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Abstract A better understanding of scaling-up

effects on estimating important landscape character-

istics (e.g. forest percentage) is critical for improving

ecological applications over large areas. This study

illustrated effects of changing grain sizes on regional

forest estimates in Minnesota, Wisconsin, and Mich-

igan of the USA using 30-m land-cover maps (1992

and 2001) produced by the National Land Cover

Datasets. The maps were aggregated to two broad

cover types (forest vs. non-forest) and scaled up to

1-km and 10-km resolutions. Empirical models were

established from county-level observations using

regression analysis to estimate scaling effects on area

estimation. Forest percentages observed at 30-m and

1-km land-cover maps were highly correlated. This

intrinsic relationship was tested spatially, temporally,

and was shown to be invariant. Our models provide a

practical way to calibrate forest percentages observed

from coarse-resolution land-cover data. The models

predicted mean scaling effects of 7.0 and 12.0% (in

absolute value with standard deviations of 2.2 and

5.3%) on regional forest cover estimation (ranging

from 2.3 and 2.5% to 11.1 and 23.7% at the county

level) with standard errors of model estimation 3.1

and 7.1% between 30 m and 1 km, and 30 m and

10 km, respectively, within a 95% confidence inter-

val. Our models improved accuracy of forest cover

estimates (in terms of percent) by 63% (at 1-km

resolution) and 57% (at 10-km resolution) at the

county level relative to those without model adjust-

ment and by 87 and 84% at the regional level in 2001.

The model improved 1992 and 2001 regional forest

estimation in terms of area for 1-km maps by 15,141

and 7,412 km2 (after area weighting of all counties)

respectively, compared to the corresponding estimates

without calibration using 30 m-based regional forest

areas as reference.
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Introduction

Although scaling and its effects on land cover

identification is not a new topic, it is still a

challenging and core issue in modern ecological

studies across multiple scales (Turner 1989; Levin

1992; Goodchild and Quattrochi 1997; Cohen and

Justice 1999; Running et al. 1999; Wu and Hobbs

2002). Landscapes are complex systems having a
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hierarchical structure where dominant patterns and

processes exist at specific scales (O’Neill 1988;

Wu and Marceau 2002; Hall et al. 2004). A more

general and widely accepted definition of scaling in

ecology and earth science is the translation of

information between or across spatial or temporal

scales or organizational levels (Turner et al. 1989;

Bloschl and Sivapalan 1995; Wu 1999; Saura 2004;

Wu and Li 2006). Thus, the scaling-up process

(including changes in sensor spatial resolution, or

grain size) inevitably alters representation or under-

standing of ecological patterns and processes (or

both) within a given entity of interest (Jelinski and

Wu 1996; Buyantuyev and Wu 2007) and can bring

errors or uncertainties in discovering the ‘‘true’’

conditions observed at finer scales (Katz 2002; Li and

Wu 2006). However, in some cases, investigators or

decision makers are more interested in knowing how

the scaling-up process affects the estimation of a

given attribute across the landscape, such as forest

area or percentage of coniferous forest, rather than

changes in spatial arrangements of forest (vs. non-

forest), especially for large area ecological applica-

tions often relying on satellite-derived products at

coarser resolutions (e.g. 1-km or larger).

Comparisons between existing vegetation cover

maps obtained from conventional methods suggest

that the area estimates for major vegetation types

vary substantially because of differences in classifi-

cation methods, data sources, and the sample size of

the specific parameters used to separate vegetation

classes (even if the same classification approach has

been adopted) (Townshend et al. 1991). For example,

estimated areas of global forestland have varied from

about 30 million km2 to over 70 million km2 for a

similar time (Ajtay et al. 1979; Emanuel et al. 1985).

Such variations can significantly affect many ecolog-

ical analyses and conclusions related to total forest

area over large areas, such as forest production,

resource assessment, carbon storage, and greenhouse

gas inventories (Heath et al. 1996; Smith and Heath

2007; USDA 2007). Discrepancies in area estimates

also make any comparison attempts over time

difficult (Smith et al. 2006; Zheng et al. 2007).

Rapid development of remote sensing techniques

in recent decades provides alternative sources for

land cover classification at various scales (Tucker

et al. 1985; Cohen et al. 2001; Vogelmann et al.

2001; Friedl et al. 2002). Satellite-based remote

sensing data have been shown to have considerable

potential for monitoring land-cover change using

relatively consistent methodology because satellites

often cover large areas with high revisitation fre-

quencies (Goetz et al. 2000; Running et al. 2000;

Bresee et al. 2004). Even with the same methodology,

estimates in forest area using satellite-derived land-

cover maps can differ notably because of differences

in sensor spatial resolution (Hansen et al. 2000;

Vogelmann et al. 2001; Friedl et al. 2002; Homer

et al. 2004), but also for other factors such as spectral,

temporal, and radiometric characteristics of various

sensors (Strahler et al. 1986; Woodcock and Strahler

1987).

No matter what method (traditional or remote

sensing based) is used for producing land-cover maps,

degree of detail in land-cover classification usually

decreases while grain size of dataset increases as the

study area sizes increase. While moderate resolution

land-cover datasets (30-m Landsat TM and ETM?

data) are appropriate for local land use planning,

coarse resolution datasets such as 1-km Advanced

Very High Resolution Radiometer (AVHRR) and

Moderate Resolution Imaging Spectrometer (MODIS)

land-cover products are usually well-suited for eco-

logical analysis over large areas (Vogelmann et al.

2001). Land-cover maps developed using moderate

resolution are generally more accurate and reliable

because the maps can be calibrated or verified using

existing inventory data or field sampling, while

training data are lacking for those developed using

coarse resolution. However, coarse-resolution data are

often preferable for large-scale ecological applications

for three reasons. First, they are ideal for efforts that

require complex computations and manipulations

using much less memory, space, and computing time.

For example, there are about 9 billion 30-m pixels over

the conterminous U.S. (Homer et al. 2004) whereas the

number of pixels reduces to about 7.8 million at 1-km

resolution. Second, the accuracy and precision for a

given ecological characteristic at a particular location

is sometimes of less interest than the geographic

patterns and trends (Zheng et al. 2003). Detection of

large-scale trends in finer resolution data may require

aggregation of those data after computationally-

expensive processing. Finally, coarse-resolution data

are more useful for examining relationships between

environmental driving variables (e.g. temperature and

precipitation) and the ecological patterns or properties
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of interest that are usually more realistic at coarse

resolution (Lieth 1975; Gower et al. 2001; Zheng et al.

2004a). Using unnecessarily fine-resolution data may

degrade evaluations of relationships (e.g. climate &

vegetation) over large areas because of our lack of

ability to accurately quantify driving variables at finer

resolution.

A recent study suggests a new approach, weighted

sampling net, for rescaling land-cover data (Gardner

et al. 2008). Other studies indicated the estimation of

land-cover percentages from coarse resolution maps

could be improved using a double sampling with

regression estimator approach (Mayaux and Lambin

1997) to retrieve the ‘‘true’’ percentages between a

‘‘controlling’’ factor, which could be measured over

the entire population from coarse resolution data and

the ‘‘target’’ factor (land-cover percentages at a finer

resolution), known as inverse calibration model

(Brown 1982; Moody and Woodcock 1996). The

regression estimator approach relies on the fact that

the estimation of land-cover percentages from coarse-

resolution maps is associated with a systematical bias

caused by scaling effects. The regression approach

was proven more reliable than classical calibration to

correct misclassifications in remote sensing (Czap-

lewski and Catts 1992; Walsh and Burk 1993; Moody

and Woodcock 1995).

While previous studies have demonstrated that

spectral, temporal, and radiometric characteristics of

various remote sensing data, landscape patterns, and

thematic resolution can affect land cover investiga-

tions (Strahler et al. 1986; Woodcock and Strahler

1987; Li and Reynolds 1993; Buyantuyev and Wu

2007), we focus on changes in grain size that play a

substantially important role in estimation and inter-

pretation of landscape attributes and patterns

(Woodcock and Strahler 1987; Moody and Wood-

cock 1994; Turner et al. 2000; Saura 2004; Wu

2004). Whereas thorough discussions on various

concepts of scale and scaling, as well as the method

of describing images using models, have been

illustrated (Strahler et al. 1986; Bierkens et al.

2000; Dungan et al. 2002; Wu and Li 2006), the

hierarchical theory asserts that a useful way in which

to deal with complex, multi-scaled systems is to focus

on a single phenomenon (O’Neill 1988).

The overall goal of this study is to answer the

question: what will be the difference between coarse

resolution and moderate resolution based forest area

estimates? In particular, this study illustrates and

quantifies how changes in grain sizes from 30 m to

1 km and 10 km (focusing on 1 km) affect regional

forest area estimation (vs. non-forest type) based on

county level observations in the three Lake States of

the USA using NLCD land-cover maps.

The specific objectives of this study include: (1)

illustrating how changes in grain size affect forest

area estimates at the regional scale; (2) testing

whether such relationships of scaling effects are

temporally and spatially invariant (although land-

scape patterns and configurations are consistently

changing spatially and temporally); (3) evaluating

whether scaling effects (in relative percent) are

affected by different coordinate systems; and (4)

quantifying the relationship so differences in forest

area estimates associated with changes in grain size

can be quickly estimated based on coarse-resolution

maps using empirical models.

Materials and methods

Study area

The area Michigan (MI), Minnesota (MN), and

Wisconsin (WI), covers approximately 493,800 km2

and ranges from 41� N to 49� N in latitude and from

97� W to 83� W in longitude. The landscapes of the

region include dynamic interactions between the

grasslands of the Great Plains, the eastern deciduous

forests, and the boreal forests of North America.

Dominant forest species are aspen-birch (Populus

tremuloides, Betula papyrifera), northern hardwoods

(Acer saccharum, Acer rubrum, Quercus rubra), and a

mixture of conifers (Pinus banksiana, Pinus resinosa,

Thuja occidentalis, Picea mariana, Abies balsamea)

(McWilliams et al. 2000) extending from east of the

prairie borderlands in MN, through northern WI,

Northern MI, and the northernmost two-thirds of the

southern MI peninsula (Carleton 2003). The region

contains 242 counties with sizes ranging from a few

hundreds to about 17,600 km2 with a mean size of

about 2,020 km2 (Fig. 1). Forest percentages of coun-

ties varied from less than 1% to over 82% with a county

mean forest cover of 28% according to the 2001 NLCD

30-m map (MRLC n.d.) (Fig. 1), providing almost a

full range of percentages to examine grain-size effects

on estimating forest areas across the region.
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Land-cover maps developed from 30-m TM

and ETM? data, and the county map

Designed to meet the broad requirements of federal

agencies and scientific communities for a consistent

national land-cover data set, NLCD was implemented

in 1992 and 2001 using 30-m TM and ETM? data

(Vogelmann et al. 2001; Homer et al. 2004). We

extracted the land-cover maps of 3 states (MN, WI,

and MI) in the Great Lake region from the 1992 and

2001 NLCD maps to develop and test regional

models, not to conduct any comparison or change

detection between the 2 years. Although the classi-

fication methods and systems were not identical

between the 2 years, such effects were minimal in

this study (especially for the broad cover types we

use) because one of the guiding principles in the

NLCD 2001 map was to ensure that the second-

generation land cover product maintained reasonable

compatibility with NLCD 1992 map (Homer et al.

2004). We aggregated the cover types in both years

into 2 broad categories to simplify the analysis

(Buyantuyev and Wu 2007; Li and Reynolds 1993):

(1) forest (e.g. land cover classes 41, 42, and 43), and

(2) non-forest (all the other classes including inland

water).

The 30-m land-cover maps were aggregated to

1-km and 10-km resolutions respectively using

majority rule (ESRI n.d.) that finds the pixel value

that appears most often within the specified windows

(e.g. 1 9 1 km2) and sends it to each of the

corresponding cells as the output grid. This scheme,

compared to other scaling schemes (random or

nearest-neighbor), is more commonly used for scal-

ing up distinct variables derived from remote sensing

(e.g., land-cover data) in ecological studies (Stuckens

et al. 2000; Ahl et al. 2005). Thus, our aggregation is

a label based assignment by a classifier of choice to

pixels at the finer spatial resolution whereas a remote

sensing derived land-cover map at coarse spatial

resolution is spectrally-based aggregation. The

approach of label aggregation, however, is more

widely used (Moody and Woodcock 1994; Wu and

David 2002), likely because spectral aggregation

requires that a classifier be trained at each scale, a

non-trivial task (Ju et al. 2005). The county boundary

map of the region was downloaded from the USA

county map produced by Environmental Systems

Research Institute (ESRI).

Model development and validation

All 2001 NLCD 30-m and the aggregated 1-km and

10-km land-cover maps were overlaid with the county

map to obtain the forest percentages observed at

different spatial resolutions for a given county. We

plotted forest percentages observed at 1 km and

10 km spatial resolutions for all counties (as the

independent variable) against the corresponding dif-

ferences (in %) between 30 m- and 1 km- (or 10 km-)

based forest percentages (as the dependent variable) to

develop scaling-effect models using regression

Fig. 1 Spatial distribution

of forest cover (in gray) at

1-km resolution (to reduce

file size for presentation)

overlaid with county

boundaries in the 3 Lake

States, USA, based on 2001

30-m data from the National

Land Cover Dataset
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analysis (that is, forest percentages from coarse

resolution as X and differences in percentages from

coarse and finer resolutions as Y). The difference (%)

in forest percentages (Percentdiff) calculated between

30 m (as reference) and 1 km based county observa-

tions was defined as: Percentdiff = Fcover%_km -

Fcover%_30 m. The same calculations were conducted

between 30-m and 10-km resolutions. Again, our goal

was focused on answering the question: if we used

coarse resolution land-cover maps (e.g. 1 km or

10 km) for large-scale applications, what would be

the likely percentage of forest cover at 30-m resolu-

tion for the same landscape using forest percentages

from coarse-resolution maps as the predictor?

Although spectral, temporal, and radiometric charac-

teristics of sensors could also affect prediction

accuracy (Strahler et al. 1986; Woodcock and Strahler

1987).

Before the above models (predicting the difference

in % obtained between the 2 spatial resolutions) were

developed we examined the intrinsic relationship

between forest percentages observed from 30-m and

1-km land-cover maps and tested whether the rela-

tionship was spatially and temporally variant in the

region. First, we divided the 2001 observations for all

counties into two groups systematically (i.e. odd ID

numbers vs. even ID numbers). One group was used

for establishing the relationship between 30 m- and

1 km-based forest percentages (not the difference)

and the data in the other group was reserved for a

spatial test of the relationship. Second, we used all

counties’ observations in 1992 for a temporal test of

the relationship. Furthermore, we evaluated whether

scaling effects (the difference in obtained forest

percentages between 30 m- and 1 km-based cover

maps) observed from different coordinate systems

differed significantly. We examined the scaling

effects at the county level between original NLCD

observations in the Albers Equal Area projection and

the observations after being reprojected to a geo-

graphic coordinate system. An intrinsic relationship

and the three tests (spatial, temporal, and projection)

would (1) provide a solid foundation for generating

useful scaling-effect models and (2) increase the

generalization of model applications because land-

cover maps for large scale applications are usually

given in the geographic coordinate system. Whenever

there was a need to convert relative scaling effects (in

%) to absolute forest areas under the geographic

coordinate system, the same and ‘‘true’’ total areas for

each counties as obtained under the Albers Equal

Area projection were used because surface area for

each grain cell varies with latitude due to conver-

gence of the meridians of longitude towards the

poles.

In all cases, standard errors (SE) of model

estimates were calculated as: SE ¼
P

Yiobs�ðð½
YipreÞÞ= n� 2ð Þ�0:5; where Yiobs and Yipre were the

observed and predicted differences in forest percent-

ages between the two spatial resolutions for county i,

respectively, and n was the total number of counties

used in the analysis (Clark and Hosking 1986). We

provided statistical summaries at different adminis-

trative levels to illustrate whether consistent patterns

or trends existed as grain sizes increased from 30 m

to 1 km and 10 km using 2001 observations.

Results

Intrinsic relationship between forest percentages

observed for NLCD-based 30-m and 1-km

resolutions and the related tests

The 2001 data indicated that strong relationships

existed between county-level forest percentages

observed at 30-m and 1-km resolutions (Fig. 2).

The cubic model explained 98.1% of variance

(defined as r2 from regression analysis), suggesting

that if forest percentage of the coarse resolution map

is known, then the forest percentage at a finer

resolution is predictable when other conditions are

kept constant. For example, when observed forest

percentage was zero on a 1-km resolution map, the

corresponding forest percentages at 30-m resolution

map could range from zero to 12% (Fig. 2).

The spatial test using 2001 data in the reserved

group showed that there was a strong relationship

(almost following the 1:1 lines at 1-km resolution)

between observed and predicted forest percentages at

30-m resolution (Fig. 3a) with R2 = 0.979, suggest-

ing the relationship of scaling effect was reasonably

invariant although the model tended to slightly

overestimate forest areas at the low end (towards to

0%) and underestimate forest areas at the high end

(toward 100%) at 30-m resolution. The mean differ-

ence between model predicted and observed 30-m

forest percentages for all counties in the reserved

Landscape Ecol (2008) 23:1119–1132 1123
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group across the region was 2.5% (in absolute value)

with standard deviation (Std.) of 1.8% and SE of 3.1%

(Table 1). The temporal test of the relationship also

showed a strong correlation between observed and

predicted forest area percentages at 30-m resolution

(R2 = 0.975, Fig. 3b) in 1992, suggesting the rela-

tionship of scaling effect was temporally invariant as

well. The temporal validation indicated that the mean

difference between predicted and observed 30-m

forest percentages across the region was 3.0% (in

absolute value) with Std. of 2.2% and SE of 3.8%

(Table 1). Our results suggested that different map-

ping projections had little impact on estimating scale

effects on changes in forest area from 30-m to 1-km

resolutions over large areas as expected with a slope

close to 1 (Fig. 4). The mean difference of scaling

effects for all counties detected between two coordi-

nate systems was 0.6% (in absolute value) with Std.

of 0.8% and SE of 0.6% (Table 1).

Quantifying scaling effects on forest area

estimates based on forest percentages

from coarse resolutions

The highly correlated intrinsic relationship between

forest percentages observed at coarse and fine

resolutions provided the essential prerequisite for

quantifying scaling effects (difference in forest %),

thus, improving forest area estimates across the entire

percentage profile (expressed as fractions from 0 to 1)

using forest percentages obtained from coarse reso-

lution maps (1 km and 10 km) as predictor (Fig. 5).

Forest percentages from coarse resolutions alone

could explain 78% of variance in predicting scaling

effects on area estimation. The SE values of model

estimates were 3.1 and 7.1% for 1-km and 10-km

resolutions, respectively.

Our scaling-effect models indicated that the max-

imum underestimation of forest percentages,

comparing to the 30-m based estimation, were

10.1% for 1-km and 15.7% for 10-km when forest

area percentages obtained from the coarse resolutions

were around 15% while the maximum overestimation

of forest percentages were 9.9 and 27.1% respectively

when forest area percentages obtained from the

coarse resolutions were around 80 and 98% at 1-km

and 10-km resolutions (Fig. 5).

Mean observed differences (in absolute value) in

forest percentages between 30-m and 1-km resolu-

tions were 6.5 and 2.4% at the county- and regional-

level respectively (Table 2). For the calibrated forest

percentages estimated using our model, the mean

differences reduced to 2.4% (63% more accurate than

without calibration) and 0.3% (87% more accurate)

for the corresponding county- and regional-level

estimates. Similar improvements were also achieved

between 30-m and 10-km based estimates with the

mean differences of 13.1 and 2.9% at the county- and

regional-levels respectively (Table 2). After the cal-

ibration, mean forest percentages were 5.6% (i.e.

improvement of 57% closer to the 30-m based

observation) and 0.5% (84% closer) at the corre-

sponding levels. Overall, 77% of counties improved

their forest cover estimates using scaling-effect

models at both 1-km (Fig. 6) and 10-km resolutions

(data not shown).
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Our study suggested that the errors and variations in

forest cover estimates tended to increase as grain sizes

increase (from 1 km to 10 km) when study extent is

kept constant. If the grain size was held constant, mean

differences in forest percentages caused by scaling

effects tended to decrease with less variation as the

study extent (at which the scaling effects were

assembled) increased from county to region (Table 2).

In terms of total regional forest area, our 1-km

scaling effect model improved 2001 estimation by

7,412 km2 (or 60%), compared to the difference (in

absolute value) between the 30-m and 1-km based

estimates before calibration whereas the net improve-

ment for 1992 was 15,141 km2 (Table 3).

Discussion

The above results suggest that strong correlations

exist between forest-area percentages obtained from

different spatial resolutions. The relationship between

different resolutions appears to be spatially and

temporally invariant, at least within our study area.

Variation in coordinate systems seems to have little

impact on identifying grain-size dependent errors in

area estimates.

Our grain-size-effect models provide a simple and

quick tool to improve forest-area estimates from

coarse resolutions with reasonable reliability and

accuracy. Although the best fits of models may vary
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Fig. 3 (a) A spatial

validation of empirical

model by comparing

predicted and observed

forest percentages at 30-km

resolution using

independent 2001 county

data in the reserved group;

and (b) a temporal

validation of empirical

model by comparing

predicted and observed

forest percentages at 30-km

resolution using all county

data in 1992. Each dot

represents a county in the 3

Lake States region
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if the data used for model development are observed

at different scales (e.g. county vs. state), a theoretic

model of scaling effect from a large sample size that

includes ‘all’ possible variations in patch size distri-

butions and spatial arrangements across the entire

cover-percentage (0–100%) profile should show the

smallest effect on forest area estimates at the 50%

cover point. The scaling effect on area estimates

(given 2 types) should increase as the area percentages

at coarse resolutions diverged from 50% in either

direction until reaching peak values (negative or

positive) before declining in absolute value (Fig. 5).

The theoretic curve is also expected to be symmetric

because area gain in one type is equal to the loss in the

other, which should be more suitable for general

application. Our results suggested we could fairly

quantify the grain-size dependent errors in area

estimates using forest-cover percentages observed

from coarse-resolution data alone. However, other

landscape pattern characteristics (e.g. patch size

distributions and spatial arrangements) and spectral

and radiometric characteristics of various sensors

could also function as secondary controlling factors.

The departure of our empirical curves from this

conceptual ideal might be caused by (1) sample size or

study region inadequate to include ‘all’ possible or

reasonable combinations of landscape patch size

distributions and spatial arrangements; and (2) biased

Table 1 Statistics of observed and predicted county forest percentages (%) at 30-m resolution using forest percentages observed

from the NLCD 1-km map as the driving variable for various tests

Description Mean (%) difference r2 Standard deviation (%) Standard error (%) P value

Empirical modela 2.6 0.981 1.9 3.2 \0.001

Spatial testb 2.5 0.979 1.8 3.1 \0.001

Temporal testc 3.0 0.975 2.2 3.8 \0.001

Projection testd 0.6 0.985 0.8 0.6 \0.001

a The model was developed using half each county’s data in 2001
b The model was tested spatially using a different half of the county’s data of 2001 in the reserved group
c The model was tested temporally using all data for counties in 1992
d We calculated the differences in county forest percentages observed between 30-m and 1-km land-cover maps registered to the

geographic coordinate system and Albers projection, respectively, and then examined the relationship of differences detected from

the two coordinate systems

Note: The models presented in this table are not the same as the grain-size-effect models presented in Fig. 5. However, the high

correlations illustrated between 30 m- and 1 km-based forest percentage observations provide a solid foundation to ensure significant

relationships between grain-size effect and forest percentages observed from coarse resolution maps in Fig. 5
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county-level forest cover composition across the

percentage profile (i.e. more than half of counties

across the region had forest percentages \50%). The

increased asymmetry of the 10-km based curve relative

to that of the 1-km based curve suggests that a larger

bias be likely introduced as grain size increases.

One potential problem with our calibration models

was that a county with forest cover of 0% at coarse

resolution would result in some positive forest

percentage after model calibration. Taking the 1-km

model as an example, when forest percentage for a

county was zero from the 1-km map and the actual

forest percentage from the 30-m map was 2.0%

(\half of the model intercept 3.04%, Fig. 5), then the

model could enhance (|6.08 - 2.0| = 4.08%) rather

than reduce the original difference in absolute %

(|0 - 2| = 2%). In general, as spatial resolution of

land-cover map increases it is rare for a county as a

whole to have no forest cover at all except in places

like deserts and bare ground. In our study area, about

18% of counties were observed with 0% forest cover

at 1-km resolution in our study area, but none of them

was 0% at 30-m resolution (minimum of 0.5% in both

years). While the calibrated mean forest percentage

for those zero-percent counties was 6.1% based on

our 1-km model (Fig. 5), the observed mean forest

percentage for the same counties was 3.2%. The

difference of 2.9% was smaller than the SE of model

estimates (3.1%). Furthermore, it would not be

reasonable to use our models in regions where there

is no forest cover or with a very small amount of

forest for the entire region. When the model is

applied to the sublevel of a given study where amount

of forest cover is thought to be significant (e.g. the

Great Lake Region contains about 30% forest cover),

scaling effects estimated at the low end of forest

cover profile could be offset by those at the high end

of the profile at some degree because a symmetric

curve is expected if the sample size is large enough,

at least theoretically, due to the fact that for 2 cover

types, a loss in one type indicates a gain in the other.

Our models in Fig. 5 reflect solely how changes in

grain size affect forest percentage estimate across
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r 2 = 0.776
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r 2 = 0.784

Fig. 5 Comparison of

regional empirical models

(P \ 0.001) using forest

percentages observed from

coarse resolutions (1 km

and 10 km) as driving

variable to predict scaling

effects in terms of

percentage differences

comparing to the

percentages observed from

the 30-m map based on all

counties’ data in 2001

Table 2 Comparisons of observed grain size effects on forest

area estimates (percentage of total land) expressed as differ-

ences (%) between 30-m and 1-km resolutions (= % in 1-km

map - % in 30-m map) and between 30-m and 10-km (=% in

10-km map - % in 30-m map, values in the parentheses) at

various administrative levels at which the scaling effects were

evaluated using the 2001 NLCD map

Scale Changes in grain size Observed difference (%) (%)

Min Meana Max Std.a

County

30 m–1 km -16.7 6.5 13.2 4.2

30 m–10 km -34.3 13.1 42.9 14.9

State

30 m–1 km -1.2 2.6 -4.2 1.5

30 m–10 km -1.7 3.1 -4.4 1.4

Region

30 m–1 km N/A 2.4 N/A N/A

30 m–10 km N/A 2.9 N/A N/A

a In absolute value
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landscapes because it was the only factor manipulated.

Such an effect proves to be projection independent

(Fig. 4), which is desired and useful information for

future studies because land-cover and other necessary

maps (or data) for ecological studies often come from

various sources using different coordinate systems.

For example, boundary maps at various levels from

ESRI and many satellite derived land-cover products

for larger areas are in geographic coordinate system,

NLCD maps are in Albers Equal Area projection, and

the MODIS land-cover maps are in Sinusoidal

projection. The practical significance of this result is

that such models can be used more generally regard-

less of coordinate systems and the results obtained

from various projections are comparable.

Our results suggest when scaling difference (from

30 m to 1 km, or from 30 m to 10 km) is fixed, the

effects (mean difference) and variations (Std.) tend to

decrease at the level the scaling effects were evalu-

ated (Table 1) as study extent increase. In general,

scaling effects tended to be more predictable with

changes in grain size than with changes in extent

(Wu 2004). The overall effect of changes in grain size

on forest estimation could vary from region to region

because of variations in 1) composition of sub-level

forest percentages, and 2) patch size distributions and

spatial arrangements (Moody and Woodcock 1995),

not because of changes in the relationship of scaling

effects. In the other words, effect of changing grain

sizes on area estimation is a universal phenomenon.
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Fig. 6 The percentages were calculated as |CF%_km -

F%_30 m| - |OF%_km - F%_30 m|, where CF%_km was the

calibrated forest percentage from 1-km map for a county,

OF%_km was the original forest percentage observed from 1-km

map, and F%_30 m was the original forest percentage observed

from 30-m map for the county. As a result, counties with

negative % indicate improvements in estimating forest

percentages while those counties with positive % suggest

errors are being introduced. Each dot represents a county data

in 2001

Table 3 Regional forest areas (km2) obtained before and after model calibration based on the 1992 and 2001 NLCD 1-km land-

cover maps, compared to those obtained from the corresponding 30-m land-cover maps (as reference)

Year Reference

area

1-km

before

calibration

1-km after

calibration

Improvement

(absolute

value)

2001 167,983 155,556 172,998 7,412

1992 166,650 149,973 165,114 15,141

The same scaling-effect model in Fig. 5 was applied to both years
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Previous studies have demonstrated that unmixing

methods allow a user to estimate the subpixel

coverage within each pixel category at coarse reso-

lution using linear mixture models (Adams et al.

1986; Settle and Drake 1993; Huguenin et al. 1997).

Compared to the unmixing methods, our approach is

more practical and efficient because it is impossible

to decompose the linear mixture models to calculate

the category ratio within a mixed pixel unless the

spectral radiance of a particular category is known,

which is difficult to determine (Oki et al. 2004). Our

models can improve our understanding and accuracy

in ecological applications related to forest area

estimates over large areas where coarse resolution

data, such as 1-km MODIS and AVHRR derived

land-cover products, are usually more appropriate for

meaningful analyses and efficient processing. For

example, it took more than 55 h (our computer is

equipped with 4 GB RAM and a 200 GB hard drive)

for processing data for the state of MN using ArcGis

at 30-m resolution, but the same operation was

completed in 5 s at 1-km resolution. If scaling effects

can be incorporated quickly and reliably, there are

considerable advantages for using coarse resolution

data in large-scale ecological investigations.

The same concept and methodology from this

study may also be applied to estimate other ecolog-

ical attributes in a similar fashion. For example,

changes in deciduous and coniferous forest compo-

sition caused by changes in grain size could also

affect the outcome and conclusion for a given study if

different models are necessary to distinguish ecolog-

ical properties (e.g. leaf area index and forest

biomass) between these 2 forest types (Fassnacht

et al. 1997; Zheng et al. 2004b). We found that

general forest species compositions (coniferous vs.

deciduous) in 63% of the counties with forest cover at

1-km resolution could be improved using our empir-

ical model established based on cover type

observations. We expected further improvement if

the samples used for model development are col-

lected based on species composition.

Changes in spatial resolution of satellite sensors

can affect estimation of landscape attributes or

properties for both discrete (e.g. land-cover type)

and continuous variables (e.g. percent tree cover,

NPP, and forest biomass) (Hansen et al. 2003; Ahl

et al. 2005; Zheng et al. 2007). Although the majority

rule is commonly used for aggregating discrete

variables, different aggregation methods may be

applied for continuous variables. Furthermore, the

continuous attributes may be rescaled with no effect

on statistical means across geographic extents,

although variance of these estimates does change

(Alexandridis and Chemin 2002; Fang et al. 2004).

Conclusions

Results from this study may have universal impact on

quantifying scaling effects on forest area estimates at

coarse resolutions because such relationships of

scaling effects are likely temporally and spatially

invariant and projection independent, although more

studies on the subject are needed to see if the patterns

would hold in other regions and/or data sets due

to possible differences in composition of forest-

percentage profile, definition of forest land, and

configuration of forest non-forest patch distributions.

The degree of effect increases as grain sizes increase

as long as the study extent is fixed. The scaling

effects at 10-km resolution even after adjustment

(average 5.6% with SE of 7.1% at the county level)

are much higher than an average 2.4% with SE of

6.0% at 1-km resolution. Incorporating scaling effects

on forest area estimates can reduce uncertainties of

any ecological analyses and studies requesting accu-

rate forest-area estimation over large areas.

Furthermore, efficiency of spatial computations is

often polynomially, rather than linearly, related to the

number of pixels over the study areas. For example,

each individual file of a 1-km data set is approxi-

mately 0.09% the size of 30-m data but the

computing time needed for data processing and

analysis may be reduced at a disproportionally faster

rate than that of reduction in data size.

Changes in grain size almost inevitably affect forest

area estimation because land cover is a discrete

variable. The issue deserves more attention as the

study extent of applied ecology increases from local to

globe. The change in forest area for a given entity (e.g.

county, state, and region) at coarse resolution primarily

depends on whether forest cover at the corresponding

fine resolution (30 m) observations is larger or smaller

than 50%. This study provides a simple and practical

method to quantify grain-size effects on forest area

estimates with reasonable accuracy when coarse-

resolution land-cover data are used over large areas.
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