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Abstract.  We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) 
and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest 
aboveground biomass (AGB) across New England, USA.  This is practical for large-scale 
carbon studies and may reduce uncertainty of AGB estimates.  We estimate that total regional 
forest AGB was 1,867 teragram (1012, dry weight) in 2001, with a mean AGB density of 120 
Mg/ha (Standard deviation = 54 Mg/ha) ranging from 15 to 240 Mg/ha within a 95% 
percentile.  The majority of regional AGB density was in the range of 80 to 160 Mg/ha 
(58.2%).  High AGB densities were observed along the Appalachian Mountains from 
northwestern Connecticut to the Green Mountains in Vermont and White Mountains in New 
Hampshire, while low AGB densities were concentrated in the Downeast area of Maine (ME) 
and the Cape Cod area of Massachusetts (MA).  At the state level, the averaged difference in 
mean AGB densities between simulated and FIA (as reference) was -2.0% ranging from 0% 
to -4.2% with a standard error of 3.2%.  Within the 95% confidence interval the differences 
between FIA and simulated AGB densities ranged from 0 to 6% (absolute value).  Our study 
may provide useful information for regional fuel-loading estimates. 
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1 INTRODUCTION 
 
Forests play the largest role among different terrestrial ecosystems in the global carbon cycle 
by sequestering a large quantity of carbon, which mitigates the increase of atmospheric 
carbon concentration.  Globally, estimates of forest carbon stocks range from 77 to 82% of the 
total terrestrial carbon stock [1]  Quantifying carbon in forests is increasingly important for 
monitoring and reporting requirements, be they at a national or continental level and legally-
binding [2-3] or voluntary [4], or of interest to States [5]  The various needs include the 
ability to assign forest carbon to a location that allows for analysis of previous land use (to 
determine whether the carbon was due to afforestation or deforestation for instance), and a 
consistent scaling procedure so that large area estimates within a region can be summed and 
are consistent with the area of the region.  

 On the one hand, remote sensing approaches that allow for multitemporal monitoring 
across a continuous landscape provide promising and reliable data sources for studying and 
quantifying ecosystem properties and processes over large scales [6-10]  On the other hand, a 
statistically designed natural resources survey with a large component of field measurements, 
such as the U.S. Department of Agriculture (USDA) Forest Service, Forest Inventory and 
Analyses (FIA) can be used to provide forest carbon estimates that are accurate and verifiable 
[11]  These plot data, located in a systematic way across the region (approximately every 5 
km in forestland, on average), provide unbiased estimates of areal means and totals.  The 
general principles of design-unbiased inference from this type of systematic survey are given 
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by Thompson [12], while model-unbiased estimators specific to FIA data are given by 
Bechtold and Patterson [13]  However, the FIA data are scattered points and thus have limited 
usage for continued landscapes.   

Integrating remote sensing (spatially-explicit observations) and national resources 
inventory data may provide more consistent, reliable, and comparable spatial analyses across 
landscapes [14], and provide a framework of improved forest carbon estimates for ecological 
modeling and fuel-loading prediction [15-16]  

In recent decades, a remote sensing component has been used in the FIA program (Phase 
I) to classify land as forest or non-forest and to measure fragmentation [17]  However, more 
information such as surface reflectance, the normalized difference vegetation index (NDVI), 
corrected NDVI (NDVIc) can be gleaned from remote sensing to improve terrestrial 
ecosystem carbon analyses.  Many studies have demonstrated that remote sensing data 
collected from different sensors at various scales (e.g. from 1-m IKONOS to 1-km Moderate 
Resolution Imaging Spectroradiometer -- MODIS) can be directly or indirectly used for 
estimating aboveground forest biomass or other landscape characteristics at various scales 
depending on study purpose and scope [10, 18-23] 

Directly coupling coarser resolution remote sensing data with FIA plot data, however, is 
inappropriate because of the discrepancy in spatial resolutions between the two data sources 
[24-25]  For example, in contrast to MODIS data with the finest resolution of 250 m, or 
62,500 m2, each FIA phase-2 permanent plot covers approximately 672 m2 [13]  Therefore, it 
is more appropriate to link plot observations with 30-m Landsat 7 Enhanced Thematic 
Mapper plus (ETM+) data.  

This study focuses on aboveground biomass (AGB, dry weight) because it comprises 75 to 
85% of the carbon stocks of forests depending on forest type worldwide [26]  While the New 
England area of the USA accounts for about 2.0% of the nation’s land area, the area is 84% 
forested and represents 4.5% of the nation’s forestland [27]  Thus, this area may possess 
disproportional importance in the nation’s forest ecosystem carbon studies.  Our study 
objectives are to: 1) present and demonstrate a method in which remote sensing imagery and 
FIA field data can be integrated to estimate regional AGB and stand age in New England, 
USA; 2) illustrate the spatial patterns of stand age and AGB densities in the region, as well as 
the AGB distributions by broad forest types; and 3) provide baseline AGB estimates of the 
region for use in more comprehensive carbon studies. 

  
2 MATERIALS AND METHODS 
 
We model regional AGB using remote sensing data and USDA Forest Service FIA data.  We 
use two sets of remote sensing data, one with a smaller pixel size (ETM+, 30m) that is closer 
to the size of the FIA plot for model development, and the other with a larger pixel size 
(MODIS, 1km) for model parameterizations and application at regional scale.  Detailed steps 
(see Fig. 1) include: 1) establishing an AGB model within a limited portion of the region 
using ETM+ data that has a pixel size more comparable to the FIA field plot footprint; 2) 
conducting spectral calibrations between ETM+ and MODIS sensors so the ETM+ based 
model can be applied to entire region using MODIS data; 3) creating a regional age map 
(required input of the AGB model) derived from remotely sensed information and constrained 
by the regional stand-age structure obtained from FIA data; and 4) adjusting modeled AGB 
using FIA-derived county means through a ratio map. 
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Step 1: AGB model development 
 
 
 
 
 
 
 
Step 2: Spectral calibrations between the 2 sensors within the limited portion of ETM+ area 
 
 
 
 
 
 
Step 3: Developing a regional age map  
 
 
 
 
 
 
 
 
Step 4: Adjusting regional AGB estimates using FIA county means 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Flow chart of steps used for estimating regional forest aboveground biomass (AGB).  
Rectangular boxes with bolded text are inputs and final output; the circle and other boxes are function 
and intermediate products.  See text for more information and Fig. 8b for the limited portion of the 
region within which the model was developed using ETM+ data. 
 
2.1 Study area 

 
Our study area is located in New England, USA, with a total land area of 181,440 km2 (Fig. 
2).  About eighty-four percent is forested according to the MODIS land-cover map of 2001 
(MODIS12Q1 type 2 classification).  The area is characterized by rolling hills, mountains, 
and a jagged coastline as a result of retreating ice sheets that shaped the landscape thousands 
of years ago. Elevation ranges from sea level to 1,917 m at Mount Washington in NH.  Four 
dominant forest types collectively cover 86% of the area’s forestland: a) spruce-fir in northern 
ME and at high elevation; b) white/red/jack pine along the coast line from southern ME to RI 
including central MA; c) oak/hickory in CT and most of RI; and 4) maple/beech/birch in 
southwestern NH and western VT [27]  
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Fig. 2.  Six New England States with a general distribution of two broad cover types (forest vs. non-
forest) based on the MODIS 2001 land-cover map and the approximate locations (dots in dark) of the 
FIA plots. 
 

The climate in New England varies throughout the region, but is known for its 
unpredictability regionwide.  Maine, NH, and VT, in the north, have a humid continental short 
summer climate, with relatively cool summers and long, cold winters. Connecticut, MA, and 
RI, in the south, have a humid, continental, long summer climate, with hot summers and cold 
winters.  Long-term climatic data (1961-1990) at half-degree resolution suggest that annual 
mean temperature across the region is 5.7 °C with monthly mean temperatures of -8.9 °C and 
19.2 °C in January and July, respectively; annual mean total precipitation is 1,121 mm [28]  
The average rainfall for most of the region ranges from 1,000 to 1,500 mm a year, with the 
northern parts of VT and ME notably lower, ranging from 500 to 1,000 mm. 

 
 
2.2 Ground AGB calculations using FIA data 
 
The AGB in this study is defined as dry weight biomass of all live trees with diameter breast 
height (dbh) >= 2.5 cm including stem, branch, and foliage.  Our AGB calculations did not 
include FIA plots with TPACURR = 0 (current trees per acre), and we excluded understory 
biomass because it is estimated to be minor.  For example, second growth maple-beech-birch 
stands have only about 3.5 Mg/ha understory biomass [29], or 2.7% of AGB on average.   

Plot AGB was calculated using FIA tree-level data measured in 2001, if available, or 
interpolated between two surveys before and after 2001 in the 6 New England states.  We 
used the true plot locations as they are recorded in the FIA data.  Given at least 180 GPS 
readings at the plot center, no individual position has an error larger than 21.4 m and the error 
of all the averaged readings is far less [30] We selected the year of 2001 for consistency with 
a previous AGB study in the Great Lakes region [10] so comparisons of AGB estimates 
among regions can be made in future studies.  Plot AGB was obtained by estimating AGB 
values for all individual trees within the plot as a function of dbh using the 10 generalized 
regression models developed by Jenkins et al. [31] for all North American tree species.  All 
AGB calculations were appropriately converted to biomass density (Mg/ha) [13]  Stand age 
information for a given plot was also recorded if it was available from the FIA dataset.  
 
 
 

USA 
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2.3 Remote sensing data 
 
A full ETM+ image of 2001 covering parts of VT, NH, and MA was acquired for September 
5 (still presenting the full canopy).  The image was geo-referenced and the raw satellite data 
in each ETM+ band (except the thermal and panchromatic bands) were converted to 
reflectance using an exo-atmospheric model before vegetation indices were calculated [32]   

MODIS (1-km resolution) reflectance composite data in early September, 2001 
(MOD09A1) and land-cover map of 2001 (MOD12Q1) across the region were obtained 
online [33]  We used the MODIS land-cover map (with classification system type 2) to mask 
out forest (including evergreen, deciduous, and mixed forests) from non-forest (including all 
the other types) for data analyses (Fig. 2). 
 
2.4 Model development 

 
The calculated plot-level AGB values within the ETM+ scene were directly coupled with 
reflectance in six bands (blue, green, red, near infrared (NIR), and two middle infrared 
channels), three remote-sensing derived indices, DEM, and the recorded stand ages for the 
plots (a total of 11 independent variables) [34]  A multi-regression model was developed 
using stepwise (forward) regression approach, one of the commonly used methods for 
estimating AGB from remote sensing [35-36]  This approach can prevent an independent 
variable from entering the model if it is strongly related with a variable that has been 
previously selected [37]  The three vegetation indices were: 1) Normalized Difference 
Vegetation Index (NDVI) calculated from reflectance (ρ) in red and near infrared channels 
((ρNIR – ρred) / (ρNIR + ρred), [38]; 2) simple ratio (SR, ρNIR / ρred); and 3) NDVIc calculated from 
NDVI * [1 – (mIR – mIRmin) / (mIRmax – mIRmin)] [39] where mIR is middle infrared 
reflectance in the 1,600 nm wavelength.  These indices have been successfully used for forest 
production and biomass studies at various degrees [10, 20, 40-42]   DEM (30-m resolution) 
data were downloaded from the USGS National Elevation Dataset [43] 

A total of 499 FIA plots were identified within the ETM+ scene, which had values of 
AGB and all 11 independent variables.  We systematically divided these plots into two groups 
(even number vs. odd number).  One group was used for model development (Fig. 1, step 1) 
and the other group was reserved for model validation.  Effect of broad forest types 
(deciduous vs. evergreen) on AGB estimates was also examined to determine whether a 
separate model was needed for each forest type.   
 
2.5 Spectral calibrations between two sensors 
 
The use of finer spatial resolution data is an essential step to integrate ground measurements 
with coarse spatial resolution data.  To perform this step, the relationship of spectral responses 
was examined [44-45]  We conducted internal spectral calibrations between 30-m ETM+ and 
1-km MODIS data (Fig. 1, step 2) due to the differences in spatial and spectral resolutions 
between the two sensors [24, 45]  We examined the correlations of blue, red, near infrared, 
middle infrared reflectance after finer ETM+ data were aggregated to the same resolution (1-
km) of MODIS data within the area of ETM+ scene.  The resulting spectral relationships for 
the identified bands within the ETM+ scene were used for calibrating MODIS data across the 
region.  These bands are either being used directly as driving variables in the model or 
indirectly for calculating various vegetation indices that drive the model (Table 1).   Such 
calibrations are necessary because: 1) the models are established using ETM+ data, and 2) 
remotely sensed information between the 2 sensors is not identical, even for the same targets. 
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Table 1.  Correlation coefficients for reflectance of individual bands and vegetation indices between 
MODIS and ETM+. 
____________________________________________________________________________________ 
                                                          Bandwidth (nm) 
                                                ----------------------------------             Sample 
       Band/Indices                      ETM+                   MODIS                    r            size (N)  
       ___________________________________________________________________ 
              Blue                           450-520                 459-479        0.509          28876 
              Red                            630-690                 620-670        0.654          29008 
           Infrared                         780-900                 841-876        0.742          29008 
        Middle Inf.                    1550-1750             1628-1652        0.649          29008 
             NDVI             0.682          28892 
            NDVIc             0.524          28892 

 
2.6 Creation of a regional age map 
 
Field and the resulting model data suggest that AGB is a function of stand age across the 
region as well as for hardwood dominated Northern US forests in general [10, 29]  However, 
the age values for all plots used in the model development came from point observations.  
Therefore, generating a spatially-explicit age map is a necessary step for AGB estimation 
across the region.  

In addition to the plots available for model development and validation, 378 plots within 
the ETM+ scene that had AGB values but no age information were identified.  We used these 
AGB values as a proxy for stand ages and correlated the AGB values with remotely sensed 
information.  Previous studies have shown that stand age shows a good relationship with the 
NIR band or the combination of red and NIR [10, 45-47]  In this study we found that simple 
ratio (SR) of reflectance in NIR and red bands was the variable (among the remaining 
variables that were not selected in the equation 1) most related to the plot AGB observations 
in the group used as a proxy for age.  A large sample size allowed us to construct a more 
restrictive relationship between AGB (age proxy) and SR (Fig. 3).  First, we calculated the 
ratio between AGB and SR and excluded all pairs whose ratio values were out of the range 
(mean ± one standard deviation (Std.)).  Second, for the remaining pairs, we calculated the 
AGB means for each of the SR values at the precision of one digit after the decimal point 
(e.g., from 1.2 to 12.6).  Ratioing enables outlying data to be quantified.  The purpose of the 
above procedures was for a robust extrapolation of SR values across the region, not to 
estimate r2 value in the initial population. 

The predicted AGB values (age proxy) resulting from the SR model (using the calibrated 
MODIS input) were converted to a stand age map based on the age structure developed from 
5,502 FIA plots across the 6 New England states following the method of Schulte et al. [48]  
(Fig. 1, step 3).  The threshold values of AGB estimates used for age-class conversions were 
determined in such a way that distributions of the converted age classes matched the 
frequency distributions calculated from the FIA (Fig. 4).  The underlying principle for such a 
conversion is that AGB is positively correlated to stand age before reaching a plateau [10, 49-
52]  We assumed that locations with higher biomass estimates indicate denser and older forest 
stands [45, 53-55]  Finally, we tested the colinearity between our age variable resulting from 
SR and the other remotely sensed variables presented in Eq. 1. 
 
2.7 Adjusting satellite-derived AGB using FIA-derived county means    

 
We used the county AGB means derived from the FIA plots to adjust MODIS-based regional 
AGB estimates with a ratio map (Fig. 5; Fig. 1, step 4).  This application takes the advantages 
of remote sensing data that retain the information of spatially-explicit variation within a given 
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area and the improved accuracy from field inventory data containing large number of samples 
but collected at scattered points within the area.  We used state means to calculate the ratio 
map so as to keep the integrity of spatial variation at the state level, which is a useful level for 
future national or continental studies of a similar kind.  The ratio map was calculated by 
dividing the RS-based AGB value in each pixel by the mean AGB value of all pixels in each 
of the corresponding states (AGBpixel / AGBstatemean).  Such a ratio map can quantify the spatial 
variation of AGB across the states compared to the corresponding means.  The use of county 
means refined the accuracy within each state and made the results comparable to previous 
biomass estimates that used FIA county data as well [56-57]  The county means obtained 
from sampling sizes less than 5 plots were not used; instead, regional AGB mean estimated 
from remote sensing before the adjustment were used because these few counties were 
scattered throughout the region. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3.  Relationship between simple ratio (SR) of near infrared reflectance to red reflectance and the 
Forest Inventory and Analysis (FIA) plot aboveground biomass (AGB, dry weight) within the sampling 
area.  This relationship was used to produce an intermediate product, initial AGB, for age map creation 
after constrained by regional age structure obtained from FIA data (see Fig. 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4.  Comparison of frequency distributions (in area) between reconstructed regional stand-age 
classes from remote sensing (RS) based initial aboveground biomass (AGB, dry weight) estimates and 
from 5,502 USDA Forest Service, Forest Inventory and Analysis (FIA) field plots. 
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   a)                                                 b)                                                   c) 
 
 
 
 
 
 
 
 
Fig. 5.  Remote sensing derived aboveground biomass (AGB) density (Mg ha-1) was spatially adjusted 
by multiplying the FIA derived mean AGB density through a ratio map across the region.  In this 
example for a 3x3 window: i) the mean AGB density estimated from remote sensing (a) can be 
calculated (e.g., = 2); ii) the ratio map (b) can be developed (AGBpixel / AGBmean); and iii) assuming the 
mean AGB density calculated from FIA plots within the 3x3 window was 4, the adjusted AGB map (c) 
was obtained (e.g., ratio map * 4) (From Zheng et al. 2007). 
 
2.8 Model validation and evaluation 
 
Model validation was performed within the ETM+ area using the independent plot AGB 
values in the reserved dataset.  Evaluation of model outputs at state and regional levels were 
conducted by comparing our final AGB estimates before and after adjustment using FIA 
county means to the corresponding values obtained from FIA data.  The county’s AGB means 
were calculated from the 6,703 FIA plots across the 6 states. 
 
3 RESULTS AND DISCUSSIONS 
 
3.1 Model results 
 
The plot-level empirical model developed from the ETM+ sensor (fine-resolution) was 
applied to the entire region using MODIS data (after calibrated with the ETM+, Fig. 1, step 2) 
(which is a coarser resolution) because good correlations existed for remotely sensed 
information between the two sensors (Table 1).  While the reflectance in the infrared band 
between the sensors has the highest correlation (r = 0.742), NDVIc (r = 0.524) has a much 
lower correlation than that for NDVI (r = 0.682) because the calculation of NDVIc involves 
an additional middle infrared band.  Our results agree well with a previous study in Central 
China that a high correlation (r = 0.788) was found in NDVI between MODIS and ETM+ [24]  
It was appropriate to quantify the correlation between the NDVIc values calculated from the 
MODIS and ETM+ (after aggregating the ETM+ product to the same resolution of MODIS) 
without calibrating individual bands that are involved.  Values of NDVIc calculated using 
after-calibrated reflectance can be incorrect and misleading because it destroys the inherent 
relationships among the bands’ reflectance. 

Our results suggest that stand age, NDVIc, and blue reflectance are the best combination 
for estimating AGB (Eq. 1, N = 250, P < 0.001) in the region. 
 
AGB = 392.11 * NDVIc + 1.27 * AGE + 1173.35 * BLUE – 260.95      r = 0.619,   [1]   
 

Age factor alone explained 28.3% of the variance.  The addition of NDVIc and reflectance 
in blue band increased the value to 36.9% and 38.3%, respectively.  Previous studies also 
indicated that mIR band centered at 1600 nm was a good predictor of tree biomass [46]   

Model validation using data in the reserved group indicated a moderate correlation 
between the ground-based AGB and the satellite-based AGB but the correlation was still 
statistically significant (P < 0.001) due to a relatively large sample size (Fig. 6).  The model 
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tended to overestimate AGB at the low end and underestimate AGB at the high end (> 210 
Mg/ha).  Although the estimation errors remained large at plot level, we expect much smaller 
errors in our final adjusted AGB estimates across the region at 1-km resolution.  The accuracy 
and precision of an AGB estimate for a particular point is sometimes of less interest than 
geographic patterns, spatial distributions, and trends of AGB over entire region for large scale 
applications. 

An approximately linear relationship between age and biomass can be assumed because 
the regional age structure is relatively young (mean age = 61 years old, Fig. 4) and the 
biomass in most of the forests has probably not reached an expected asymptotic [50]  Recent 
FIA data suggested that trees greater than 100 years old of age accounted for 4.2% across the 
region.  Across the region, stand age derived from MODIS SR and further constrained by the 
FIA-derived regional age structure (Fig. 4) was moderately correlated with MODIS blue band 
and NDVIc (r2 = 0.270 and 0.377, respectively). 

Further division between coniferous and deciduous plots did not improve the predictive 
power although previous studies in the Great Lakes region suggested that separate models for 
coniferous and deciduous forests might be needed for calculating vegetation indices and AGB 
when one or more infrared bands were involved [10, 40]  Only 3% of the regional forests 
were classified as coniferous based on 1-km MODIS land-cover map.  Plot data indicated that 
species composition at broad forest types (e.g., conifers vs. deciduous) could slightly improve 
our empirical model for regional AGB estimates.  We hypothesized that species composition 
could be estimated by comparing the NDVI values obtained in summer season (full canopy) 
to the values obtained during the time that deciduous trees have no leaves.  However, in this 
region, snow has usually fallen in some part of the region by the time all deciduous trees in 
the region have lost their leaves.  Thus, parameterization of species composition across the 
entire region using RS is problematic because the spectral characteristics of snow reflectance 
(high in red band and low in near infrared band) [58] make interpretation of such comparisons 
difficult. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Comparison between the calculated Forest Inventory and Analysis based aboveground biomass 
(AGB, dry weight) and the simulated AGB values (N = 249, P < 0.001) using equation 1 before 
adjustment. 
 

Because the intercept in Eq. 1 was negative, some pixels across the landscape featured 
AGB values < 0.  The majority of these pixels (77%) occurred at the locations adjacent to 
areas of water or non-forest lands, which tended to have very low AGB values.  The pixels 
with negative AGB values were assigned the value 1 Mg/ha AGB.  This assignment should 
have limited effects on regional AGB analysis because such pixels only accounted for small 
numbers both in terms of AGB value and area occurrence (1.2%).  
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3.2 Regional AGB estimates 
 
We estimated that the mean AGB density in the New England states was 120 Mg/ha (Std. = 
54) with a total AGB storage of 1,837 teragrams (1012, dry weight) in 2001. Within a 95% 
percentile, estimated AGB ranged from 15 to 240 Mg/ha, which compares well with the FIA 
plot data that ranged from 9 to 267 Mg/ha (Figs. 7a & 7b).  These curves result from an 11-
point running average.  Both AGB distribution curves were in a unimodal shape similar to the 
frequency distribution of forest age structure developed from 2001 FIA data in the region as 
expected (Fig. 4).  About 12.4% of forests were 30 years old, 38.4% and 38.8% were between 
30 and 60 years, and between 60 and 90 years of age, respectively.  Few forests were greater 
than 100 years old (4.2% in area, Fig. 4). 

RS-based AGB estimates before adjustment generated a regional mean density value of 
127 Mg/ha, about 3.2% higher than that (123 Mg/ha) of FIA-based value with a smaller Std. 
on average (Table 2).  Spatially, the model overestimated the AGB values by 29% in ME 
while underestimating AGB in the other 5 states (Table 2) by an average of -14.4%.  There 
were two possible causes for this spatial discrepancy.  First, it was likely caused by model 
limitation that underestimated AGB at high end: for example, the maximum reduction in 
mean AGB value occurs in MA because western MA is dominated by maple-birch-beech 
ecosystems [27] where high AGB is expected.  Second, it could be caused by the difference in 
reflectance responses among different ecosystem communities: for example, spruce-fir forests 
are dominant in most parts of ME and a previous study has reported that spruce forests tend to 
have low reflectance in the 1,600 nm mIR wavelength [58]  Our data suggested that mean 
reflectance in the mIR band for ME was 13% lower than that for the other 5 states.  Lower 
mIR will result in higher than expected NDVIc values (see formula above), and these will 
lead to overestimating AGB values according to Eq. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
 
 
 

 
Fig. 7.  Frequency distributions of a) Forest Inventory and Analysis (FIA) derived aboveground biomass 
(AGB) densities, and b) remote sensing (RS) based AGB estimates after adjustment using FIA county 
AGB means. 
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Table 2.  Statistics of aboveground forest biomass (dry weight, Mg/ha) between the Forest Inventory and 
Analysis (FIA) plot-based and remote sensing (RS) based estimates of 2001 before and after adjustment 
using FIA county means for the six New England States, USA. 
 
                                  Mean (Standard deviation), difference in %1 
                              ------------------------------------------------------------ 
State                         FIA                           RS                               RS2 
CT  135 (79)  115 (49), -14.8         130 (57), -3.7   
MA  146 (78)  114 (52), -21.9             146 (79), 0.0 
ME  103 (59)  133 (46), +28.9            103 (38), 0.0                      
NH  141 (74)  125 (47), -11.7             138 (54), -2.1 
RI  118 (68)  106 (50), -10.2             113 (54), -4.2 
VT  142 (69)  123 (46), -13.4             139 (59), -2.1                      
Overall                 123 (69)  127 (48), +3.3              120 (54), -2.4                     
1 Compared to FIA estimates. 
2 RS based estimates after adjustment using FIA county means. 

 
This study demonstrated that RS-based AGB estimates can be considerably improved 

using county means of AGB obtained from the FIA data (Table 2).  While the estimated mean 
AGB density for the region is 2.4% lower than the FIA-derived regional mean density, the 
AGB means at the state level range from 0% in MA and ME to -4.2% in RI with an average 
of -2.0%, compared to the FIA-derived state mean densities in the 6 states.  Spatial pattern of 
AGB density is similar to that of stand age across the region, increasing from coast region to 
inland (Figs. 8a & 8b), except in northern ME where older stands did not have higher AGB.  
Field data and experimental studies have suggested that AGB accumulation after reaching the 
peak year can plateau or even decline [50-51, 59-60]  The highest variation in AGB estimates 
occurred in MA and the smallest variation existed in ME, which agreed with the FIA 
observations (Table 2).  Both AGB and stand age maps could provide useful information for 
fuel-loading estimates across the region, especially the latter because strong relationships 
between stand age and fuel loading have been reported [16, 61-63] 
 
      a)                                                                         b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.  Spatial distributions of stand age (a) and aboveground biomass (AGB, Mg/ha) estimates (b) in 6 
New England states, USA.  Numbers in the parentheses are frequency distributions in terms of 
percentage.  The rectangular box shows the area of the full ETM+ scene within which the models were 
developed.  The other solid lines indicate state boundaries. 

 
 
 

 

Journal of Applied Remote Sensing, Vol. 2, 021502 (2008)                                                                                                                                    Page 11



  

0

9

18

27

36

45

54

63

Evergreen Deciduous Mixed

Broad forest type

Pr
op

or
tio

n 
(%

)

In area In biomass

0

40

80

120

160

200

Evergreen Deciduous Mixed Overall
M

ea
n 

A
G

B
 (M

g/
ha

)

a) 
 
 
 
 
 
 
 
 
 

               b) 
 
 
 
 
 
 
 
 
 
Fig. 9. Comparisons of mean aboveground biomass (AGB, dry weight) density (Bars represent one 
standard deviation) among broad forest types (a) and proportion of occupancy and AGB storage 
comparing to total forestland and total regional AGB (b). 
 

We could not assess the accuracy of our MODIS based maps of stand age and AGB 
because of lack of ground observations at 1-km resolution.  However, our methodology 
provided estimates across the region that are well constrained by the age frequency 
distributions and almost identical to municipality-level mean AGB values, compared to those 
obtained from FIA, and with small errors at the state level, which is desirable information for 
large scale carbon related studies and fuel-loading assessments.  Stand age and AGB maps 
driven by remote sensing and constrained by inventory data could be valuable for pursuing 
spatial and temporal analyses at regional and national levels because of the increasing 
availability of satellite data and periodical updates in the FIA database. 

Our predicted regional AGB map indicated that high AGB densities were observed along 
the Appalachian Mountains starting from northwestern CT to the Green Mountains in VT and 
White Mountains in NH.  Low AGB densities were concentrated in the Downeast area of ME 
and Cape Cod of MA (Fig. 8b).  The majority of New England forests (58.2%) were in the 
range of 80 to 160 Mg/ha, with only about 7% of the forests featuring AGB ≤ 40 Mg/ha and 
8% of forests with AGB > 200 Mg/ha (Fig. 8b).   

For the broad forest types that are aggregated from the 2001 MODIS land-cover map, 
deciduous forests have a mean AGB of 127 Mg/ha (Fig. 9a), 32% higher than that of conifers 
(96 Mg/ha) with the similar pattern in Std. (57 Mg/ha for deciduous vs. 53 Mg/ha for 
conifers).   Mixed forests have a mean AGB of 117 Mg/ha with a Std. of 52 Mg/ha.  With the 
smallest area occupancy in the region (2.8%), evergreen forests contained about 2.2% of the 
total AGB while mixed forests contained 59.2% AGB with about 61% area occupancy.  
Deciduous forests featured 39% of AGB but occupied about 36% of the area (Fig. 9b). 
 
4 CONCLUSIONS 
 
The combination of remote sensing imagery and national long-term forest inventory data is a 
practical and effective way to map the ecosystem properties and attributes that are necessary 
for predicting fuel loading and conducting carbon-related studies in forest ecosystems.  
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However, the derived empirical relationships can differ from region to region, and time to 
time, due to variations in sampling pools and differences in ecosystem structure and 
properties when samples are collected.  It is necessary to pursue internal calibrations of 
reflectance or vegetation indices remotely sensed for the same target at the same time but 
from two sensors that differ in both spatial and spectral resolutions before the model(s) 
developed based on fine-resolution satellite data can be applied to a larger area using coarser-
resolution data.  These calibrations can reduce the uncertainty caused by sensor difference.  
However, while the calibration between the reflectance for an individual band could be 
examined after the fine-resolution data were aggregated to the same resolution as the coarser 
data; calibrations between various vegetation indices calculated from multiple bands (such as, 
NDVI and NDVIc) should be conducted after the indices were calculated separately without 
pursuing calibration in each of the involving bands (such pre-calibration can destroy inherent 
relationships among different bands). 

Using FIA-based regional age structure and county means as reference estimates can 
substantially reduce uncertainty in mapping regional stand age and forest AGB using remote 
sensing.  While remotely sensed information can preserve spatial integrity and variation 
across landscapes, extensive forest inventory data can furnish unbiased age frequency 
distributions and AGB means across the landscapes.  Using a ratio map to link remote sensing 
derived estimates with national inventory data is a methodology worth considering for 
carbon-related studies at large scales.   
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