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               Introduction 

 Forest managers are frequently faced with the 
prospect of making decisions using imperfect 
data. Measurements and model predictions can 
contain error from numerous sources, including 
sampling, measurement, classifi cation, model 
estimation and misspecifi cation, to name but a 
few. These errors may act in ways that are often 
diffi cult to quantify and may affect the deci-
sion variables in a variety of ways both linearly 
and non-linearly. In the formulation of optimal 
planning models for decision making, the man-
ager must also determine whether the sources of 
uncertainty may accumulate additively or mul-
tiplicatively in the system under consideration. 
This need to incorporate uncertainty into the 
decision-making process has been recognized 
and numerous methods have been developed to 
accommodate it into optimal planning models 
( Hof  et al. , 1988 ;  Pickens and Dress, 1988 ;  Gove 
and Fairweather, 1992 ;  Kangas and Kangas, 

1999 ). One of the major sources of uncertainty 
in the decision-making process comes from the 
error in the estimation of stand variables from 
inventories and model projections. Other sources 
of uncertainty often include those concerning fu-
ture prices, interest rates, and changing owner-
ship patterns. While these other sources of error 
are important, here we concentrate on the evo-
lution of uncertainty in estimates of stand vari-
ables through time. That is, the quantifi cation 
of the probability distribution of stand variables 
through the combination of model predictions 
and inventory adjustments over time. Such infor-
mation not only plays an important role in op-
timal planning efforts but also can be used in a 
variety of other less rigorous decision processes 
such as the determination of stand stocking levels 
for silvicultural activities and the scheduling of 
stand examinations. 

 Much effort has gone into the problem of the 
estimation of forest stand variables and other 
quantities in a way that allows for an assessment 
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of the error in the estimates to be approximated 
as well. Traditional design-based sampling meth-
ods allow for the estimation of sampling error 
associated with means and totals in the form of 
standard errors (SEs). Similarly, simulation ap-
proaches might be used, for example to quantify 
the error in predictions from growth models. Too 
often, however, the steps of stand projection via 
models and sampling are thought of as disjoint 
events. And this is where the efforts of composit-
ing and similar strategies have attempted to ad-
dress merging both model and sampled estimates 
( Burk  et al. , 1982 ;  Fairweather and Turner, 1983 ; 
 Green and Strawderman, 1988 ). The underlying 
theme of these efforts is to derive a melded esti-
mate with associated error approximation result-
ing from the combination of the two different 
estimates. 

 In a more general approach to the quantifi ca-
tion of error, the entire probability distribution 
of a stand variable could be estimated. This is the 
topic of probabilistic state estimation, which was 
recognized early on by engineers. In the evolution 
of the state through time, assumptions concern-
ing Gaussianity and linearity are often made, and 
the methods that have been developed largely are 
used to propagate the mean and covariance of 
some vector of state variables. In so doing, these 
fi ltering methods seamlessly composite model 
predictions with incoming measurements in a 
two-step process. When the Gaussian assumption 
is tenable, the propagation of the mean and cova-
riance establish the joint probability distribution 
of the state. When it is not tenable, there will be 
some associated bias in the estimates. It would 
make sense in such cases to actually estimate the 
form of the distribution itself, not just the mean 
and variance; other methods exist in such cases as 
will be detailed below. 

 Propagating the stand distribution through 
time has the added benefi t that it can be used 
in Bayesian decision making.  Ståhl  et al.  (1994)  
recognized the utility of such an approach by de-
veloping a probability-based technique for incor-
porating inventory planning into the silvicultural 
decision-making process. Underlying the plan-
ning component was a probabilistic framework 
for propagating the mean and variance of the 
state through time, where a Gaussian assumption 
was made on all distributions. These authors used 
Bayes ’  rule to incorporate inventory information 

with assumed sampling error, into a prediction 
prior using a discretization process. In a related 
study,  Nyström and Ståhl (2001)  showed how dif-
ferent components of error could be incorporated 
into the state density propagation employing a 
Monte Carlo simulation approach. They also 
noted that measurements could be incorporated 
through Bayes ’  rule and illustrated the conceptual 
effect this can have in decision making. However, 
both of these studies appear to be limited in that 
the methods used may not generalize well. For ex-
ample,  Ståhl  et al.  (1994)  note that using distribu-
tions other than the Gaussian would quickly lead 
to intractable calculations. Similarly, it is unclear 
how Bayes ’  rule might be employed to perform a 
measurement update on a prediction prior com-
posed of thousands of Monte Carlo simulated 
predictions as in  Nyström and Ståhl (2001) , un-
less perhaps some parametric form were assumed 
and estimated. Moreover, as mentioned by  Ståhl 
 et al.  (1994) , the generalization of these methods 
to more than one state variable may present com-
putational challenges. 

 In this paper, a general state space framework 
for estimating forest growth and yield in a proba-
bilistic context is introduced that allows for non-
linear, non-Gaussian assumptions, as well as 
integration of new inventory information with 
model predictions. With regard to forest stands, 
the state of the system refers to any variables that 
are recognized as being important to the quan-
tifi cation and classifi cation of the stand under 
consideration for estimation purposes. The sys-
tem state might include such stand-level variables 
as basal area, number of stems, volume and bio-
mass over all species, or broken down by species; 
a more detailed state vector might also include 
parameters for quantifying the stand diameter 
distribution, for example. Stand-level projection 
systems might employ these state variables as 
both dependent and independent variables, and 
sampling methods would target these state vari-
ables to be estimated from an inventory, either 
directly or indirectly. 

 The state space approach allows the time course 
of measurements and model predictions to be in-
corporated together in a sequential manner, taking 
into account both model and sampling errors. In 
this type of system, the disconnect of inventories 
and models is not present, since the two get fused 
as part of the sequential march through time. The 
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general framework that allows this probabilistic 
data – model fusion stems largely from the engi-
neering literature on fi ltering and smoothing. 
Engineering applications have long taken the 
probabilistic approach to state estimation. The 
most well-known of the fi ltering methods is the 
Kalman fi lter ( Kalman, 1960 ), which sequentially 
propagates the mean and covariance of the sys-
tem state through a two-step process of predic-
tion and update. The prediction step applies the 
process models to the prior state estimate, while 
updating corrects this prediction when the new 
measurement arrives. This  ‘ predictor – corrector ’  
structure of the Kalman fi lter is found in many 
subsequent fi lters of this class. The Kalman fi lter 
does not specifi cally place a Gaussian assumption 
on the states; however, the fact that it propa-
gates the mean and covariance of the state would 
suggest that the closer the underlying state to a 
Gaussian, the better. A more formidable restric-
tion to the Kalman fi lter is that of linearity: both 
measurements and process model predictions 
have to be a linear function of the states. 

 Because many real-world problems are non-
linear and non-Gaussian, numerous extensions 
or new fi lters have been developed over the years 
to better handle such problems. Some examples 
include the extended ( Gelb, 1974 , p. 182) and 
unscented Kalman fi lters ( Julier and Uhlmann, 
2004 ). Shortly after the Kalman fi lter’s introduc-
tion,  Ho and Lee (1964)  showed how the general 
non-linear non-Gaussian fi ltering problem could 
be formulated in a Bayesian setting. Unfortu-
nately, there are only a few special cases to this 
general fi ltering problem that have known solu-
tions. This is because it entails knowing the exact 
form of the distributions involved in order to 
solve the resulting integrals. Recently, a new class 
of fi lters has been put forth that relies on a combi-
nation of importance sampling and Monte Carlo 
simulation to circumvent the integration diffi cul-
ties encountered in such problems. This class of 
fi lters, collectively known as particle fi lters, pro-
vide a straightforward solution to the problem 
of propagating probability distributions of stand 
variables through time. 

 In this paper, we present the probabilistic for-
mulation to the fi ltering problem and its solution 
using one particular form of particle fi lter known 
as the bootstrap, or sampling importance resam-
pling (SIR) fi lter. Examples are provided showing 

the details of the fi lter’s application to a problem 
concerning the estimation of basal area yield of 
eastern white pine ( Pinus strobus  L.).  

  Particle fi ltering 

 Particle fi ltering is a general state space method 
for the sequential estimation problem of assimi-
lating model predictions with incoming measure-
ments. Let the unobserved system state be given 
by the vector  x   t   with dimension ( n x   × 1), for all 
time  t  = 0,  … ,  T . The sequence of states is assumed 
to be a fi rst-order Markov process, which implies 
that the entire past history of information in  x   t   is 
contained in  x   t    − 1 . More formally, the distribution 
of the state  x   t   conditional on the entire history 
of states  x  0: t  − 1  =  x  0 ,  … ,  x   t    − 1  is completely deter-
mined by  x   t    − 1 . Assume that the process dynamics 
are given by  f   t  , which can be non-linear, then the 
model governing the evolution of the states is

   x f x vt t t t= − − −1 1 1( , ),  (1) 

  where  v   t   is the process noise. The process noise 
allows, for example for process model misspecifi -
cation, estimation error or other disturbances in 
the process model. 

 Similarly, let  y   t   ( n y   × 1) be the measurements 
or observations at time  t . Note that in general,  y   t   
does not have to be present at each time period, 
nor does it have to arrive in the estimation process 
at periods of equal intervals. This will become 
clear in the next section. If the measurement 
model is given by  h   t  , which may also be non-
 linear, then the state is related to the measure-
ments via the measurement equation

   y h x nt t t t= ( , ),  (2) 

  where  n   t   is the measurement noise. The mea-
surement noise not only might be composed of 
measurement error but also additionally could 
include components of sampling, or classifi cation 
error, to name a few. 

  Equations (1)  and  (2)  make up the dynamic 
state space formulation of the problem. Note 
that the only assumptions are that both of these 
noise processes are white (a white noise process is 
one in which the random variables are mutually 
independent ( Gelb, 1974 , p. 42)) and that their 
probability density functions (PDFs) are known 
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and can be sampled from. Note particularly that 
the noise random variables are not required to be 
Gaussian. 

 The random noise components to the models 
above allow us to state the general state space 
model in probabilistic terms as

   p t t( | ) transition densityx x −1  (3) 
  
   p t t( | ) measurement density (likelihood),y x  (4) 

  with  p ( x  0 ) =  p ( x  0 | y  0 ) as the initial condition. 
Since both the process dynamics and measure-
ment equations are stochastic, it is not possible 
to infer the exact state from the measurements. 
Therefore, the goal is to estimate the posterior 
distribution  p ( x   t  | y  1: t  ) at time  t  from all the mea-
surements  y  1: t  . 

  The general Bayesian solution 

 The general Bayesian fi ltering problem can now 
be formulated. As with the Kalman fi lter, it con-
sists of prediction and update steps. First, the 
prediction step yields an estimate of the dynamic 
prior, or prediction density at time  t , based on all 
of the measurements through time  t   −  1 ( Gordon 
 et al. , 1993 )

  
p p pt t t t t t t( | ) ( | ) ( | ) .: :x y x x x y x1 1 1 1 1 1 1− − − − −= ∫ d

   (5)  

 In the update step, the measurement is assimi-
lated with the prediction density through the ap-
plication of Bayes ’  rule, yielding the posterior at 
time  t . It can be shown that (e.g.  Simon, 2006 , 
p. 464)

   
p

p p
pt t

t t t t

t t

( | )
( | ) ( | )

( | )
,:

:

:

x y
y x x y

y y1
1 1

1 1

= −

−  
(6)

 
  where the normalizing density in the denomina-
tor is often termed the data evidence and depends 
on the likelihood  (4) , and the dynamic prior  (5) ; 

that is   p p pt t t t t t t( | ) ( | ) ( | ) .: :y y y x x y x1 1 1 1− −= ∫ d   

 In the linear, Gaussian case ( f   t   and  h   t   linear; 
 v   t    − 1 ,  n   t   additive Gaussian), it can be shown that 
the Kalman fi lter is the solution to this fi ltering 
problem given in  equations (5)  and  (6) . Unfortu-
nately, a general solution to the above Bayesian 
fi ltering problem is not available because the inte-
grals involved are generally high dimensional and 

complex; this has spawned a number of Bayesian 
algorithms that are suboptimal approximations 
( Arulampalam  et al. , 2002 ;  Ristic  et al. , 2004 , pp. 
6 – 8). A more general approach is to use Monte 
Carlo integration methods to evaluate the in-
tractable integrals in  equations (5)  and  (6) . The 
Monte Carlo approach has the advantage that it 
can be applied in non-linear, non-Gaussian state 
space models.  

  Sequential importance sampling 

 In what follows, the general idea of the presenta-
tion is to motivate the concept of a particle fi lter 
through its development from the Bayesian fi lter-
ing problem above using sequential importance 
sampling (SIS). The details are lengthy, and there-
fore are omitted; the interested reader should 
consult such references as  Doucet  et al.  (2001) , 
 Ristic  et al.  (2004 , Chapter 3), and  Simon (2006 , 
Chapter 15). 

 In order to establish an approximate solution 
to the conceptual Bayesian fi ltering problem in 
 equations (5)  and  (6) , importance sampling is 
used. Importance sampling is a Monte Carlo in-
tegration method that facilitates the approxima-
tion of general integrals (e.g.  Rubenstein, 1981 , 
p. 122). When the true distribution,  p ( x   t  ), is dif-
fi cult to sample, a proposal distribution,  q ( x   t  ), is 
chosen whose support covers that of the true dis-
tribution, and from which it is easier to sample. 
The objective in fi ltering is to estimate  equations 
(5)  and  (6) , and expectations based on these den-
sities sequentially, by propagating the appropri-
ate PDFs through time. 

 We begin with the general importance sampling 
approach, and then show how this approach can be 
made sequential for fi ltering. In general, we would 
like to approximate the following expectation

   
E dg x g x x y xt t t t t t tp( ) ( ) ( | ) ,: : : : :0 0 0 1 0[ ] = ∫  

(7)
 

  where  g   t  (·) is a function, possibly non-linear, of 
the states. Employing importance sampling with 
the proposal density  q ( x  0: t  | y  1: t  ), which covers the 
support of  p ( x  0: t  | y  1: t  ), yields

  
E[ ] dg x g x x y

x y
x y

xt t t t t t
t t

t t

p
q
q

( ) ( ) ( | )
( | )
( | ): : : :

: :

: :
0 0 0 1

0 1

0 1

= 00: ,t∫  
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    Applying Bayes ’  rule to  p ( x  0: t  | y  1: t  ) and some 
manipulation eventually yields the importance 
weights

   
w

p p
qt t

t t t

t t

( )
( | ) ( )

( | )
,:

: : :

: :

x
y x x

x y0
1 0 0

0 1

=
 

(8)
 

  allowing the expectation to be written as

  
E[ ]

E

E
g x

g x x

xt t
q t t t t

q t t

w

w
( )

[ ( ) ( )]

[ ( )]
,:

: :

:
0

0 0

0

=
 

  where in each case E  q  [·] means that we are tak-
ing the expectation with respect to the proposal 
distribution  q ( x  0: t  | y  1: t  ). 

 The Monte Carlo approach to the evaluation 
of this expectation is to draw  N  independent, 
identically distributed samples from the proposal 
distribution to obtain a weighted approximation 
to this integral; viz.

   
Ê [gt(x0:t)] =

N

∑
i=1

gt(xi
0:t) w̃i

t ,
 

(9) 

  where the normalized weights are given as

   

w w
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t
i t
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i
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=∑
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0

0
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:t1  

(10)

    
 It should be clear from the form of  equation (9)  

that the weights  (10)  form a discrete representa-
tion of the posterior  p ( x  0: t  | y  1: t  ), since the entire 
quantity is an approximation to  equation (7) ; this 
will be formalized momentarily. However, the 
general importance sampling procedure outlined 
thus far is not a sequential, or recursive, fi ltering 
solution. To make this outline of the general pro-
cedure sequential, assume that the proposal can 
be factored as follows

  q q qt t t t t t( |0: 1:tx y x y x x y) ( | ) ( | , ): : : := − − −0 1 1 1 0 1 1  

  where the rightmost density on the right-hand 
side represents an adjustment to the existing 
path. Then it is straightforward to show by itera-
tion that

  
q q qt t

k

t

k k k( | ) ( ) ( | , ).: : : :x y x x x y0 1 0
1

0 1 1=
=

−∏
 

    In addition, the other PDFs in  equation (8)  
can be factored similarly. From these results, it 
can be shown that the importance weights can 
also be written recursively ( Arulampalam  et al. , 
2002 ) as

   
w w

p p
qt

i
t
i t t

i
t
i

t
i

t
i

t
i

t

∝ −
−

−
1

1

1

( | ) ( | )
( | , )

y x x x
x x y  

(11)
 

    The sketch of derivation given above yields the 
components necessary for a particle-based ap-
proximate solution to the sequential fi ltering 
problem. In the Monte Carlo particle context, 
the state space is represented by  N  particles, or 
support points {  xt

i  ,  i  = 1,  … ,  N } at time  t . The 

nor malized weights {w̃i
t , i    , , }N…=1   represent the 

contribution to the discretization of the posterior 
of each support point at time  t . The set of sup-
port points and associated weights determines a 
random measure   {xi

t , w̃
i
t}N

i=1 . The posterior, there-
fore, is represented by ( Arulampalam  et al. , 2002 ; 
 Ristic  et al. , 2004 , p. 39)

   
p(xt |y1:t) ≈

N

∑
i=1

w̃i
t δ (xt −xi

t),
 

(12)
 

  where  δ (·) is Dirac’s delta ( Maybeck, 1979 , p. 84) 

and the weights,   ̃wi
t  , have been normalized via

   

w̃i
t =

wi
t

∑N
i=1 wi

t
,

 

(13)

 

  such that   ∑N
i=1 w̃i

t = 1 . Furthermore, it can be 

shown that as   N → ∞ , the posterior approxima-
tion  (12)  approaches the true posterior density 
( Crisan and Doucet, 2002 ). 

 The general SIS algorithm consists of simply (a) 
drawing samples   x x x ytt

i
t
i

t
iq∼ ( | , )−1  , (b) calculat-

ing the weights via  equation (11) , and (c) normal-
izing the weights via  equation (13) . Steps (a) – (c) 
are conducted for each particle at each time step, 
and the entire algorithm is applied sequentially 
through time. Therefore, the SIS fi lter algorithm 
can be seen to propagate the support points and 
associated weights (i.e. the random measure 

  {xi
t , w̃

i
t}N

i=1 ), and thus the discrete estimate of the 
posterior  (12) , through time.  

  The SIR fi lter 

 The SIS algorithm has been known for some time. 
Unfortunately, it has also been known that in ap-
plication, the variance of the importance weights 
will increase over time in the SIS algorithm, lead-
ing to degeneracy. The result of degeneracy is that 
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one importance weight will be nearly equal to one, 
while all of the others will be approximately zero, 
yielding a poor representation of the posterior. 
However, a resampling step can be judiciously 
inserted into the SIS algorithm when certain cri-
teria are met in order to counteract degeneracy 
( Ristic  et al. , 2004 , pp. 40 – 41). The main idea of 
resampling is to multiply particles with high im-
portance weights and eliminate those with small 
importance weights. 

  Gordon  et al.  (1993)  developed the SIR fi lter 
as an extension to the SIS algorithm by resam-
pling at every time step and using the transition 
density as the importance proposal density. This 
algorithm was originally called the  ‘ bootstrap ’  
fi lter because it employed a multinomial resam-
pling scheme, which is equivalent to drawing a 
weighted bootstrap resample, with weights given 
by the normalized weights  (13) . There are many 
different ways to resample the particles ( Hol 
 et al. , 2006 ); however, in this paper, we use the 
original multinomial scheme. Conceptually, in the 
resampling step, an integer number of particles, 
  Nt

i  , are drawn based on the magnitude of the 
weight at each support point: if   Nt

i = 0  , the par-
ticle is pruned, while     connotes replication. 

More precisely, the weighted measure     is 

replaced by the uniform measure     such 

that    ; therefore, the weights are 
all equal post-resampling. 

  Table 1  presents the SIR fi lter algorithm in 
pseudo-code. Notice in particular, that when 
the transition density is used as the proposal 
density, the importance weights  (11)  become sim-
ply    . Note also that the weights are 
all uniform after resampling, so     does not 
appear in this equation. Since the form of the 
likelihood is known by assumption, calculation 
of the weights in the importance sampling step is 
straightforward. In the sampling step, a sample 
    may be drawn as follows: (a) draw 
a sample     from the process noise dis-
tribution, then (b) apply the process model  (1)  as 
    ( Ristic  et al. , 2004 , p. 48). This 
SIR algorithm is used as the non-linear fi lter in 
the yield analysis that follows.     

 Finally, approximating integral quantities such 
as expectations based on the posterior at any 
given time period becomes simple under the SIR 

fi lter. For example, to estimate the general expec-
tation at time  t ,

    
(14)

 

    one would use the approximation based on  equa-
tion (9) 

   
.
 

(15)
 

    Note that such quantities are calculated based on 
the weighted approximation to the posterior  (12)  
prior to resampling ( Ristic  et al. , 2004 , p. 44).   

  Filtering stand yield 

 In this section we show how the SIR particle fi lter 
can be applied to the estimation of stand yield. In 
this problem, the system state is the yield at time 
 t , and the process dynamics are stand growth. 
Measurements enter the system from an inven-
tory. The SIR fi lter propagates the joint posterior 
distribution in the form of  equation (12) , through 
time. It is important to note that the system state 
can be multivariate, as outlined in the problem 
statement. For example, it could be a simple com-
patible growth and yield system in the spirit of 
 Clutter (1963) , or something more complicated 
with more state variables. However, because it is 
helpful to the understanding of the fi lter imple-
mentation, here we restrict attention to one state 
variable, basal area. 

  Frothingham (1914)  presents several yield ta-
bles for fully stocked eastern white pine stands 

 Table 1:      SIR particle fi lter algorithm  

   for   i  = 1: N                   Initialize the fi lter  

              ~   p ( x  0 ) 
  for   t  = 1: T  {              For each time period  
          for   i  = 1:  N  { 
                  Sampling step …   

                 Draw     
                  Importance sampling step …   
                 Calculate     
         } 
          for   i  = 1:  N  
                 Normalize the weights via  (13)  
          Resampling selection step …   

         Resample from     
 }  
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in different quality classes. A Chapman – Richards 
yield model ( Pienaar and Turnbull, 1973 ) was fi t-
ted to the basal area yields in the lowest quality 
class given ( Frothingham, 1914 , Table 5). The 
model is

   

  where  t  0  is the initial time and  A ,  k  and  m  are pa-
rameters. The fi t of the Chapman – Richards yield 
model to the Frothingham yield data (not shown) 
was nearly perfect. The differential form of this 
yield equation is given as

   
  where the parameters     and     
are determined from the parameter estimates 
of the fi tted yield curve; viz.    , 
    and    . 

 The state space formulation of the dynamics 
equations given in  equations (1)  and  (2) , can be 
applied to this model as

   
  where the measurement equation is a simple lin-
ear random walk and the vector state notation 
has been retained for consistency, even though 
the current problem is scalar. To complete the 
probabilistic formulation of the state space model 
as given in  (3)  and  (4) , the errors are assumed to 
be normally distributed, yielding

    
(16)

 
  
    (17) 
  where  Q   t    − 1  and  R   t   are the associated variances 
(or, more generally covariance matrices when 
 n x   > 1 or  n y   > 1). 

  Simulated yield example 

 In order to apply the particle fi lter with the model 
given by  equations (16)  and  (17) , the variances 
in both densities as well as the initial condition 
require quantifi cation. The SE from the non-
linear least squares fi t of the Chapman – Richards 
model can be used for the process noise variance 
in  equation (16) ; that is  Q   t   = 32,  t  = 1,  … ,  T . The 
measurement variance could come from the SE of 

a forest inventory, such as a periodic stand assess-
ment, and need not be from permanent plots. For 
this example, we simply set  R   t   = 100,  t  = 1,  … , 
 T , yielding an approximate error of 10 ft 2  ac  � 1  
(2.3 m 2  ha  � 1 ). In both instances, we have made 
the simplifying assumption that the variance is 
constant through time; however, this is not neces-
sary as will be made clear later, but is only done 
for expedience. The initial condition was drawn 
from a density according to the yield equation 
with appropriate age, corrupted by a Gaussian 
disturbance with the variance equal to the pro-
cess noise variance. 

  Figure 1  presents a single 50-year simulation 
generated using the state space model described 
above. The circles denote the true system state in 
terms of basal area, the quantity we are trying to 
estimate and is normally (outside of simulation) 
unknown. Also shown are the estimates from the 
SIR fi lter using  N  = 1000 particles. The particle 
approximation of the posterior given in   (12)  is 
used with  equation (15)  to calculate fi lter-based 
estimates such as the mean and variance. In  Fig-
ure 1 , the weighted mean estimate is shown as 
the solid line, while the maximum  a posteriori  
(MAP) estimate is represented by the dot – dash 
line. The MAP estimate is seen to be almost in-
distinguishable from the mean largely due to the 
Gaussian assumptions and the mildly non-linear 
form of the process dynamics. The MAP estimate 
was calculated by fi tting a weighted kernel den-
sity estimator with Gaussian kernel ( Silverman, 
1986 , p. 43) to the posterior representation  (12)  
at each time period. The shaded area shows the 
95% posterior or credible intervals, as estimated 
from the  approximation (12) . As mentioned ear-
lier,  Ristic  et al.  (2004 , p. 44) note that all such 
quantities should be calculated prior to resam-
pling, as done here.     

 The top panel in  Figure 1  shows the SIR fi lter 
results when yearly measurements are available. 
The simulated states are seen to wander about the 
model yield line due to the addition of process 
noise. The measurements behave similarly, with 
the addition of measurement (i.e. sampling) vari-
ability. The objective in fi ltering is to estimate the 
unknown states using noisy measurements. We 
consider the fi lter successful if the posterior inter-
vals capture the unknown states. In this example, 
this happened 90% of the time (fi ve were missed). 
The mean estimates from the fi lter are  ‘ corrected ’  
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by the measurements, but only to a certain ex-
tent, which is based on the uncertainty in the like-
lihood. Consider, for example that what appears 
to be an aberrant measurement at  t  = 15 pulls the 
trajectory down, but does so only slightly rela-
tive to the measurement. This shows the fi lter’s 
robustness to poor inventory information in such 
circumstances. 

 The correction mechanism just described can be 
illustrated by plotting all of the densities used in 
the fi lter at a given time step. This has been done 
for a more well-behaved measurement at  t  = 30 in 

 Figure 2 . The likelihood is centred about the mea-
surement at 238 ft 2  ac  � 1 , which is higher in basal 
area than almost the entire transition prior would 
represent. Indeed, the prior is centred in an area 
of very low likelihood. Because the likelihood es-
tablishes the weights in the SIR fi lter, the vast ma-
jority of the prior gets down-weighted by the low 
weights, while the upper tail of the prior receives 
higher weight. The result is the posterior  p ( x   t  | y  1: t  ), 
which has shifted towards the observation. In this 
particular case, the shifting produced a correction 
in the direction of the true state (225 ft 2  ac  � 1 ), 

  

 Figure 1.      Trajectory of simulated white pine basal area yield. In both panels, the measurements are denoted 
by the plus, while the true states are circles. The shaded area marks the 95% credible intervals. The solid 
line is the SIR fi lter estimate of the mean and the dot – dash line is the MAP estimate based on  N  = 1000 par-
ticles. The deterministic yield equation  B t   is shown as the long-dash line. In the top panel, measurements are 
yearly, while in the bottom they are periodic at 5-year intervals, with bars denoting missing measurements. 
(Note: 1 ft 2  ac  � 1  equals 0.2296 m 2  ha  � 1 .)    
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which falls between the mean and MAP estimates 
for the posterior densities. Notice that resam-
pling tends to exaggerate the modes and humps 
in the weighted representation of the posterior. 
Both representations of the posterior are approxi-
mately normal in overall shape, but have devel-
oped slight bimodality and humps due to the 
weighting of the prior. In cases where the likeli-
hood and the prior are more closely aligned, the 
multiple modes will disappear and the posteriors 
will be approximately Gaussian in shape. Addi-
tionally, increasing the number of particles may 
tend to smooth the densities and more closely ap-
proach Gaussian in appearance. Notice also that 
the posterior has smaller variance than the prior: 
the standard deviation for the posterior is 6.4 ft 2  
ac  � 1 while that for the prior is 7.4 ft 2  ac  � 1  (1.47 

and 1.7 m 2  ha  � 1 , respectively). This is typically 
the case when the inventory provides relatively 
precise information.     

 Unfortunately, it would be a rare situation for 
forest managers to obtain yearly measurements 
from an annual inventory; more generally, mea-
surements are available periodically. The bot-
tom panel in  Figure 1  shows a more realistic 
estimation run of the SIR fi lter, where periodic 
remeasurements enter the record every 5 years. 
In the absence of measurements, the SIR fi lter 
becomes a sequential reapplication of sampling 
from the prior ( Doucet  et al. , 2000 ). This is be-
cause the rest of the algorithm depends on the 
weights, which cannot be calculated when mea-
surements are missing ( Table 1 ). There are two 
salient points to be noticed in this fi gure. First, as 

  

 Figure 2.      Illustration of the various SIR densities at time  t  = 30 from the top panel in  Figure 1 . A kernel 
density estimator was applied to the transition prior (dashed), posterior prior to resampling (dot – dashed) 
and the resampled posterior (solid), with the circles showing the resampled particles associated with this 
density. The likelihood is denoted as the shaded region and is plotted over the support of the prior (plus) 
and has been scaled to the prior for illustration. The leftmost two arrows (coincident) denote the means for 
both posterior representations; the next denotes the true state, with the following two denoting the weighted 
and resampled MAP estimates, respectively, and the rightmost arrow denoting the measurement. (Note: 1 
ft 2  ac  � 1  equals 0.2296 m 2  ha  � 1 .)    
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the time increases since the last received measure-
ment, the credible intervals (now based only on the 
transition prior) become wider. When a new mea -
sure  ment is recorded  –  a new inventory taken  –  
the likelihood adjusts the prior density as dis-
cussed above and the posterior intervals narrow. 
Second, notice that in the absence of measure-
ments, the fi lter mean and MAP estimates tend 
to track approximately parallel to the underlying 
yield model. An example of the value of the mea-
surement correction occurs at  t  = 35. At  t  = 31, 
the true state begins a slow decline in basal area, 
but the fi lter continues to estimate on the high 
side, as there has been no external input signal-
ling that any change to the system has occurred. 
The widening of the intervals still catches the true 
state until  t  = 33, when basal area has declined to 
a point where the intervals fail to cover the true 
state at the 95% level for the next two periods. 
The new measurement at  t  = 35 has appropriately 
adjusted the prediction trajectory, resulting in the 
true state’s inclusion within the posterior interval 
again. The credible intervals caught the true state 
92% of the time (four missed) over all time peri-
ods in this particular example. 

 The rates at which the posterior intervals cap-
tured the true states are slightly lower in the sim-
ulation above than the nominal coverage rate of 
95%. To determine whether the number of par-
ticles used in the above simulation was adequate, 
a Monte Carlo experiment was performed. Series 
of length  T  = 50 were simulated 100 times for 
each of  N  = 50, 100, 250 and 500 particles. The 
results were coverage rates of 90.9%, 93.1%, 
94.4% and 94.9%, respectively. Therefore, for 
this particular set of models and variance pa-
rameters, somewhere between  N  = 250 and 500 
particles should result in approximate nominal 
coverage. Root mean square error analysis based 
on the same set of simulations supported this 
conclusion. The fact that the rates in the exam-
ple above were slightly lower is simply due to a 
chance selection of the particular trajectory, since 
the number of particles ( N  = 1000) was more 
than adequate.  

  Updating permanent growth plot estimates 

 In this section, the SIR fi lter is applied to a single 
permanent growth plot with records dating back 

over 40 years, to illustrate fi lter estimation on 
real data. The plot is 0.1 acre (0.4 ha) in size, 
and is part of an eastern white pine growth study 
established in the 1950s throughout southern 
New Hampshire known as the Hatch Study. The 
Frothingham growth and yield formulation fi tted 
previously is used again to show how the fi lter 
will correct aberrant predictions when modelled 
growth is somewhat optimistic. The same correc-
tion mechanism is at work here through the SIR 
fi lter as in the simulation example, but the true 
state of the stand basal area is now unknown. 

 The top panel in  Figure 3  presents the trajectory. 
The fi gure shows the somewhat erratic remeasure-
ment schedule adopted with anywhere from 1 – 6 
years lapsing before subsequent remeasurements 
were taken. Note that the stand measurements 
plot well below the Frothingham yield curve, im-
plying that the growth predictions will indeed be 
optimistic. The SIR fi lter was run on these data 
with the same assumptions as in the previous 
simulation; however, since there is only one plot, 
the measurement variance,  R   t  , is assumed to be 
composed solely of measurement error. Regard-
ing the fi lter mean and MAP estimates, the op-
timism of the Frothingham yield curve is seen to 
be especially true early in the trajectory where the 
slope of the yield curve is more severe. However, 
after  t  = 26, the growth of the stand and model 
predictions are more closely aligned. Notice that 
when a prediction is corrected by a new measure-
ment, the posterior estimate is drawn towards 
the measurement, but they do not coincide. Ide-
ally, the correction would be less dramatic with 
a more suitable growth model (e.g. in the previ-
ous simulation example). However, this example 
illustrates that even an optimistic growth model 
can be used in this setting, because an estimate of 
the probability distribution of the state is being 
propagated, providing a degree of belief in our 
estimate, rather than simply the stand mean from 
a deterministic growth projection.     

 Suppose, alternatively, that the perceived bias 
associated with the Frothingham growth equation 
is determined to be too extensive when applied to 
these data. In this case, the process noise compo-
nent can be adjusted in an attempt to correct the 
bias. For example, the bottom panel in  Figure 3  
shows a run of the SIR fi lter with everything the 
same, except that the process error distribution 
is now assumed to be    . The variance 



 PROPAGATING PROBABILITY DISTRIBUTIONS OF STAND VARIABLES 413

is still the same; however, a 2-ft 2  ac  � 1  (0.46 m 2  
ha  � 1 ) downward adjustment on average has been 
made through the random error component. This 
adjustment could be approximated by comparing 
the recorded growth between two periods with 
that proposed by the Frothingham model and, in 
general, need not be constant over time; however, 
here it was simply estimated by eye for illustra-
tion. Notice how a simple small change has led 
to an adjustment in the particle trajectories such 
that the mean and MAP estimates no longer have 

a  ‘ sawtooth ’  form (as a result of the optimistic 
growth), but rather, more closely conform to the 
growth trajectory of the measurements. However, 
even though the fi lter trajectories align well with 
the measurement trajectory for a few periods, the 
intention was not to match the measurements, 
since they are assumed to be corrupted with noise, 
but simply to adjust the overly optimistic growth 
produced by the Frothingham model. 

 The non-uniform nature of the remeasurement 
periods in this example should serve to illustrate 

  

 Figure 3.      Single Hatch plot trajectory of white pine basal area yield from 40 years of remeasurements. Top 
panel trajectory has no bias correction; bottom panel trajectory has process model bias correction with 
   . The measurements are denoted by the plus with bars at the fi gure base denoting missing 
measurements; the initial state is shown as a circle. The shaded area marks the 95% credible intervals. The 
solid line is the SIR fi lter estimate of the mean and the dot – dash line is the MAP estimate using  N  = 1000 
particles. The deterministic yield equation  B t   is shown as the long-dash line for comparison. (Note: 1 ft 2  
ac  � 1  equals 0.2296 m 2  ha  � 1 .)    
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that the fi lter does not require an exact periodic 
measurement schedule. Additionally, as in the 
simulation example, notice that the probability 
intervals widen the further out in time the predic-
tion gets from the past measurement. One very 
simple method for planning a future remeasure-
ment using such probabilistic estimates would 
be to schedule the inventory when the intervals 
get past some tolerable degree of error  –  this rate 
may be set somewhat higher with a mismatched 
growth model like the one used here if left uncor-
rected. 

  Figure 4  illustrates how the form of the esti-
mated densities change over time. The density at 
 t  = 28 is the posterior density and is nearly nor-
mal. In the absence of measurements, the predic-
tion densities distort, spread and are translated as 
they proceed through time ( Ristic  et al. , 2004 , p. 
4) due to compounding of the uncertainty in the 
predictions. When the new measurement is as-
similated at  t  = 35, the posterior density is again 
nearly normal, more highly peaked, and has much 
smaller variance.     

 It should be clear from these examples that the 
value of sequential Monte Carlo methods lies 
not only in the probabilistic propagation of the 
state but also in the fact that such methods offer 
a general methodology for updating inventory 

projections on permanent remeasured growth 
plots with the latest measurements. In the general 
fi ltering literature, this is often referred to equiva-
lently as data assimilation or data – model fusion. 
A general inventory-updating scheme can be envi-
sioned by running a sequential fi lter on individual 
permanent growth plots where the state variables 
might be, for example the basal area, number of 
trees, or volume, at each plot. In a large-scale in-
ventory, fi lters could be run independently, one 
per plot, since the spatial covariances between 
plots would probably be negligible. Alternatively, 
the state vector might be composed of the state 
variables from many plots, and the covariances 
estimated, either as part of an adaptive scheme or 
outside the fi lter. There is no restriction in either 
case on when the measurements are recorded on 
the individual plots; indeed, only a portion of the 
plots might be remeasured in any particular year.   

  Discussion and conclusions 

 Filtering methods owe their genesis to applications 
such as object tracking, where measurements ar-
rive sequentially in real time, often on the order 
of fractions of a second. The fact that the time 
scale is different in forest yield estimation does 

  

 Figure 4.      Estimated probability densities for time periods  t  = 28 through  t  = 35 corresponding to the trajec-
tory in the top panel of  Figure 3 . (Note: 1 ft 2  ac  � 1  equals 0.2296 m 2  ha  � 1 .)    
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not matter, it simply gives forest managers the 
luxury of making adaptive decisions concerning 
the scheduling of events, such as the next inven-
tory, in a more relaxed manner. Because the time 
frame between inventory updates will normally 
be measured in years, it enables the manager 
and biometrician to consider alternate models, 
or even to recalibrate existing models based on 
new sets of measurements in the intervening pe-
riod. Indeed, the luxury of time might even allow 
propagating future state estimates based on some 
new fi ltering algorithm that has been developed 
in the interim. 

 The SIR particle fi lter described here is only 
one in a class of general non-linear fi lters referred 
to earlier as suboptimal. While the appellation 
 ‘ suboptimal ’  may sound less than desirable, es-
pecially when applied to a statistical estimation 
technique, as is explained more fully in  Ristic 
 et al.  (2004 , Chapter 2), it is used because there 
is no single overall solution method to the general 
non-linear non-Gaussian fi ltering problem. In 
this sense, suboptimality is not something to be 
shunned, it is the best one can do given the cir-
cumstances. In the case of linear Gaussian prob-
lems, the Kalman fi lter can be used and is optimal 
in the minimum mean square error sense. For the 
general non-linear fi ltering problem, particle fi l-
ters are the most fl exible because of their ability 
to handle various error distribution models. This 
fl exibility does, however, come with an associ-
ated computational cost  –  for as the dimension 
of the state space increases, so too the number 
of particles must increase to adequately cover 
the support of the state space in this higher di-
mensional problem ( Gordon  et al. , 1993 ).  Daum 
and Huang (2003)  have shown that the compu-
tational cost of the SIR fi lter can indeed be high 
as the state dimension increases. However,  Daum 
and Huang (2003)  note that a well-designed fi lter, 
with conditional densities close to Gaussian and 
choice of a good proposal distribution (which 
is a component of fi lter design) can mitigate this 
cost substantially, an observation echoed by 
 Ristic  et al.  (2004 , p. 59) and elsewhere. Research 
into alternative proposal distributions has pro-
duced numerous versions of the particle fi lter and 
is a subject of continuing intense research that 
will not be discussed further here, the interested 
reader may consult  Ristic  et al.  (2004 , Chapter 3) 
for a recent overview. 

 The so-called curse of dimensionality probably 
will not be a major concern in most forest growth 
and yield applications for two reasons. First, the 
state space in stand-level problems is often small, 
made up of a few state variables characterizing the 
stand such as basal area, number of trees, volume 
and the like; and second, most problems encoun-
tered will undoubtedly have conditional densi-
ties that are nearly Gaussian, as in the examples 
above (assuming Gaussian noise). Moreover, if 
need be, algorithms exist for parallelizing particle 
fi lters, using specially designed resampling steps 
that can be run in parallel, to help ameliorate any 
burdens associated with large  N  ( Hegyi  et al. , 
2007 ). Needless to say, when real-time sequential 
estimation is measured in years, rather than in 
seconds, computational time becomes somewhat 
of a moot point; even if millions of particles were 
used, estimation would still take a small fraction 
of the time available for forest planning. 

 The overall fl exibility of the fi ltering approach 
owes much to its original formulation with linked 
state evolution and measurement equations. This 
allows the incorporation of two main sources of 
variability inherent in all coupled inventory and 
growth projection schemes: sampling error and 
model uncertainty. In theory, additive measure-
ment errors  n   t   are the difference between the 
measurements and the true unknown value of the 
state as related through  h   t  , which may be non-linear. 
In our examples, the measurement equation is 
a linear identity function, so that the measure-
ment errors represent the difference between the 
measurements and the unknown state. The as-
sumption was that these errors were zero mean, 
Gaussian. This assumption implies that there is 
no bias in the estimation of the states from the 
measurements. Inasmuch as the SE from a forest 
inventory provides information about the vari-
ability of the measurement estimate from the true 
unknown population mean (i.e. the unknown 
state), its use as the variance component seems 
reasonable. However, in the case where other er-
rors (e.g. classifi cation) might also be acting upon 
the measurements, possibly even in a biasing 
manner, the general error structure for the mea-
surement equation can be used to incorporate 
these other sources and possible biases as well. 

 In addition, there is no consistency restriction 
on measurements, implying that they must al-
ways derive from an inventory with similar goals 
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in precision. For example, returning to the bot-
tom panel of  Figure 1  at  t  = 30, recall that mor-
tality due to some event can be inferred, since the 
true state is decreasing. Perhaps this decline has 
been noticed by the forest manager. Then it is 
trivial to incorporate information from an aux-
iliary estimate during the interim, perhaps from 
a basal area walk-through count, or some other 
source like recently fl own photography, with as-
sociated variance  R   t   applied. This variance es-
timate would likely be higher than that from a 
normal inventory, both due to the fact that the 
stand may be less homogeneous from the mor-
tality and because the purpose of the inventory 
would be for a quick update rather than a full 
stand examination. The point is that measure-
ment updates need not always come from a full 
inventory and can be done at any time, yielding a 
very fl exible system. 

 Similar advantages apply to the process model 
component of the state space formulation. For 
example, bias in the process model can be accom-
modated by specifying a Gaussian or other dis-
tribution that is not assumed to have zero mean, 
as in the Hatch white pine example. In addition, 
notice in  equation (1)  that all components are 
time dependent, including both the model and the 
noise variance. This structure allows for different 
model formulations, if desired, at different time 
periods, with associated changes in variance. This 
could be as simple as external model recalibra-
tion based on the latest information or as exten-
sive as a complete change in model formulation. 
Indeed, recalibration need not be external to the 
fi lter, as the application of fi ltering methods is not 
limited solely to state estimation but can include 
model parameters as well. In general, fi lters have 
been applied in various ways to the estimation 
of model parameters in a sequential manner. De-
pending upon the complexity of the models and 
their ability to match the process under consid-
eration, fi lter-based parameter estimates may be 
approximately constant over time requiring little 
adjustment or be adjusted like the states, yielding 
time-varying parameter trajectories. An example 
where an unscented Kalman fi lter was used to 
estimated the parameters of a process model, in 
addition to the states, based on eddy covariance 
measurements ( Baldocchi, 2003 ) is found in  Gove 
and Hollinger (2006) . The unscented Kalman fi l-
ter is closely related to the particle fi lter described 

here in that it is a general non-linear fi lter. They 
differ primarily in the underlying sampling mech-
anism. In the particle fi lter, sampling is based on 
many particles generated through Monte Carlo 
methods, while in the unscented fi lter, a small de-
terministic sample of the state space is taken at 
each time period structured in such a way that 
it captures the mean and covariance of the state. 
Relatedly, in linear Kalman fi lter applications 
to tree-ring studies, the differentiation between 
state variables and parameters is often blurred, 
because the models are of simple linear regres-
sion form with process mean and slope vary-
ing through time ( Van Deusen 1991 ;  Gove and 
Houston 1996 ). 

 State space models are known by various 
names including hidden Markov models ( Cappé 
 et al. , 2005 , p. 4). The latter derives from the 
fact that the value of the state may be hidden, 
or unknown, coupled with the Markov assump-
tion discussed earlier. In the examples presented 
here, the true value of stand basal area per unit 
area is unknown, but is estimated from measure-
ments on the same variable. This need not be so, 
the state itself can be unmeasurable (or hidden), 
for example in the case of stand biomass, and the 
measurement would then be related to this quan-
tity at time  t  via the measurement equation  h   t  . 

 The yield model used here was of simple struc-
ture for pure even-aged stands based on the 
Chapman – Richards function. More complicated 
growth and yield models could have been used. 
Systems of equations common in forest growth 
prediction on the stand level could easily be ac-
commodated. In models where mortality is ex-
plicitly accounted for, it would also become a 
state variable. In inventory update situations 
based on temporary rather than permanent plots, 
which yield components of change, mortality 
would more naturally fi t the description of a hid-
den state variable, to be inferred from the process 
model, but not necessarily measured directly in 
the inventory. In addition, rather than applying 
an  ad hoc  bias correction as was done here for 
illustration, a more appropriate growth model 
would serve to align the dynamic prior with the 
true posterior. Other fi lter-based methods that 
would also help accomplish this involve exten-
sions to the basic SIR fi lter such as choosing dif-
ferent proposal distributions ( Ristic  et al. , 2004 , 
p. 55). 
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 As detailed in  Ståhl  et al.  (1994)  and  Nyström 
and Ståhl (2001) , the impact of categorizing the 
stand in terms of its probable state values infl u-
ences how decisions might be made with respect 
to scheduling of treatments or inventories. Both 
studies present decision criteria such as expected 
loss, and other quantities, based on posterior in-
tegrals. The integrals involved are naturally of the 
form  (14) ; therefore, they may be approximated 
at any given time  t  from the particle fi lter state 
estimates using  equation (15) . Again, this par-
ticle approximation yields a tractable solution to 
problems where the posterior is intractable, or 
where the resulting integrals are diffi cult and may 
also be intractable. 

 The SIR fi lter is one example of a large class of 
similar fi lters for solving non-linear non-Gaussian 
sequential estimation problems. Its utility in prob-
lems concerning probabilistic state estimation 
of forest stand variables has been demonstrated 
using simple examples of basal area yield. Use of 
such methods allows the forest manager to com-
bine model predictions and measurement updates 
of various forms into an integrated system. The 
Markovian assumption states that it is unneces-
sary to keep the past sequence of states beyond 
 t   −  1 when estimating  x   t  . This assumption  –  which 
forms the basis for the majority of important 
fi lters  –  seems quite logical in forest dynamics as 
most growth models employ it implicitly; that is 
growth projection proceeds sequentially based on 
the most recent measurement (or prediction) only, 
and not based on estimates further back in time. 
In this sense, forest growth is envisioned in gen-
eral as a short-memory process. Therefore, not 
only does the fi ltering approach make probabilis-
tic sense but also it is in keeping with our current 
understanding and modelling of the biology of 
the system. Lastly, the particle approximation of 
the posterior yields an approximation to general 
expectations based on the posterior that would 
be diffi cult or intractable to solve analytically. 
The result is not only a general state estimation 
mechanism but also a methodology that provides 
the foundation for decision making under uncer-
tainty as well.  
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