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Abstract We used remote-sensing-driven models to
detect land-cover change effects on forest above-
ground biomass (AGB) density (Mg·ha−1, dry weight)
and total AGB (Tg) in Minnesota, Wisconsin, and
Michigan USA, between the years 1992–2001, and
conducted an evaluation of the approach. Inputs
included remotely-sensed 1992 reflectance data and
land-cover map (University of Maryland) from Ad-
vanced Very High Resolution Radiometer (AVHRR)
and 2001 products from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) at 1-km resolution
for the region; and 30-m resolution land-cover maps
from the National Land Cover Data (NLCD) for a
subarea to conduct nine simulations to address our
questions. Sensitivity analysis showed that (1)
AVHRR data tended to underestimate AGB density
by 11%, on average, compared to that estimated using
MODIS data; (2) regional mean AGB density
increased slightly from 124 (1992) to 126 Mg ha−1

(2001) by 1.6%; (3) a substantial decrease in total
forest AGB across the region was detected, from

2,507 (1992) to 1,961 Tg (2001), an annual rate of
−2.4%; and (4) in the subarea, while NLCD-based
estimates suggested a 26% decrease in total AGB
from 1992 to 2001, AVHRR/MODIS-based estimates
indicated a 36% increase. The major source of
uncertainty in change detection of total forest AGB
over large areas was due to area differences from
using land-cover maps produced by different sources.
Scaling up 30-m land-cover map to 1-km resolution
caused a mean difference of 8% (in absolute value) in
forest area estimates at the county-level ranging from
0 to 17% within a 95% confidence interval.

Keywords Biomass density . Change detection . Land-
cover map . Remote sensing . Total biomass

Introduction

Forest biomass is an important component for
studying ecosystems’ carbon cycles and is one of
key indicators of forest health (Heath and Birdsey
1993; Houghton 1995; Schimel 1995; Sannier et al.
2002; Zheng et al. 2004; Bechtold and Patterson
2005). Quantifying changes of forest aboveground
biomass density over time at large scales is a
necessary step for developing long-term resources
management strategies at regional- and national-
levels. For example, forests can provide a reliable
supply of wood for bioenergy production and wood
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products businesses and reduce human reliance on
non-renewable energy. Fuels reduction in forests
through harvesting and appropriate forest manage-
ment can also reduce wildfire threats and the
staggering costs of fighting those fires (National
Association of Conservation Districts 2007).

Natural and human disturbances or forest manage-
ment practices alter landscape structure, composition,
and configuration all of which affect forest biomass in
terms of both biomass density (Mg ha−1, dry weight
per unit area), and total biomass (Tg, 1012 gram,
density multiplied by forest area for the area of
interest). A change in forest density, even at constant
land area, translates into a change in total forest
biomass. A change in forest area means a change in
total forest biomass even when the forest features the
same biomass density. Therefore, it is important to
quantify and monitor spatial and temporal changes of
land cover, as well as forest ecosystem characteristics
such as forest biomass, for sustainable management of
our natural resources and environment. Moreover,
methodology and scaling-related issues on land-cover
change studies are critical not only for ecological
applications but also for economic and political
implications. Such studies in some cases require using
cover maps generated from different sources due to
data availability.

In recent centuries, land-use change has had much
greater effect on ecological variables of ecosystems
than has climate change (Dale 1997). For instance, the
world’s total forested area decreased from 6,042×
106 ha in 1700 (Houghton et al. 1983) to 4,165×106

in the 1980s (Dixon et al. 1994), suggesting that at
least 30% of the world’s forests have been cleared
since 1700 (not including areas that were cleared and
grew back to forests). In North America, the most
important cause of forest loss from 1850 to 1992 is
cultivation (Ramankutty and Foley 1999). Richards
(1990) estimated that cropland area had increased
fourfold in the last 150 years, from roughly 50 million
hectares in 1850 to 200 million hectares in 1980.
Another study indicated the area of forestland in the
Great Lakes region declined by over 40% in the last
150 years, and much of the remaining area was
converted to early successional forest types as a result
of extensive logging (Cole et al. 2003). However,
much area also remains relatively undisturbed in
wildlife reserves, undeveloped wetlands, national
forests, and national parks. Documenting the extent

and timing of the historical ecological change in such
a diverse region presents a scientific challenge.

The rapid deployment of remote sensing (RS)
satellites and development of RS analysis techniques
in the past three decades has provided a reliable,
effective, and practical way to characterize terrestrial
ecosystem properties (e.g., biomass and production) and
to monitor land-cover changes over large scales (Tucker
et al. 1985; Sader et al. 1989; Turner et al. 1993;
Running et al. 1994; Prince and Goward 1995; Hame
et al. 1997; Hansen et al. 2000; Steininger 2000; Friedl
et al. 2002). However, quantifying effects of land-
cover change on forest aboveground biomass density
estimates at the regional-level over time using optical
RS inputs are still in the rudimentary stage. For
example, saturation phenomenon in optical signal
obscures biomass density estimates in mature forests.
Although LIDAR (Light Detection and Ranging) and
laser RS methods work well for biomass estimates
(Lefsky et al. 1999, 2002; Drake et al. 2002), they are
currently too expensive to be applied over large scales.
Nevertheless, a RS approach provides an additional
tool to monitor forest carbon dynamics and forest
health at regional and national scales.

In this study, we will: (1) quantify the forest
aboveground biomass (AGB) dynamics associated
with land-cover change from 1992 to 2001 in the
three Lake States (Michigan (MI), Minnesota (MN),
and Wisconsin (WI)) of the USA; (2) determine
effects of the scaling process (e.g. from 30-m to 1-km
resolution) on AGB; and (3) illustrate how land-cover
data from different sources affect AGB estimates.
Objectives 2 and 3 were conducted in a smaller
subarea because of data availability constraints.

Methodology

Study areas

The landscapes of the Great Lakes region include the
grasslands of the Great Plains, the eastern deciduous
forests, and the boreal forests of North America,
whose boundaries interact and shift over time. The
area, comprised of MI, MN, and WI, covers approx-
imately 493,800 km2 and ranges from 41 to 49°N in
latitude and from 97 to 83°W in longitude. Climate in
the region is characterized by warm summers (mean
14.8°C); and cold winters (mean −13.0°C) with mean

68 Environ Monit Assess (2008) 144:67–79



annual temperature 1.5°C. Mean annual precipitation
ranges from 500 mm in the west to 800 mm in the
east (Chaplin et al. 2001). Dominant forest species are
aspen–birch (Populus tremuloides, Betula papyrifera)
and northern hardwood deciduous with a mixture of
needle-leaved evergreens (Pinus banksiana, Pinus
resinosa, Picea glauca, Picea mariana, Abies balsa-
mea) extending from east of the prairie borderlands in
MN, through northern WI, northern MI, and the
northernmost two-thirds of the southern MI peninsula
(Carleton 2003).

Stand age data from the last three USDA Forest
Service Forest Inventory and Analysis (FIA) surveys
suggest that the region is still dominated by relatively
young forests with most stands between 30 and 60 years
of age (Schulte et al. 2003). In general, the region

experienced a decrease in forestland and corresponding
increases in non-forest and urban uses, based on 1-km
1992 land-cover map from University of Maryland
(UMD, Hansen et al. 2000), derived from Advanced
Very High Resolution Radiometer (AVHRR, Hansen
et al. 2000), and 2001 land-cover map, derived from
Moderate Resolution Imaging Spectroradiometer
(MOD12Q1, USGS-NASA 2006; Fig. 1a,b).

A subarea covering about 32,700 km2 and crossing
the MN and WI border was chosen (Fig. 1a) to test
how scaling processes of land-cover maps could
affect regional AGB estimates (objective 2) and to
evaluate how different land-cover classification sys-
tems (AVHRR/MODIS land-cover maps vs the Na-
tional Land Cover Data (NLCD) land-cover maps)
could affect the change detection (objective 3).

Fig. 1 Regional land-cover maps for1992 (a) and 2001 (b)
extracted from the global 1-km AVHRR-based land-cover maps
(generated by University of Maryland) and the MODIS land-

cover team, respectively. The original cover types were
aggregated to broad cover types. The square box indicates the
subarea. Other solid lines represent state boundaries
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Land-cover maps and RS data for the entire area

Identifying the effects of sensor differences on ecolog-
ical properties of interest and using comparable land-
cover maps are necessary first steps toward estimating
meaningful changes associated with land-cover dy-
namics. MODIS observations (1999) are probably one
of the most reliable, consistent, and appropriate RS
data sources for terrestrial ecosystems studies at large-
scales for several reasons: (1) the MODIS project
funded by NASA provides various land products
(including land-cover maps and surface reflectance
data) to the public for free, (2) the MODIS project
provides new products annually since 2000 using
consistent methodologies and is likely to be continu-
ing, and (3) MODIS data have higher spectral and
radiometric resolutions than AVHRR data, which are
required for improvements in atmospheric corrections
to remove haze, aerosols and clouds from land surface
images (King et al. 1992; Running et al. 1994).

We downloaded two kind of MODIS data for the
study area from the Land Processes Distributed
Active Archive Center (USGS-NASA, 2006): (1)
surface reflectance of bands 1, 2, and 6 corresponding
to spectral channels of red, near infrared, and middle
infrared, respectively, at resolution of 500 m
(MOD09A1); and (2) land-cover map of 2001
(MOD12Q1, type 2 classification) at resolution of
1 km. The reflectance data were used directly or
indirectly for calculating various indices requested as
model inputs. The land-cover map at 1-km spatial
resolution was used to identify forest area and species
in the region. All reflectance data were resampled to
1-km resolution to match the land-cover map.

An AVHRR-based 1992 land-cover map produced by
the UMD was also used for detecting the cover change
effects on forest AGBbecauseAVHRR data best matches
the spatial resolution of 1-kmMODIS terrestrial products
and becauseMODISwas not available in the early 1990s.
In addition, AVHRR data have been successfully applied
to many terrestrial ecosystem studies over large scales
since 1980s before the MODIS products were available
(Tucker et al. 1984; Townshend et al. 1987; Justice et al.
1986; Malingreau et al. 1985; Nemani and Running
1989; DeFries and Townshend 1994).

We obtained 1992 AVHRR reflectance data online
from the U.S. Geological Survey (USGS, 2006). The
regional land-cover map of 1992 was a subset from
the 1-km global land-cover map generated from

AVHRR by UMD (Hansen et al. 2000). There are
five classification systems in the 2001 MODIS land-
cover map but we follow the type 2 that most closely
matches the classification system of UMD 1992
AVHRR-based land-cover map. Furthermore, we only
used the five forest classes (1–5 of Table 1) that were
identical in both 1992 and 2001 maps to mask out the
forest areas for conducting AGB change analyses. Note
that identical classes do not mean that the different
sensors necessarily registered each land area as the
same class. The five forest types were further merged
to three broad classes and used in this study: (1)
evergreen, (2) deciduous, and (3) mixed forests. All the
remaining classes across the region were classified to
either urban development or non-forest category
(Fig. 1), excluding water.

Land-cover maps and RS data for the subarea

To study the scaling up effects on regional AGB
estimates, high-resolution (e.g. 30 m) land-cover

Table 1 Comparison of global land-cover types between 1992
University of Maryland (UMD) AVHRR-derived product and
2001 MODIS-derived product at 1-km resolution

Class 1992 UMDa 2001 MODISb

0 Water Water
1 Evergreen needleleaf forest Evergreen needleleaf forest
2 Evergreen broadleaf forest Evergreen broadleaf forest
3 Deciduous needleleaf

forest
Deciduous needleleaf
forest

4 Deciduous broadleaf forest Deciduous broadleaf forest
5 Mixed forests Mixed forests
6 Woodlands Closed shrublands
7 Wooded grasslands/

shrublands
Open shrublands

8 Closed bushlands or
shrublands

Woody savannas

9 Open shrublands Savannas
10 Grasslands Grasslands
11 Croplands –
12 Bare ground or sparse

vegetation
Croplands

13 Urban and built-up Urban and built-up
14 –
15 –
16 Bare ground or sparse

vegetation

a Hansen et al. 2000.
b (LP DAAC, 2006)—using type 2 classification.
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maps are needed. The NLCD has been compiled
across the USA including Puerto Rico in 1992, and is
currently being compiled for 2001 as a cooperative
mapping effort of the Multi-Resolution Land Charac-
teristics Consortium (MRLC, 2006). However, the
2001 NLCD map for the three Lake States was not
completed when this study was conducted. As a
result, only land-cover maps in a subarea were
available in both 1992 and 2001. We downloaded
the 1992 and 2001 land-cover maps for the subarea
from NLCD (MRLC, 2006). The subarea was
selected based on what were commonly available in
both years for two reasons: (1) the subarea covered
two states rather than one, and (2) a mixture of forest
and non-forest land cover mosaic was included,
which is typical across the region for detecting land
cover scaling effects on AGB estimates. We scaled
30-m resolution land cover maps up to 1-km
resolution maps using the majority rule (ESRI,
2006), an aggregate function that finds the value that
appears most often within the specified windows (e.g.
1×1 km2 cells) and sends it to each of the
corresponding cells as the output grid. For AGB
simulations at 30-m resolution in the subarea, we used
the same values of the driving variables that were
used for the simulations at 1-km resolution but
disaggregated to 30-m resolution. We did this pur-
posely so that comparison between AGB simulations
conducted at different spatial resolutions within the
same area would reflect solely the effects of the
scaling up process.

Aboveground biomass equations

AGB was estimated using empirical models developed
in northern Wisconsin and applied across the region
(Zheng et al. 2004, 2007) using corrected NDVI
(NDVIc) as driving predictor of AGB for evergreen
(ev) forests, and stand age and reflectance in the near
infrared channel (ρnir) for deciduous (de) forests. All
driving variables were parameterized from remotely
sensed information, either from high-resolution (30 m)
Landsat 7 ETM+ or MODIS data in 2001 (Eqs. 1 and
2, Zheng et al. 2004, 2007). The models are as follows:

AGBev ¼ 111* NDVIc10:3
�

NDVIc10:3 þ 0:3510:3
� �� �

r2 ¼ 0:86

ð1Þ

AGBde ¼ 233*ρnir þ 2:7 � AGE� 71 r2 ¼ 0:95 ð2Þ

where NDVIc is calculated from NDVI* 1�½
mIR�mIRminð Þ= mIRmax �mIRminð Þ�. mIR repre-
sents middle infrared reflectance centered at
1,640 nm. Equation 2 was also applied to mixed
forests because in this region mixed forests are
dominated by deciduous species.

For regional application, we used 1-kmMODIS data
for parameterization after conducting spectral calibra-
tions between the two sensors ((MODIS & ETM+,
Zheng et al. 2007). A spatially-explicit regional age
map was generated using RS input and inventory data
(Zheng et al. 2007). The same equations were applied
in both years of 1992 and 2001 with comparable
regional land-cover maps and satellite data to detect
change effects of land-cover patterns and spectral
characteristics on AGB estimates.

Forest inventory-based area and biomass density
estimates

Survey data for early 1990s and 2000s for the three
states were downloaded from USDA Forest Service
(2006). Standard procedures were followed to calcu-
late forest area and AGB density from the FIA data
except we used models in Jenkins et al. (2004) for
estimating AGB density, instead of using region-
specific biomass estimates available in the FIA data.

Evaluating land-use-change effects on AGB estimates

We tested how land-use changes under different
scenarios affect AGB estimates by conducting a
sensitivity analysis in which we varied only one
factor at a time while keeping other factors consistent.
All simulated AGB reported in this study were
derived from RS-driven models.

While all listed simulations (Table 2) are necessary
for addressing the stated objectives and each of them
can stand alone, each scenario consists of two simu-
lations for comparison (Fig. 2). Table 2 also provides a
summary of the relationships between the simulations
and scenarios, and the issues addressed. We quantified
the sensor effects on AGB estimates in 2001 (when
both MODIS and AVHRR satellite data are available
covering the same area and acquired during the same
time period) by applying the same models (driven by
reflectance or vegetation index) and the age map, but
varying the satellite data sources (comparison between
simulations 1 and 2, scenario 1).
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Comparison between simulations 1 and 3 (scenario
2) illustrate how land-cover changes from 1992 to 2001
affected the AGB estimates after the detected sensor
effects were considered. Although the land-cover maps
were produced by different groups (UMD & MODIS,
respectively), both maps are RS-based products with
identical classes for forestlands (Table 1). To reduce the
uncertainty, we detected the land-cover-change effects
on AGB estimates at broader categories (e.g., forest,
non-forest, and urban) because specific land-cover
classifications from multiple sources with different
resolutions may differ. For example, land-cover classi-
fication systems used in the NLCD are at 30-m
resolution and contain 21 and 29 classes for 1992

and 2001, respectively. Both AVHRR (1992) and
MODIS (2001) land-cover maps at 1-km resolution
contain 13 classes (excluding water; Table 1). That is,
all forest classes in both 1992 AVHRR and 2001
MODIS land-cover maps are identical (Table 1). For-
estland is further differentiated as evergreen or decid-
uous forest, which is needed for this analysis because
AGB estimates for these two types used separate
equations. Classification on urban development areas is
relatively consistent and reliable in both years.

Comparison between simulations 4 and 5 (scenario
3) and between simulations 6 and 7 (scenario 4) could
reflect the effects of scaling 30-m land-cover maps to
1-km resolution on AGB estimates, given the changed

Table 2 Detecting the effect of land-cover change on AGB estimates (Mg ha−1, dry weight) by comparing the simulations (S)

S Description LCa

source
RSb

source
Mean AGB
(standardc)

Forest area
(km2)

Total AGB
(Tg, 1012)

S to
compare

Numbered
scenariod

Issue
addressed

1 Entire region, 2001
(1-km)e

MODISf MODIS 126 (126) 155,650 1,961 2 1 Sensor
effect

2 Entire region, 2001
(1-km)

MODIS AVHRRg 112 (123) 155,650 1,743

3 Entire region, 1992
(1-km)

UMDh AVHRR 124 (78)i 202,840 2,507 1 2 Change
detectionj

4 Subarea, 1992 (30-m) NLCDk AVHRRl 115 (63) 14,900 171 5 3 Scaling
effect, 92

5 Subarea, 1992 (1-km) NLCD AVHRR 119 (65) 14,220 169
6 Subarea, 2001 (30-m) NLCD MODISl 121 (85) 16,990 206 7 4 Scaling

effect, 01
7 Subarea, 2001 (1-km) NLCD MODIS 125 (88) 18,380 229 5 5 Change

detectionm

8 Subarea of number 1,
01 (1-km)

MODIS MODIS 139 (91) 14,990 208

9 Subarea of number 3,
92 (1-km)

UMD AVHRR 125 (72)i 22,380 281 8 6 Change
detectionn

a Land cover
b Remote sensing
c Standard deviation
d See Fig. 2.
eMeasure in parentheses indicates pixel resolution.
f Moderate Resolution Imaging Spectroradiometer
g Advanced Very High Resolution Radiometer
h University of Maryland
i The numbers have been adjusted by sensor difference.
j Regional change detection after being adjusted by sensor effects
k National Land Cover Data at 30-m pixel resolution and aggregated to 1-km resolution using majority rule for comparison purposes
l 1-km reflectance data were disaggregated to 30-m resolution to keep these inputs constant for comparison purpose.
m Detected AGB changes from 1992 to 2001 based on NLCD land-cover maps at 1-km resolution in the subarea
n Detected AGB changes from 1992 to 2001 based on AVHRR/MODIS land-cover maps at 1-km resolution in the subarea
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land cover between 1992 and 2001 (Table 2). Com-
parison of changes in AGB estimates of subarea from
1992 to 2001 at 1-km resolution between NLCD
(simulations 5 and 7 and scenario 5) and AVHRR/
MODIS (simulations 8 and 9 and scenario 6) could
demonstrate effects of different land-cover classifica-
tion systems on AGB change detection (Table 2).

Quantifying landscape structure

We used FRAGSTATS (McGarical and Marks 1995),
a spatial pattern analysis program, for quantifying
landscape structures of 1992 and 2001 in the subarea
at the land-cover type level (forest vs non-forest). We
further linked these landscape characteristics to the
scaling process (30 m to 1 km) to demonstrate how
landscape configurations could affect the scaled out-
puts. The scaling process can modify area estimates
substantially, compared to relatively small effect on
biomass density by changing forest composition
(deciduous vs coniferous forests), and this could
significantly affect the total AGB estimates.

Results and discussion

Sensor effects

Our study suggests that the AVHRR sensor tends to
have lower NDVI and reflectance values with smaller
variances than those observed from MODIS sensor for
the same period and region (Table 3). This agrees with
previous work reported in Central China (Alexandridis
and Chemin 2002; Zhan et al. 2002). Quantifying
sensor differences is a necessary step to achieve any
meaningful results involving change detection when
satellite data from these two sensors are used. The
mean NDVI value in the three Lake States obtained
from the AVHRR in early June of 2001 was 1.4%
lower than that from MODIS while mean reflectance in
the near infrared band was 23% lower than that from
MODIS (Table 3). Such sensor-caused differences
resulted in an 11% lower estimate of regional mean
AGB (Fig. 2, the most left bar) and must be considered
before comparing 1992 AVHRR-driven AGB estimates
to 2001 MODIS-driven AGB estimates.
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Fig. 2 Relative changes in forest AGB estimates under
different scenarios: 1 difference in regional mean AGB density
estimates resulted from using AVHRR and MODIS (as
reference) data in 2001; 2 changes in regional AGB estimates
between AVHRR based 1992 (as reference) results (adjusted by
the sensor difference resulting from scenario 1) and MODIS
based 2001 results; 3 changes in AGB estimates caused by
scaling up land-cover map from 30-m (as reference) to 1-km

resolution in the subarea given 1992 landscape configuration; 4
the same detections as in scenario 3 but given 2001 landscape
configuration; 5 change detections in AGB estimates based on
AVHRR/MODIS land-cover maps of 1992 (as reference) and
2001 at 1-km resolution in the subarea; and 6 similar detections
to those in scenario 5 but based on NLCD land-cover maps of
1992 (as reference) and 2001 at 1-km resolution. See Table 2
for details of comparison scenarios.
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We did not adjust these estimates with ground-
based plots because our objective was to compare the
different sources of land-cover information, and
adjustment would have masked the differences. While
these relative estimates are valid and informative, the
AGB density and total AGB values reported in
absolute terms should be used with extreme caution.
Although preliminary results suggested that the
regional mean AGB density estimated from the RS-
driven models was on average 31% higher than that
of FIA plot-based calculations (Table 4), they have
limited impact on change detections evaluated in
relative numbers.

Regional land-cover change effects

Regional mean AGB density increased slightly from
124 Mg ha−1 in 1992 to 126 Mg ha−1 in 2001
(simulations 1 and 3, Table 2), by 1.6% (Fig. 2,
scenario 2). This agrees well with FIA plot-based
calculations that mean AGB density increased by
1.4% (Table 4) between the 1990s and 2000s surveys
in the region. Several factors can affect the mean
AGB density estimates in either a positive or negative
way. These factors include: (1) changes in forest
canopy cover—mean NDVI value is higher in 2001
than 1992, which is a positive effect; (2) changes in
forest age structure—mean stand age in the region
increased from 39 year old in 1992 to 46 years old in
2001 (based on our RS-based regional estimates
(Zheng et al. 2007), positive effect); (3) changes in
mean forested area portion of FIA plots—the mean
forested proportion of plots in 2001 was 10% less
than in 1992 based on field data from 20,000+ plots
in each of the corresponding surveys across the region
(negative effect); and (4) changes in broad forest type
—deciduous forests, on average, tend to have higher
AGB value than coniferous forests in the region and
the area of deciduous forests increased from 89.9% in
1992 to 96.6% in 2001 (positive effect, data not
shown). Variations in biomass estimation tend to be

larger in RS outputs than in FIA datasets probably
because the RS-based forested pixels may also
include all ground conditions (Table 4). Although
there are obvious increases (in North Central MN)
and decreases (in Upper Peninsula of MI, northeastern
part of MN and northwestern part of WI along Lake
Superior) of AGB density (from one AGB class to
another) in the region (Fig. 3), actual changes in AGB
density for a given pixel could be much smaller than
what may be interpreted from the figure because the
AGB classes were presented at a 40 Mg ha−1 interval
(Fig. 3).

Although the general patterns of frequency distri-
butions in AGB density at broad classes in both 1992
and 2001 were similar (Fig. 3), we clearly show that
distributions of regional AGB densities were more
concentrated in the three categories ranging from 41
to 160 Mg ha−1 in 2001 (66%) than those in 1992
(57%), while the frequencies in both low and high
AGB density categories were reduced (Fig. 3).

A 21.8% decrease in total forest AGB across the
region was detected, from 2,507 Tg in 1992 to
1,961 Tg in 2001 (simulations 1 and 3, Table 2;
Fig. 2, scenario 2), which is a mean annual rate of
−2.4%. This was primarily caused by land-cover
changes from forests to non-forest (including crop-
land) and urban development. Although gains in
forestland were observed in some areas, such as the
northern part of the MI Lower Peninsula, overall
regional forest area decreased from 202,840 km2 in
1992 to 155,650 km2 in 2001, a 23.3% reduction,
especially in Southern WI (Fig. 1a,b). Simultaneously,
non-forest area increased from 267,590 in 1992 to
316,430 km2 in 2001 by 18.3%, with a 19.2%
increase in urban area from 5,880 in 1992 to
7,010 km2 in 2001 across the region (Fig. 4).

Table 4 Remote sensing based (RS) and USDA Forest
Service, Forest Inventory and Analysis (FIA) based estimates
of AGB density [Mg ha−1, mean and standard deviation (Std.)]
and total forest area in the region

AGB density Forest area (km2)

FIA RS FIA RS

1992 94.2 (63) 123.6 (78) 208,023 202,840
2001 95.5 (66) 125.6 (126) 204,212 155,560

Table 3 Comparison of NDVI values and near infrared (Nir)
reflectance detected from different sensors in early June, 2001
in the three Lake States

Sensor Mean NDVI Variance Mean Nir Variance

MODIS 0.656 0.0384 0.334 0.0111
AVHRR 0.647 0.0207 0.257 0.0033
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Scaling effects

Scaling tended to have relatively consistent effects on
mean AGB estimates, with fairly minor variation.
However, the impacts of scaling could vary substan-
tially on total AGB estimates for different years. The
scaling process (using majority rule) from 30-m to 1-
km pixel resolution resulted in a 3.3% increase of
mean AGB density in the subarea for the1992 land-
cover configuration (Fig. 2, scenario 3), and a 2.8%
increase for the 2001 land-cover configuration based
on the NLCD data (Fig. 2, scenario 4). Aggregation
of land-cover maps from 30-m to 1-km resolution
generated a slight decrease of total AGB by −1.2%
(Fig. 2, scenario 3 shows a small gain in mean AGB
density (3.3%) but this is counterbalanced by a 4.5%

loss in forest area from 14,900 to 14,220 km2 in 1992
(Table 2, simulations 4 and 5, Fig. 5a,b)). In 2001,
both increases of mean AGB density (2.8%) and a
substantial gain in forest area through the scaling
process from 16,990 to 18,380 km2 (8.2%, Table 2,
simulations 6 and 7) resulted in a 11.4% increase in
total AGB estimates (Fig. 2, scenario 4). Partitioning
effects of multiple components on ecological proper-
ties of interest can improve our understanding on the
subjects and simplify the analysis (Zheng et al. 2005).

The changes of direction and quantity in forest area
caused by scaling process are largely dependent on
whether forest or non-forest land is the prevailing
type across the area and landscape configuration.
FRAGSTATS analyses revealed that forest area of
1992 (at 1-km resolution) accounted for 44% of total

Fig. 3 Spatial patterns of forest aboveground biomass (AGB,
Mg ha−1, dry weight) in the three Lake States: a based on the
1992 AVHRR-derived land-cover map and reflectance data (the
results have been adjusted by sensor difference); and b based

on 2001 MODIS derived land-cover map and reflectance data.
The numbers in parentheses represent the frequency distribu-
tion for a given biomass class in percent, for 1992 and 2001
respectively
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subarea with more fragmented patch distribution (a
total of 1,375 forest patches in the area, Fig. 5b) while
the 2001 forest area occupied 56% of the subarea with
less fragmented patch distribution (a total of 993
forest patches in the area, a 28% decrease from the
1992 number, Fig. 5e). A scaling process using
majority rule generally expands the area occupancy
for the prevailing cover type (e.g. forest or non-
forest). The degree of such area gain or loss for a
given type (or species) depends on the degree of its
dominance or non-dominance within the landscape.

Across the region, scaling up land-cover map from
30-m to 1-km resolution resulted in a mean difference
of 8% (in absolute value) in county-level forest area
estimates with a range from 0 to 17% differences
within a 95% confidence interval.

Effects of land-cover maps from different sources
on change detection

This study indicated that variations (both in forest
area estimates and broad forest type identification) in
land-cover maps generated using different methodol-
ogies was the primary source of uncertainty in
detecting temporal changes on total forest AGB over
large areas, even though all maps are RS-based
products. For example, using land-cover maps of
1992 and 2001 developed from AVHRR/MODIS and
NLCD lead to different conclusions about total forest
AGB dynamics within the subarea. The AVHRR/
MODIS based land-cover maps, derived with an
original resolution of 1 km and a classification tree
approach (Hansen et al. 2000), suggested a 26%

decrease in total forest AGB between 1992 and 2001
(Fig. 2, scenario 5); the NLCD land-cover maps,
primarily based on the unsupervised classification of
Landsat TM (Thematic Mapper) 30-m imagery and
other ancillary data (MRLC, 2006), produced a 36%
increase in total forest AGB during the same period
after being scaled up to 1-km resolution (Fig. 2,
scenario 6). The discrepancy was mainly caused by a
difference in estimation of forest area, plus positive or
negative effects of forest type identification because
in this study separate equations were used for
estimating forest AGB for coniferous and deciduous
(including mixed) forests. In the subarea, forest area
was shown to increase 29% from 14,220 km2 in 1992
to 18,380 km2 in 2001 according to the NLCD land-
cover maps (simulations 5 and 7, Table 2; Fig. 5b,e);
conversely, according to the AVHRR/MODIS land-
cover maps, forest area decreased by 33% from
22,380 km2 in 1992 to 14,990 km2 in 2001
(simulations 8 and 9, Table 2; Fig. 5c,f). Such a
difference could be caused by variations in spatial
resolution and classification method used in map
generation. In terms of mean AGB density, both
temporal comparisons showed the same trend—
increasing from 125 and 119 Mg ha−1 in 1992 to
139 and 125 Mg ha−1 in 2001 (simulations 8 and 9
and simulations 5 and 7, Table 2) by 10 and 5%,
respectively (scenarios 5 and 6, Fig. 2). Another
uncertainty source complicating landscape AGB
estimates in this study is the difference in forest type
identification given different sources. For example,
the AVHRR/MODIS 1-km land-cover maps identified
8.5% conifer forests in 1992 and only 1.5% in 2001
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(Fig. 5c,f) within the subarea, while the NLCD 1-km
land-cover maps contained 5.1% coniferous forests in
1992 which increased to 11.0% in 2001. The differ-
ences affected the calculations of both AGB density
and total AGB because separate models were used for
coniferous and deciduous forests.

Conclusions

AVHRR data and products observed in early years
before 2000 (1980s and 1990s) and the MODIS data
and products observed after 2000 can be useful data
sources for carbon related change studies in terrestrial

ecosystems over large scales. However, effects of
sensor difference on estimates of ecosystems’ proper-
ties or characteristics need to be quantified for making
meaningful comparisons or evaluations.

Scaling up land cover maps to coarser resolution is
an important step in mapping forest biomass and its
rates of change over large areas. The scaling-up
process on land cover maps has relatively consistent
and small effects on forest mean AGB density
estimates. The resulting estimates of forest area
through the scaling-up process can vary significantly,
even from gaining forest area to losing forest area,
depending on whether the forestland is the prevailing
cover type within the landscape. Thus, forest area

Fig. 5 Effects of the scaling-up process and applying land-
cover maps from different data sources on general cover
type composition (forest vs non-forest including water) and
forest type composition (conifer vs deciduous/mix) in 1992
and 2001 for the subarea: a 1992 National Land Cover Data
(NLCD) at 30-m resolution; b 1992 NLCD map after being
scaled to 1-km resolution; c 1992 land-cover map produced

by University of Maryland at 1-km resolution; d 2001 NLCD
map at 30-m resolution; e 2001 NLCDmap after being scaled to
1-km resolution; and f 2001 MODIS land-cover map at 1-km
resolution. Numbers in parentheses represent percentages of
forestland to total land area and coniferous forest to total
forestland, respectively
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differences have much more impact on estimating
total AGB across the landscape, introducing great
uncertainty in change estimation. We estimated that
the mean difference in forest area estimates caused by
scaling 30 m land-cover map to 1-km resolution was
8% ranging from 0 to up to 17% at a 95% confidence
level at the county-level across the region.

Dynamic changes of AGB estimates across the
landscape through time are affected by: (1) changes in
forest type (because AGB models based on forest type
were used), (2) landscape configuration (which affects
scaling results when finer resolution pixels were
scaled up to coarser resolution), and (3) variation in
forest area estimates and forest type identification
from different sources. The third source of variation is
especially problematic. This study demonstrate that
land-cover maps derived from different data sources
and with different classification schemes can have a
substantial impact on estimates of terrestrial biomass.
Accurate land-cover maps with a consistent classifi-
cation scheme over time, commonly accepted by
governmental agencies as well as the broader scien-
tific community, are much needed for reducing
uncertainty in monitoring carbon dynamics within
terrestrial ecosystems associated with disturbances
and global climate change.
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