proportion derived from an

ETM + dataset to six coarser spatial resolutions. The simulation involved two case

studies that cover relatively small geographic extents of north central USA

(figure 1). The results of these tests are intended to provide insight into the effects of

spatial aggregation and resolution on estimates of forest land over large geographic

extents, such that NFIs may better address the issues of spatial resolution when

selecting satellite remotely sensed imagery and derived datasets.

1914 M. D. Nelson et al.
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1.1 Spatial resolution and aggregation

The following literature review is designed to define terms and summarize effects of

spatial resolution and spatial aggregation, representing a variety of land cover

conditions, image sensor characteristics and geographic extents, such that results of

our study may be viewed within a wider context. Of particular interest is the

assessment of the effects of spatial resolution and spatial aggregation on image-

derived datasets, such that the subsequent use of these datasets as stratification

layers for improving precision of estimates from design-based approaches may be
better understood.

Both grain and extent comprise the spatial scale of remote sensing data, where

grain is described by Turner et al. (1989) as ‘the resolution of the data, i.e., the area

represented by each data unit’ and extent as ‘the overall size of the study area’. In

the context of cartography, the term ‘scale’ typically refers to the ratio of the

distance between two points on a map or aerial photograph to the distance between

the same two corresponding points on the Earth’s surface (Goodchild and

Quattrochi 1997). Hence, large-scale maps display more spatial detail over smaller
geographic extents. Except for references to the literature, we refrain from using the

term ‘scale’; instead, we use the term ‘spatial resolution’. Example definitions of

Figure 1. Study areas: WRS-2 Path27/Row27 and Path28/Row28, northeastern and central
Minnesota, USA, respectively.
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spatial resolution include ‘the size of the area on the ground from which the

measurements that compose an image are derived’ (Hay et al. 1997); and ‘the

dimension in metres of the ground-projected instantaneous field of view (IFOV)’

(Jensen 1996). Similarly, Joseph (2000) referred to the instantaneous geometric field

of view (IGFOV) as ‘the geometric size of the image projected by the detector on the

ground through the optical system, called often pixel footprint’. We refer to spatial

resolution both as IFOV and for describing spatial aggregations of pixels or derived

datasets (e.g. per-pixel proportion forest cover or per-pixel thematic classification).

Descriptors such as ‘fine’ or ‘coarse’ resolution have no numerical definition, but

may be useful when applied in a relative sense (Forshaw et al. 1983). Within the

range of spatial resolutions assessed in our study, we refer to relatively smaller pixels

as having finer spatial resolution whereas relatively larger pixels have coarser spatial

resolution. Strahler et al. (1986) proposed an explicit framework for describing

remote sensing models. H-resolution models are characterized by resolution cells

smaller in size than scene objects, whereas L-resolution models have resolution cells

larger than scene objects. H-resolution models of empirical relationships between

sensor measurements and cover types provide the basis for land cover classification,

while L-resolution models provide the basis for canopy models and for estimating

structural parameters (Strahler et al. 1986). Strahler et al. (1986) suggest using

images at varying spatial resolutions for inquiry into the transition between H- and

L-resolution.

Tian et al. (2002) used the term scaling to describe the process by which

biophysical attributes derived from coarse spatial resolution sensor data are

established as equal to the arithmetic average of those same attributes derived from

finer spatial resolution data. Hay et al. (1997) used the term scaling synonymously

with resampling and the term upscaling to describe ‘resampling techniques designed

to transform an image collected at a high spatial resolution (Strahler et al. 1986) to a

lower spatial resolution representation of the same image’. Atkinson and Curran

(1995) used the term ‘regularization’ as increasing the size of pixels with resulting

spatial resolution becoming coarser. Justice et al. (1989) described aggregation as

degradation of finer spatial resolution satellite image data for simulating and assessing

data from coarser spatial resolution sensors. We use the term ‘spatial aggregation’

synonymously with upscaling, resampling, regularization and degradation.

Ju et al. (2005) described two variations of spatial aggregation of attributes from

fine spatial resolution pixels to successively coarser spatial resolution pixels. The

first, spectral aggregation, entails moving window averaging of spectral measure-

ments from which thematic labels subsequently may be assigned to pixels of coarser

spatial resolutions. The second, label aggregation, entails assigning existing thematic

class labels from finer spatial resolution pixels to pixels of coarser spatial

resolutions. We refer to spectral and label aggregation as average-based and

majority-based aggregation, respectively, and broaden the definition of average-

based aggregation to include per-pixel estimates of continuous variables (e.g.

proportion forest cover) from which moving window averages can be calculated.

Marceau and Hay (1999) discussed the modifiable areal unit problem (MAUP) as

a heuristic method for reviewing the contributions of remote sensing to the scale

issue. They described MAUP as ‘the sensitivity of analytical results to the definition

of data collection units’, for example aggregation and spatial resolution of remote

sensing pixels. They concluded: ‘it is of considerable importance that the effects of

the MAUP in remote sensing be fully understood to avoid arbitrary and erroneous

1916 M. D. Nelson et al.
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analytical results’. In the section that follows we review MAUP effects on remote

sensing of forested landscapes.

Continuous estimates of forest cover-like attributes can be obtained using optical

sensors of any spatial resolution (Lefsky and Cohen 2003). However, areal estimates

from coarse spatial resolution satellite image-derived thematic land cover maps (e.g.

MODIS, AVHRR) tend to underestimate forest area where forest cover is more

fragmented, and overestimate forest area where forest cover is less fragmented

(Kuusela and Päivinen 1995, Mayaux and Lambin 1995). Nelson (1989) observed

that AVHRR classifications tend to overestimate forest cover except when the cover

is ,20%. Similarly, Tian et al. (2002) reported that AVHRR per-pixel estimates of

Leaf Area Index (LAI) show increasing error with increasing heterogeneity of forest

cover. Atkinson and Curran (1995) demonstrated that the spatial resolution of

satellite remote sensing pixels had an important influence on the precision of

estimates of mean percentage vegetation cover.

Estimation of land cover area with coarse spatial resolution imagery is affected by

mechanisms associated with mixed pixels, including: (1) nondetection of land cover

fragments much smaller than pixels, and (2) multiple detections of the same land

cover fragment across adjacent pixels, when that fragment is similar in size to the

pixel size (Hlavka and Livingston 1997). In a study of burn scars and wetlands,

fragment sizes followed lognormal (log10) distributions, both before and after

degrading pixel spatial resolutions, with the exception of an overabundance of tiny

fragments (Hlavka and Dungan 2002). By applying the lognormal transformation of

fragment sizes, Hlavka and Dungan (2002) were able to estimate the area of small

fragments not detected within pixels of coarse spatial resolution, thereby adjusting

their estimates of total area.

Nelson et al. (2005) reported area-weighted root mean square deviations

(RMSDs) from statewide estimates of conterminous United States (CONUS) forest

land area derived from forest inventory reports versus estimates derived from a 1 km

AVHRR-based Forest Type Groups dataset (2.5% RMSD) (Zhu and Evans 1994), a

500 m MODIS-based Vegetation Continuous Fields (VCF) percentage tree canopy

cover dataset (10.7% RMSD), and a 30 m TM-based National Land Cover Dataset

(NLCD) (5.8% RMSD). These observations reveal no trend with pixel spatial

resolution but several investigators have reported decreasing classification

accuracies for forest environments with decreasing pixel spatial resolutions finer

than 60–80 m (Sadowski et al. 1977, Latty and Hoffer 1981, Markham and

Townshend 1981). Reese et al. (2002) reported lower accuracies for continuous

estimates of forest volume, age and biomass when using 20–25 m (0.4–0.0625 ha)

pixels (58–80% RMSE) than when spatially aggregating pixels over 19 ha (17%

RMSE) and 100 ha (10% RMSE).

In a forested study area of northern California, local variance, which is a first-

order texture measure computed as the statistical mean of the standard deviations of

pixel values over a moving window, typically 363 pixels, increased for pixel spatial

resolutions between 0.75 and 6 m, peaked at 6 m, decreased between 6 and 120 m,

and reached an asymptote at about 150 m (Woodcock and Strahler 1987). Because

the terms local variance and image variance in fact refer to measures of standard

deviation (the positive square root of variance), we substitute the more generic terms

local variability and image variability. Although a second peak related to stand size

was expected, none was observed for their study area, probably because the forest

stands were not well defined and varied so widely in size that there was no typical

Spatial aggregation effects on forest area 1917
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stand size occurring with sufficient frequency to cause a second peak in image

variability. Local variability is directly related to the relationship between the size of

the objects in a scene and the spatial resolution of a sensor, with peaks in local

variability occurring at spatial resolutions one-half to three-quarters the size of scene

objects (Woodcock and Strahler 1987). Ferro (1998) also described spatial

resolution effects on texture, edge and land cover separability.

Morisette et al. (2003) summarized the relationship between image variability

(statistical variance of pixel values over an entire image) and spatial resolution. The

relationship led the authors to suggest that ETM + imagery is suitable for

determining the scale of variation in biophysical properties for their study area in

Sevilleta National Wildlife Refuge, New Mexico, USA. Semivariogram ranges

decreased from about 800 to 500 m as image pixel spatial resolution was degraded

from 4 to 512 m, and indicated that spatial support of imagery has some effect on

the observed scale of spatial variation. Cohen et al. (2003) stated that spatial

complexity of land cover types is captured by 30 m ETM + data but not by 500 m

MODIS data. Despite the authors’ expectation that lower image variability of

coarser spatial resolution MODIS data would lead to lower spectral sensitivity of

LAI, they observed improved relationships between spectral data and LAI when

moving from 30 m ETM + data to 500 m MODIS data, and realized further

improvements with 1 km MODIS data.

Moran et al. (1997) observed negligible error in aggregation of remotely sensed

surface temperature and reflectance over a wide range of conditions. Thomas et al.

(1996) reported that spatial aggregation of pixel spectral values improved the fit of

mixture models and resulting per-pixel area estimates, for example forest

proportion. Hay et al. (1997) discussed spatial scale and the methods for estimating

image properties at new scales. Townshend and Justice (1988) resampled red and

near-infrared image bands using a technique designed to simulate these same bands

if obtained from coarser spatial resolution sensors ranging from 125 to 4000 m. The

authors tested the effectiveness of coarse spatial resolution data for detecting change

in landscape types by deriving the Normalized Difference Vegetation Index (NDVI)

from the resampled imagery and calculating differences in the NDVI between

various spatial resolutions. They reported better representation of land cover

conversions with finer spatial resolutions, but analyses using spatial resolutions as

coarse as 500 m or 1000 m are capable of detecting conversions of land cover

occurring over relatively short periods. Moody and Woodcock (1994) aggregated a

30 m TM image-derived map of land cover to coarser resolutions ranging from 90 to

6000 m. The authors hypothesized that estimates of the proportion of land cover

class are affected by spatial resolution, area of land cover within each class, and

spatial arrangement of the classes. Specifically, the proportions of smaller, more

fragmented classes decrease with coarser spatial resolution while the proportions of

larger, more clumped classes increase with coarser spatial resolution.

Ju et al. (2005) assessed the effects of spatial aggregation approaches on estimates

of simulated land cover fraction (conifer, hardwood, brush and grass) from TM

30 m imagery of a state forest near Boston, MA, USA. Following aggregation of

TM spectral values to coarser spatial resolution imagery, the authors used a

statistical finite mixture model to classify land cover classes and the resulting land

cover fractions. Mean absolute errors (MAEs) of these land cover fractions were

compared with MAEs from majority-based aggregations of the 30 m land cover

classification. The authors determined that the finite mixture model approach

1918 M. D. Nelson et al.
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resulted in consistently lower MAEs than the majority-based aggregations, with the

lowest MAEs at spatial resolutions between 60 and 150 m, and that the 240 m

resolution MAE was similar to that of the 30 m MAE.

Forest patch size, number of patches and other landscape metrics are also affected

by spatial resolution. Saura (2004) assessed the effects of spatial resolution on six

fragmentation indices used by the third Spanish NFI. They determined that power

scaling laws were effective in predicting the effects of spatial resolution on estimates

of number of patches, mean patch size and edge length, but not for estimates of

largest patch index, landscape division and patch cohesion. Wu (2004) spatially

aggregated 30 m land cover pixels to assess effects of grain on landscape metrics.

Number of patches, patch density, total edge, edge density and landscape shape

index exhibited consistent, robust scaling relationships that were characterized by a

power law, while other metrics exhibited less robust relationships or unpredictable

scaling behaviour. However, Garcı́a-Gigorro and Saura (2005) suggest that the

previously reported accuracy and utility of power scaling laws may have been

overestimated. Incorporating sensor point spread function into their aggregation

procedure better simulated actual sensor radiation at different resolutions and

improved the comparability of forest fragmentation indices.

As forest patch size changes, the cell size differentiating H- from L-resolution also

changes. Within the confines of H-resolution, Atkinson and Curran (1995) reported

increasing precision in estimates of percentage vegetation cover as cell (e.g. pixel)

sizes increased. Pax-Lenny and Woodcock (1997) reported that, for coarser spatial

resolutions, small patch sizes of reclaimed agricultural fields led to poorer map

accuracies whereas large patch sizes of old agricultural lands led to better map

accuracies and more accurate area estimates. Colombo et al. (2004) rescaled a 30 m

Brazilian tropical forest/nonforest classification to coarser spatial resolutions of 160

and 1000 m, corresponding to image resolutions of the Russian remote sensing

satellite Resurs MSU sensor (160 m) and the European Space Agency’s Along Track

Scanning Radiometer sensor (1000 m). From their variographic analyses, the

authors observed that rescaling to coarser spatial resolutions retained the general

structure and spatial distribution of forest cover in areas of low fragmentation but

not in areas with higher fragmentation. Colombo et al. (2004) observed that

semivariogram range parameters increased at coarser spatial resolutions. However,

in areas of medium or low fragmentation, range values decreased for 160 m spatial

resolution data and increased for 1000 m spatial resolution data. Millington et al.

(2003) assessed the effects of spatial resolution on landscape metrics by spatially

degrading a 30 m TM image-derived classification of Bolivian forest/nonforest to 80,

125, 500 and 750 m spatial resolutions. The authors observed varying responses to

decreases in spatial resolution: increases in total core area, mean patch size and total

edge length; decreases in core area density, patch density and edge density; no

change in number of patches, several shape indices and several diversity indices; and

complex patterns of change in the number of core areas. Spatial degradation

resulted in patch merging and elimination and produced a landscape classification

with fewer large patches and increased distances between patches (Millington et al.

2003).

Marceau et al. (1994a) stated ‘There is no unique spatial resolution appropriate

for the detection and discrimination of all geographical entities composing a

complex natural scene such as a forested environment’. However, the authors

proposed that, logically, there is an optimal spatial resolution for each type of entity

Spatial aggregation effects on forest area 1919
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that corresponds with spatial and spectral characteristics intrinsic to that entity of

interest. Hay et al. (1997) suggested a multiscale approach for detection and analysis

of image-objects with different optimal image spatial resolutions. Marceau et al.

(1994a) analysed local variability and spectral separability versus spatial resolutions

(5, 10, 20 and 30 m) to derive optimal spatial resolutions for classifications of

nonforested areas (5 m optimal spatial resolution) and natural forest (20 m optimal

spatial resolution). Marceau et al. (1994b) determined optimal spatial resolutions for

discrimination of each of 14 forest classes consisting of combinations of four conifer

tree species with varying levels of stand density, tree height and tree groupings (e.g.

plantations, natural stands). Among the resolutions the authors tested (0.5–29.5 m),

optimal spatial resolution ranged from 2.5 to 21.5 m and was defined as the pixel size

resulting in the minimal within-class variance for the largest number of spectral

bands. Although not investigated in their study, Marceau et al. (1994b) suggested

that a methodology similar to theirs could be applied at a variety of resolutions, for

example using satellite imagery to determine optimal spatial resolutions for different

types of forest or for an entire forest corresponding to a particular ecosystem.

Jarnagin et al. (2004) compared ‘per-pixel’ and ‘whole-area’ measures of accuracy

of 30 m TM-based estimates of subpixel proportion impervious surface. The authors

obtained whole-area means and coefficients of variation for various samples of

pixels, for all pixels within the study area, and for spatial aggregations of 363, 565,

969, 15615 and 25625 pixel blocks. The results from Jarnagin et al. (2004)

indicated that accuracies of pixel-based estimates were consistently less than for

whole-area estimates, and accuracies increased as pixel block sizes increased except

for 565 pixel blocks (150 m spatial resolution), which had lower accuracies than

both 363 and 969 pixel blocks.

To summarize the preceding literature review, spatial resolution refers to the size

of the area on the ground from which measurements that compose an image are

derived. In this study, we extend this term to refer to image-derived datasets as well.

Fine spatial resolution refers to smaller pixels, while coarse spatial resolution refers

to larger pixels; both terms are relative. The size and variability of objects being

imaged, among other factors, affect the suitability of an image’s spatial resolution.

Examples of several metrics are reported for quantifying the size and variability of

image objects and the relationship of these metrics to spatial resolution. Spatial

aggregation refers to processes that change the size of image pixels or derived

datasets from relatively finer to relatively coarser spatial resolution. Various

aggregation approaches are reported that enable us to test for the effects of resulting

spatial resolutions. Knowing these effects allows us to better understand the

potential utility of stratification layers derived from these image-based datasets. The

objective of our study was to integrate and adapt several of the approaches

discussed into two spatial aggregation approaches, and to test for the effects of

resulting spatial resolutions on estimates of forest land proportion.

1.2 Forest Inventory and Analysis (FIA): the NFI of the USA

The FIA Program (http://fia.fs.fed.us/) of the United States Department of

Agriculture (USDA) Forest Service conducts detailed surveys of forests across all

land ownerships, serving as the USA NFI. FIA’s four regional units report

statewide estimates of forest land area. FIA defines forest land as commercial

timberland, some pastured land with trees, forest plantations, unproductive forested

land, and reserved, noncommercial forested land. The FIA definition of forest land

1920 M. D. Nelson et al.
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also requires the following: a minimum area of 0.405 ha (1 acre), a minimum

continuous canopy width of 36.58 m (120 ft), and 10% minimum stocking level

(USDA Forest Service 2003). The minimum stocking requirement is modified for

several western woodland types where stocking cannot be determined and where at

least 5% tree canopy cover occurs (or has occurred in the past). The National

Resources Inventory of the USDA Natural Resources Conservation Service

(NRCS) interprets 10% stocking as canopy cover of at least 25% when viewed

from a vertical direction (Lessard et al. 2003). This interpretation is corroborated by

Nelson et al. (2005), who reported that a 25% tree canopy cover minimum threshold

resulted in map-based estimates similar to FIA inventory estimates of USA and

CONUS forest land area when using 500 m MODIS VCF data as the map source.

FIA estimates of forest land area are obtained by multiplying total land area

inventoried by the mean proportion of forest land, estimated from FIA plot

observations. National FIA precision standards limit the allowable error associated

with estimates of forest land area to ¡3–5% per 404 700 ha (million acres) of

timberland and ¡10% per 404 700 ha (million acres) of all other forest land.

2. Data and methods

2.1 Study area

The study was conducted in two distinct landscapes in Minnesota, USA, that differ

substantially in forest distribution and composition (figure 1). The two landscapes

correspond with TM images and are labelled by the Worldwide Reference System

(WRS-2) Path and Row numbers of their corresponding images. The first landscape,

designated P27R27, encompasses the Minnesota portion of Path 27, Row 27

(excluding Lake Superior), encompasses approximately 3.1 million ha in north-

eastern Minnesota, and is dominated by forest cover (75% forested) and open water.

P27R27 forest land is primarily Aspen–Birch and Spruce–Fir associations. The

second landscape, designated P28R28, includes the entire extent of Path 28, Row 28,

encompasses approximately 3.3 million ha in central Minnesota, is dominated by

agricultural land use, and includes patches of forest land comprising 25% of the

area. Forest land in P28R28 is dominated by Aspen–Birch, Oak–Hickory and

Maple–Beech–Birch associations.

2.2 Estimates obtained using model-based approaches

Per-pixel predictions of P27R27 and P28R28 proportion forest cover were obtained

from studies by McRoberts (2002, 2006), who used a logistic regression estimation

approach and 30 m ETM + satellite imagery acquired during spring, summer and

leaf-off seasons between 1999 and 2001. Although mean predicted pixel proportion

forest values for both areas are within 2–5% of FIA design-based inventory

estimates, in this study it is the subsequent effect of spatial aggregation and resulting

spatial resolutions and not the accuracy of the original datasets that are of interest.

For each area, two 30 m thematic maps were produced from the continuous per-

pixel predictions by assigning each pixel to either a ‘forest’ or a ‘nonforest’ class,

hereafter referred to as F/NF maps. For each thematic map, pixel assignments were

based on one of two thresholds of proportion forest. For the first approach, termed

‘standard’ threshold, pixels with forest proportion >0.25 were assigned to the forest

class, while pixels having forest proportion ,0.25 were assigned to the nonforest

class. This standard threshold of 0.25 proportion forest represents 25% tree canopy

Spatial aggregation effects on forest area 1921
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cover for the 30 m forest proportion dataset used in this study, a canopy cover value
that has been suggested as a minimum threshold for defining forest land (Lessard

et al. 2003). In the second approach, ‘optimal’ thresholds were determined for each

of the two study areas based on the minimum per-pixel proportion forest threshold

that resulted in map-based mean predicted proportion forest most similar to FIA

design-based estimates of proportion forest. This approach is similar to the VCF

percentage tree canopy cover threshold approach described by Nelson et al. (2004,

2005). At 30 m spatial resolution, these optimal forest proportion thresholds were

0.72 and 0.45 for P27R27 and P28R28, respectively. Within each study area, optimal
thresholds were determined for each spatial resolution and one standard threshold

was applied to all spatial resolutions. The utility in identifying an optimal threshold

is for subsequently producing a stratification layer whose stratum weights are

unbiased, resulting in a potential increase in the precision of stratified estimates.

We tested for effects of spatial aggregation and resulting spatial resolutions on

estimates of proportion forest land using spatial averaging and block majority

filtering (figure 2). Both forms of spatial aggregations were performed using block

functions in ArcInfoTM Grid software (Environmental Systems Research Institute,
ESRIH). The block functions work by clumping adjacent pixels into equal-size,

square blocks (jumping windows), summarizing those pixel values within a block,

and assigning the summary value to every pixel in that block. In a subsequent

processing step, each block was converted to a single pixel of a spatial resolution

equivalent in spatial extent to the input block.

Spatial aggregation was performed on both the 30 m continuous forest proportion

datasets and the 30 m F/NF datasets. For this study, pixel values from the 30 m data

were summarized within block sizes of 363, 565, 767, 969, 17617 and
33633 pixels, with output pixel spatial resolutions of 90, 150, 210, 270, 510 and

990 m, respectively (table 1). Figure 3 shows examples of spatial aggregation for a

subset of coarser spatial resolutions.

2.2.1 Average-based aggregation. For the continuous forest proportion dataset,

pixel prediction values were spatially aggregated based on the arithmetic average

(AVG) of forest proportion within each jumping window, similar to the approaches
used by Morisette et al. (2003) and Su et al. (1999). With the AVG approach, the

average forest proportion within a block window of pixels (e.g. 363, 565) was

assigned to a single output pixel of a spatial resolution comparable in area to the

block window size (e.g. 90 m, 150 m).

Three variance measures of forest proportion were calculated for each image and

each spatial resolution following average-based aggregation: (1) image variability,

(2) local variability, and (3) comparative variability. Image variability is defined as

the standard deviation over all pixel values within an image, while local variability is
defined as the mean of standard deviations from all 363 pixel moving windows over

an image; equivalent to local variance from Woodcock and Strahler (1987). We

defined comparative variability as the mean of standard deviations from

preaggregation pixel moving windows having window extents corresponding to

the spatial extents of local variability windows. For example, for pixels of 150 m

spatial resolution, a local variability window of 363 pixels encompasses a spatial

extent of 450 by 450 m. A corresponding comparative variability window also

encompasses 450 by 450 m, but includes 15615 pixels of 30 m spatial resolution. In
this study, local variability and comparative variability are identical at 30 m spatial

resolution.

1922 M. D. Nelson et al.
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Semivariograms were used to compare the spatial variability structure of forest

proportion aggregated to multiple spatial resolutions (Colombo et al. 2004). Also

called a variogram, a semivariogram is computed as half the average squared

difference between paired data values (Isaaks and Srivastava 1989). An unbiased

estimator of semivariance c at lag distance h, c(h) is calculated as:

Figure 2. Flowchart of spatial aggregation processing steps.

Spatial aggregation effects on forest area 1923
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c hð Þ~ 1

2n hð Þ
Xn hð Þ

i~1

zi{zizhð Þ2 ð1Þ

where n(h) is the number of pairs of pixel observations (zi, zi + h) separated by

Euclidean distance within a neighbourhood of h, measured in geographic space (m).

Semivariogram parameters are obtained by fitting a model to the experimental

semivariogram. Parameters include the range, which defines the geographic distance

at which numerical observations stop correlating with each other; the sill, which is

the semivariance at which the range is achieved; and the nugget effect, which

represents the random component of the numerical observations and is identified as

Table 1. Image mean, standard deviation (SD, image variability), coefficient of variation
(CV), and optimal threshold of proportion forest land following spatial averaging to coarser

spatial resolutions, P27R27 and P28R28 study areas, Minnesota, USA.

Window
size
(pixels)

Spatial
resolution

(m)

P27R27 P28R28

Mean SD CV Threshold Mean SD CV Threshold

161 30 0.7496 0.3182 0.4245 0.72 0.2168 0.319907 1.4755 0.45
363 90 0.7496 0.2885 0.3848 0.69 0.2167 0.295697 1.3646 0.42
565 150 0.7496 0.2718 0.3625 0.68 0.2167 0.281936 1.3010 0.41
767 210 0.7496 0.2595 0.3461 0.67 0.2167 0.271988 1.2550 0.40
969 270 0.7496 0.2499 0.3333 0.67 0.2167 0.264333 1.2196 0.39
17617 510 0.7496 0.2231 0.2976 0.68 0.2168 0.243745 1.1243 0.38
33633 990 0.7496 0.1949 0.2600 0.68 0.2168 0.223671 1.0318 0.37

Figure 3. (a) Average-based and (b) majority-based spatial aggregation of 30 m pixels into
90, 510 and 990 m spatial resolutions, northeastern P28R28, Minnesota, USA. Geographic
extent is 69669 km.
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the semivariance at distance 0. A variation in the definition of range is the lag

(geographic distance) at which 95% of the sill is reached (Deutsch and Journel 1997).

In this study, semivariograms were rescaled to allow for direct comparison of

imagery aggregated to coarser spatial resolutions. Variographic analyses were

performed using the gstat computer program (Pebesma 2004) as an open source

add-on package to the ‘R’ implementation of S language (R Development Core

Team 2004).

Each ETM + image contains millions of pixels – a number of observations that

exceeds the current capability of desktop computing platforms for estimating

semivariance. Therefore, random samples of pixels were selected from images prior

to conducting detailed variographic analysis. Pixel sample intensity varied with

spatial resolution and ranged from 0.001 proportion of image pixels at 30 m spatial

resolution to 1.0 proportion of image pixels (all pixels) at 990 m spatial resolution.

Resulting samples comprised approximately 30 000–40 000 pixel observations per

image, which is a sample size within the software’s capability for calculating

semivariance. In addition to performing omnidirectional variographic analyses,

directional semivariograms were produced at azimuths of 0u (N–S), 45u (NE–SW),

90u (E–W) and 135u (SE–NW) to assess directional effects on spatial variability of

forest proportion. Semivariograms were compared between study areas and spatial

resolutions.

2.2.2 Majority-based aggregation. We created two thematic F/NF classifications

from continuous per-pixel estimates at each resulting spatial resolution, one using

the standard threshold and the other using the optimal threshold specific to each

area. The 30 m F/NF map pixels were spatially aggregated to coarser resolutions

based on the clear majority within a block (MAJ). For example, if 41 or more 30 m

pixels within a 969 pixel aggregation (81 pixels) were classed as forest, the resulting

270 m resolution block was labelled forest. If fewer than 41 pixels were of forest

class, the resulting block was labelled nonforest.

In contrast with methods that allow for blocks with even numbers of pixels

(e.g. 262, 464) (Turner et al. 1989), we produced only square blocks with odd

numbers of pixels (e.g. 363, 565) so that resulting blocks have a clear majority.

For each spatial resolution tested, the aggregations of continuous forest

proportion maps were converted to F/NF maps using both threshold approaches

described earlier.

The proportion of forest land was estimated as the ratio of forested pixels to total

image pixels for each study area. Estimates were compared within each study area

among 28 F/NF maps that were derived from two thresholds, two spatial

aggregation approaches, and seven spatial resolutions (figure 2). To assess

resampling effects, mean, standard deviation (SD, image variability), and coefficient

of variation (CV) of pixel proportion forest land were calculated for each study area,

for each spatial resolution following spatial averaging.

2.3 Estimates obtained using design-based approaches

Stratified estimates of mean proportion forest land, P̄, and estimated variance,

Vâr(P̄), are calculated using formulae from Cochran (1977):

P̄~
XL

h~1

whP̄h ð2Þ

Spatial aggregation effects on forest area 1925
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and

Vâr P̄ð Þ~
XL

h~1

w2
h

ŝ2
h

nh

ð3Þ

where h51, …, L denotes stratum; wh is the hth stratum weight, P̄h is the mean forest

land proportion for plots assigned to the hth stratum (F/NF); nh is the number of

plots assigned to the hth stratum; and ŝ2
h is the within-stratum variance for the hth

stratum. Variance estimates obtained using equation (3) ignore the slight effects due

to finite population correction factors and to variable rather than fixed numbers of

plots per stratum.

FIA plot data within P27R27 (n51022) and P28R28 (n51071) were collected

between 1999 and 2002. Land area within each study area was stratified using each

of the 28 previously defined F/NF image datasets and resulted in 28 stratified

estimates of proportion forest land for each study area. Each FIA plot was assigned

to one of two strata, ‘forest’ or ‘nonforest’, based on the pixel associated with plot

centre location. Strata weights were determined as the proportion of pixels within

each stratum. To test for effects of assigning aggregated subplot forest proportion

values to the single pixel associated with only the central subplot, we compared

stratified estimates using only the forest proportion value associated with central

subplots to stratified estimates based on forest proportion averaged across all four

subplots.

The effect of spatial resolution on stratified estimates was determined by

comparing estimates using each of the coarser spatial resolution stratification

datasets to stratified estimates obtained using the 30 m stratification datasets.

Comparisons also were made with unstratified design-based estimates of mean

proportion forest land, that is those calculated under the assumption of SRS.

3. Results

3.1 Estimates obtained using model-based approaches

Estimates of 30 m pixel mean proportion forest for P27R27 (0.75) and P28R28

(0.22) were similar to corresponding estimates from design-based approaches; these

estimates remained almost constant following spatial averaging for all spatial

resolutions, but SD and CV decreased as simulated pixel size increased from 30 to

990 m (table 1). Figure 4 shows examples of P28R28 forest proportion histograms

for four spatial resolutions. Visual inspection of the histograms reveals that the

frequency distribution of the original 30 m dataset is skewed towards the tails; pixels

with forest proportions between 0.25 and 0.75 comprise a minor fraction of the

frequency distribution. As is typical for smoothed data, the histograms indicated less

variance with coarser spatial resolutions because averaged pixel values were closer to

the mean (Bian 1997). Similarly, optimal thresholds decreased in both P27R27 (from

0.72 to 0.68) and P28R28 (from 0.45 to 0.37) following spatial aggregation to

coarser resolutions (table 1). After assigning 30 m pixels to F/NF classes, estimates
of mean forest proportion using optimal thresholds were about 15% lower than

estimates using the standard threshold, for both study areas.

Image variability decreased slightly nonlinearly with increasing spatial resolution,

from 0.32 at 30 m to 0.20 at 990 m resolution in P27R27, and from 0.32 at 30 m to

0.22 at 990 m resolution in P28R28. Local variability in P27R27 increased from 0.09

at 30 m to a peak of 0.12 at 270 m, and then decreased to 0.10 at 990 m spatial

1926 M. D. Nelson et al.
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resolution. In P28R28, local variability increased from 0.08 at 30 m to a peak of 0.10

at 270 m, and then decreased to 0.08 at 990 m spatial resolution. Comparative

variability increased nonlinearly with increasing spatial resolution, from 0.09 at 30 m

to 0.27 at 990 m, and from 0.8 at 30 m to 0.22 at 990 m, for P27R27 and P28R28,

respectively (figure 5).

P27R27 directional semivariograms of 30 m forest proportion revealed relatively

constant to slightly increasing semivariance for all four azimuths tested (figure 6).

P28R28 azimuths of 90u and 135u portray nondescript semivariance, similar to those

observed for P27R27. However, P28R28 azimuths of 0u and 45u reveal directional

effects of increasing semivariance from 0 to 30 km, relatively constant semivariance

from 30 to 60 km, and increasing semivariance from 60 to 100 km (figure 6). For

both P27R27 and P28R28, omnidirectional semivariograms show decreasing sills

and increasing ranges with increasing spatial resolution following spatial averaging

of 30 m pixels (figures 7 and 8).

3.1.1 P27R27. When the standard threshold was used and as pixel size increased

from 30 to 990 m, estimates of P27R27 mean proportion forest increased from 0.86

to 0.96, and from 0.86 to 0.93 for average-based and majority-based F/NF maps,

respectively. When the optimal threshold was used, mean proportion forest

decreased from 0.73 to 0.69 for average-based, but mean proportion forest increased

from 0.73 to 0.83 for majority-based F/NF maps as pixel size increased from 30 to

990 m (figure 9). Deviations from 30 m estimates followed a natural log (loge)

distribution for both aggregation and both threshold approaches (figure 9).

3.1.2 P28R28. When the standard threshold was used, P28R28 estimates of mean

forest proportion increased with increasing pixel size from 0.28 to 0.33 for

Figure 4. Frequency distribution of forest land proportion at four pixel spatial resolutions
(30, 270, 510 and 990 m), P28R28, Minnesota, USA. The upper portion of the y-axis is
compressed for the 30 m pixel spatial resolution.

Spatial aggregation effects on forest area 1927
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average-based F/NF maps but decreased from 0.28 to 0.24 for majority-based F/NF

maps. Mean forest proportion decreased from 0.23 to 0.18 for both average- and

majority-based F/NF maps when the optimal threshold was used (figure 9). For

both aggregation and both threshold approaches, deviations from 30 m estimates

followed a natural log (loge) distribution (figure 9).

3.2 Estimates obtained using design-based approaches

3.2.1 P27R27. Under the assumption of SRS, the design-based estimate for

P27R27 proportion forest land was 0.74 with a standard error of 0.01. Design-based

Figure 5. Image variability, local variability, and comparative variability as a function of
spatial resolution: (a) P27R27 and (b) P28R28, Minnesota, USA.

1928 M. D. Nelson et al.
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stratified estimates of proportion forest land ranged from 0.74 to 0.76 across all

spatial resolutions for average- and majority-based stratification maps and for

standard and optimal thresholds (figure 9). When the standard threshold was used,

standard errors of stratified estimates ranged slightly, from 0.009 to 0.012 for both

average- and majority-based stratifications. Standard errors ranged from 0.009 to

0.011 for both average- and majority-based stratifications with the optimal

threshold (figure 10).

3.2.2 P28R28. Under the assumption of SRS, the design-based estimate of

proportion forest land for P28R28 was 0.23 with a standard error of 0.012.

Stratified estimates of proportion forest land ranged from 0.22 to 0.25 across all

spatial resolutions for both average- and majority-based stratification maps using

both standard and optimal thresholds (figure 9). For both average-based and

Figure 6. Forest proportion 30 m pixel directional semivariograms for azimuths of 0u (N–S),
45u (NE–SW), 90u (E–W) and 135u (SE–NW): (a) P27R27 and (b) P28R28, Minnesota, USA.

Spatial aggregation effects on forest area 1929
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majority-based stratification maps, standard errors ranged slightly from 0.008 to

0.010 when the standard threshold was used and from 0.007 to 0.010 with the

optimal threshold (figure 10).

3.2.3 Subplot aggregation. Compared with estimates of mean forest proportion

that aggregate all four FIA subplots, estimates using only central FIA subplots

were similar for both P27R27 (0.74 for four subplots, 0.75 for central subplots)

and P28R28 (0.23 for four subplots, 0.23 for central subplots). Standard errors of

SRS estimates were also similar for both P27R27 (0.013 for four subplots, 0.014

for central subplots) and P28R28 (0.012 for four subplots, 0.013 for central

subplots).

4. Discussion

4.1 Estimates obtained using model-based approaches

For both study areas, spatial averaging had almost no effect on pixel mean forest

proportion, but image variability decreased as spatial resolution became more

coarse. This result is similar to the findings of Henderson-Sellers and Pitman (1992),

Marceau et al. (1994a,b) and Su et al. (1999), who reported near constant mean

spectral values and decreasing variances following spatial averaging to coarser pixel

resolutions within forested pixels. Trends in image variability, local variability and

comparative variability of forest proportion were similar between P27R27 and

Figure 7. Forest proportion omnidirectional semivariograms for seven spatial resolutions,
P27R27, Minnesota, USA.
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P28R28. There were slight peaks in local variability of forest proportion at 270 m

spatial resolution in both study areas, suggesting that typical image objects (e.g.

forest patches) are between 360 by 360 m and 540 by 540 m (Woodcock and Strahler

1987). However, these peaks are much less distinct than the peaks in local variability

of pixel spectral reflectance within the forested study areas of Woodcock and

Strahler (1987), suggesting that patch sizes are more variable within our image

extents or that forest proportion varies less than spectral reflectance, or both.

By contrast, comparative variability continued to increase with coarser spatial

resolution from 30 to 990 m for both study areas, although an asymptote at a

slightly coarser resolution appears likely. Thus, variability of 30 m pixel forest

proportion continued to increase for moving windows of 1000 ha or larger. The

results of directional semivariance analyses (figure 6) confirm the visually evident

pattern of relatively dense forest across P27R27, and decreasing forest cover from

northeast to southwest P28R28 (figure 1). Omnidirectional semivariograms reveal

expected patterns of increasing range and decreasing sill with coarser spatial

resolutions. These results for continuous forest proportion are not comparable

directly with those of Colombo et al. (2004), who estimated semivariance for forest/

nonforest classifications.

Optimal thresholds were defined such that resulting estimates from model-based

approaches for each spatial resolution would correspond to estimates from design-

based approaches. At the resolution of the original pixel dataset (30 m), estimates

using optimal thresholds were about 15% lower than estimates using the standard

Figure 8. Forest proportion omnidirectional semivariograms for seven spatial resolutions,
P28R28, Minnesota, USA.
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threshold, for both study areas (figure 9). This difference calls into question the

validity of 0.25 proportion forest as a ‘standard’ threshold, which was based on a

definition that at least 25% tree canopy cover is required to be forest land.

Figure 10. Standard errors of design-based forest proportion estimates calculated under the
assumption of simple random sampling (SRS), and standard errors derived using post-
sampling stratification with average-based (AVG) and majority-based (MAJ) aggregations,
and standard (0.25) and optimal (0.72 or 0.45) forest proportion thresholds for P27R27 and
P28R28, Minnesota, USA.

Figure 9. Estimates of forest land proportion calculated under (1) the assumption of simple
random sampling (SRS), and (2) model-based and design-based approaches using average-
based (AVG) and majority-based (MAJ) aggregations, with standard (0.25) and optimal (0.75
or 0.45) thresholds for P27R27 and P28R28, Minnesota, USA.

1932 M. D. Nelson et al.
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At least two possible reasons may explain the difference between estimates using

optimal and standard thresholds. First, 30 m pixels having forest proportion values

between 0.25 and 0.75 were infrequent, with a majority of pixels having values

nearer 0.0 or 1.0. The 30 m pixel estimates of forest proportion used in this study

were produced with a logistic modelling approach, in part because the field training

observations were composed primarily of field observations of either 0.0 or 1.0

proportion forest on each field plot, with few intermediate observations. A possible

artefact of this modelling approach is that intermediate values of proportion forest

(i.e. those associated with standard and optimal thresholds) may not represent the

population adequately, even though image-wide mean values of pixel forest

proportion corresponded closely to estimates from design-based approaches. This

factor has not been tested. A second factor possibly influencing the discrepancy

between estimates from standard and optimal thresholds is a difference in the

definitions between image pixels and plots. FIA’s definition of forest land requires a

minimum patch area, minimum patch width, and exclusion of treed lands developed

for nonforest uses. Although based on FIA plot observations for training data, the

30 m pixel estimates of forest proportion were not filtered to comply with FIA’s

definition, resulting in inclusion of isolated pixels in patches too small or too

narrow, or pixels with tree cover in land uses not permitted in FIA’s definition.

Thus, use of the standard threshold would result in overestimates of forest

proportion when a number of these pixels occur in conditions not permitted by

FIA’s definition.

Optimal thresholds of proportion forest decreased nonlinearly as spatial

resolution became coarser, much more so for sparsely forested P28R28 (18%

decrease) than for heavily forested P27R27 (6% decrease). By contrast, Pax-Lenny

and Woodcock (1997) reported that spatial resolution of NDVI datasets calculated

from spatially aggregated TM spectral data had a negligible effect on the maximum

NDVI threshold used to distinguish productive and nonproductive agricultural

lands. For P28R28, the 30 m resolution optimal threshold (0.45) was substantially

larger than both the mean pixel proportion (0.217) and the design-based estimate of

forest proportion (0.228). In addition to comprising a minority of the area, forest

land in P28R28 also appears to be more patchy or fragmented than in P27R27,

where the 30 m resolution optimal threshold (0.72) was similar to both the mean

pixel proportion (0.750) and the design-based estimate of forest proportion (0.736).

Gains in precision of stratified estimates resulted from using an optimal threshold

over a standard threshold for certain spatial resolutions. Although constructing

these stratification categories from models fitted to the sample data (endogenous

post-stratification) violates standard post-stratification assumptions, the probable

practical effect is negligible (Breidt and Opsomer 2002, McRoberts et al. 2006).

Additional work is needed to test the utility of resolution-specific thresholds for

increasing precision of stratified estimates.

Majority-based spatial aggregation of 30 m F/NF maps produced from optimal

proportion forest thresholds resulted in nonlinear increasing deviation from design-

based estimates as the resulting spatial resolution became coarser. Specifically,

majority-based aggregations led to overestimation of forest land area in heavily

forested P27R27 and underestimation of forest land area in sparsely forested

P28R28. Our results support those of Nelson (1989), Turner et al. (1989), Moody

and Woodcock (1994), Kuusela and Päivinen (1995) and Mayaux and Lambin

(1995), all of whom reported the effects of majority-based spatial aggregation.

Spatial aggregation effects on forest area 1933
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4.2 Estimates obtained using design-based approaches

For both study areas, standard errors of stratified estimates of forest proportion

showed generally increasing trends with coarser spatial resolution using both

average- and majority-based stratifications for both standard and optimal thresh-

olds of forest proportion. The use of optimal thresholds in place of the standard

threshold appeared to reduce standard errors of stratified estimates for some spatial

resolutions. By definition, the use of optimal thresholds results in F/NF maps more

like an FIA plot-derived map, leading to more FIA forest plots being correctly

assigned to the ‘forest’ stratum, which leads to increased precision of stratified

estimates. The fact that this improvement appears greater for P27P27 than for

P28R28 may relate to the greater absolute difference between optimal and standard

thresholds in P27R27 (0.75 vs. 0.25) than in P28R28 (0.45 vs. 0.25).

The standard errors of forest proportion stratified estimates for both study areas

were smallest at spatial resolutions between 90 and 150 m and not at 30 m, which

was the finest resolution tested. This result was similar to those of Sadowski et al.

(1977), Latty and Hoffer (1981), Markham and Townshend (1981) and Ju et al.

(2005). This may relate to the fact that 30 m TM/ETM + pixels are larger than

individual tree canopies, smaller than forest patches, and smaller in area (0.09 ha)

than FIA’s minimum forest area definition (0.405 ha). Hansen and Wendt (2000)

and McRoberts et al. (2002) observed that standard errors of stratified estimates

based on 30 m stratification maps can be reduced by first clumping and eliminating

small clusters of fewer than four forest or nonforest TM pixels (,0.36 ha),

equivalent in area to a 60660 m pixel.

Per-plot proportion forest was based on the average forest proportion across four

0.017 ha circular subplots. The per-plot forest proportion was then assigned to a

single stratum based on the single pixel associated with the central subplot location.

Pixels associated with the locations of the outer three subplots were not considered

when assigning plots to strata. FIA plot Global Positioning System (GPS)

coordinate location error ranges from 10 to 15 m; pixel locations have an associated

image registration error of about 15 m; and the four subplots within each FIA plot

are encompassed by a 363 window of TM pixels (90 m). By combining these

factors, the image area associated with each FIA plot could be characterized as

roughly 1206120 m, which is within the range of our observed optimal resolution

(90–150 m).

Spatial resolution-dependent trends in standard errors of design-based stratified

estimates were nearly identical using only central subplots versus aggregating four

subplots for both P27R27 and P28R28 majority-based aggregations with optimal

thresholds (figure 10). From this we infer that, for both P27R27 and P28R28,

aggregating forest proportion from four subplots and assigning plots to strata based

only on their central subplot locations does not affect bias or precision of forest

proportion estimates or the spatial resolution for which the smallest standard errors

were observed.

We surmise that reductions in standard errors of stratified estimates following

spatial aggregation of stratification maps between 90 and 150 m or clumping and

eliminating smaller pixel clusters result from related spatial effects. For both study

areas, the largest standard errors of stratified estimates resulted from stratification

maps of 510–990 m spatial resolution, but even these estimates exhibited gains in

precision over estimates calculated under the assumption of SRS. Although we did

not test stratification maps at resolutions coarser than 1000 m, we expect the trend
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of increasing standard errors with coarser spatial resolutions to reach an asymptote

beyond 1000 m, as is suggested by the semivariograms in figures 7 and 8.

Although not identical to the spatial resolutions of satellite image sensors from

MODIS (250 m, 500 m, 1 km) and AVHRR (1.1 km), our simulations at 270, 510

and 990 m provided for approximate comparisons with these sensor resolutions.

However, we acknowledge that aggregations from 30 m imagery registered to within

about 15 m to coarser spatial resolutions are likely to benefit from much better

image registration characteristics than would occur from registration of coarser

spatial resolution imagery (Townshend and Justice 1988). In several cases, the

precision of design-based estimates using stratification maps of approximately 250 m

spatial resolution was comparable with or only slightly lower than that for 30 m

stratification maps. This is corroborated by the results of Ju et al. (2005), who

observed that MAEs of estimates of land cover fraction following spatial

aggregation to 250 m were similar to the MAEs of their 30 m dataset. Although

MODIS VCF data on percentage tree canopy cover are available only at 500 m

spatial resolution, an anticipated 250 m VCF dataset holds promise for stratifying

inventory estimates of forest land area. In addition, calibration of continuous forest

or tree canopy cover geospatial datasets holds potential for portraying spatial

distributions and area estimates comparable with forest inventory estimates.

The distribution of a nationwide 30 m percentage forest canopy map as a

component of the 2001 NLCD (Homer et al. 2004) provides a potential source of

stratification maps for producing stratified inventory estimates of forest land area.

Spatially aggregating the 30 m NLCD 2001 percentage forest canopy dataset to

moderately coarser spatial resolution (e.g. 90–150 m) and identifying optimal

thresholds of forest proportion may result in simultaneous gains in precision and

more efficient management of stratification datasets. We simulated effects of spatial

resolution by aggregating a 30 m pixel dataset of forest proportion derived from an

ETM + dataset to six coarser spatial resolutions. In this study, only spatial

resolution was evaluated; the effects of spectral, temporal and radiometric

resolution were held constant within study areas of fixed extent. We compared

estimates of forest land area among and between the resulting forest/nonforest maps

and design-based stratified forest inventory estimates using stratifications derived

from the maps. The results of these tests are intended to provide insight into the

effects of spatial aggregation and resolution on estimates of forest land such that

NFIs may better address the issues of spatial resolution when selecting satellite

remotely sensed imagery and derived datasets. We are pursuing further investiga-

tions in this area.

5. Conclusions

The following conclusions can be drawn from this study.

First, for average-based spatial aggregation of per-pixel forest proportion, local

variability showed a slight peak between 210 and 270 m, suggesting that typical

forest patches in the study areas measure about 300–500 m per side (9–25 ha),

although the weakness of the peak suggests that patch sizes vary somewhat. Thus,

use of image-based products with pixel spatial resolutions coarser than 30 m appears

to be justified for portraying F/NF in the study areas. Image variability decreased

nonlinearly as spatial resolution became coarser, and mean forest proportion did

not vary.
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Second, majority-based spatial aggregation, following assignment of pixels to F/NF

classes based on a minimum threshold of forest proportion, resulted in overestimation

of forest proportion in a heavily forested area and underestimation of forest

proportion in a sparsely forested area. Deviations from original pixel estimates were

nonlinearly related to spatial resolution. Optimum thresholds varied with spatial

resolution and should be calculated specific to the spatial resolution of interest.

Third, spatial aggregation had a minimal effect on design-based stratified

estimates of forest proportion but standard errors of estimates varied considerably

with aggregation approach, threshold and spatial resolution of stratification maps.

For some but not all spatial resolutions, reductions in standard errors of stratified

estimates of forest proportion resulted from stratifications based on landscape-

specific optimal thresholds rather than a standard threshold of minimum forest

proportion.

Fourth, aggregation of a 30 m dataset to six successively coarser spatial

resolutions resulted in generally increasing standard errors of stratified estimates,

although standard errors were lowest for spatial resolutions between 90 and 150 m

and resolutions near 250 m produced standard errors of stratified estimates only

slightly larger than those from 30 m stratification datasets. Standard errors were

largest for stratifications at the coarsest spatial resolutions tested (510–990 m), but

even these were smaller than for estimates calculated under the assumption of SRS.

Determining optimal spatial resolution and aggregation of satellite image-derived

stratification maps can lead to improved stratification efficacy of design-based

estimates of forest land area. Although these results are not based on tests of

moderate resolution imagery, they do suggest that moderate resolution image

products, such as a forthcoming global 250 m MODIS VCF dataset, may provide

precision benefits to NFIs similar to those of finer spatial resolution 30 m Landsat

imagery but without the associated limitations of temporal and radiometric

resolution, greater cost of data acquisition and processing, drawbacks of technical

failures with current sensors, and uncertainty of future Landsat missions. Additional

research is needed for upscaling in situ NFI data to moderate resolution satellite

image data.

Spatial resolution is but one of several characteristics affecting satellite image

utility. By itself, degradation of spatial resolution results in loss of local specificity.

However, enhanced spectral, radiometric and temporal resolutions in some sensors

with moderate to coarse spatial resolution (e.g. MODIS) provide advantages over

30 m Landsat sensors. The interactions of sensor characteristics are becoming better

understood through upscaling of field data, subpixel modelling, multisensor/

multiresolution image processing, and other comparative studies. Continuing

assessments of satellite image characteristics, both generic and sensor-specific, are

required to address the evolving needs of NFIs.
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