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Understanding spatial controls on wildfires is important when designing adaptive 
fire management plans and optimizing fuel treatment locations on a forest landscape. 
Previous research about this topic focused primarily on spatial controls for fire 
origin locations alone. Fire spread and behavior were largely overlooked. This paper 
contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on 
the spatial pattern of fire occurrence with that on burn probability (i.e., the 
probability that fire will spread to a particular location). Spatial point pattern 
analysis and landscape succession fire model (LANDIS) were used to create maps to 
show the contrast. We quantified spatial controls on both fire occurrence and fire 
spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical 
anthropogenic surface fire regime. We found that (I) human accessibility and land 
ownership were primary limiting factors in shaping clustered fire origin locations; 
(2) vegetation and topography had a negligible influence on fire occurrence in this 
anthropogenic regime; (3) burn probability was higher in grassland and open 
woodland than in closed-canopy forest, even though fire occurrence density was less 
in these vegetation types; and (4) biotic and abiotic factors were secondary 
descriptive ingredients for determining the spatial patterns of burn probability. This 
study demonstrates how fire occurrence and spread interact with landscape patterns 
to affect the spatial distribution of wildfire risk. The application of spatial point 
pattern data analysis would also be valuable to researchers working on landscape 
forest fire models to integrate historical ignition location patterns in fire simulation. 

Keywords: bum probability; fire risk; LANDIS; Ozark Highlands; USA; spatial 
point pattern; wildfire 
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INTRODUCTION 

Wildfires have burned progressively larger areas of U.S. National Forests recently despite large expenditures for fire suppression 
(Sttpheris 2005). The great risk of forest wildfire mandates active fire management plans to reduce excessive fuels that may lead to 
uncharacteristically intense and damaging wildfires (Stephens and Ruth 2005). Fuel reduction is the primary strategy to mitigate fire 
risk. Fuel types that are varied in size and shape (e.g., surface fuels, crown fuels) affect wildfire behavior differently (:lgec and 
Skinner 200.5). Fuel continuity can also limit the frequency and spread of surface fires on topographically rugged landscapes, such as 
the Missouri Ozarks (Ciuyette et al. 2002) and Southern Rocky Mountains (Rollirls ct al. 2002). However, fuel condition is not the 
only factor that shapes wildfire risk. Weather and topography are also primary determinants of fire behavior (Agcc 1993). Fuels, 
weather, and topography shape wildfire risk at landscape scales (e.g., Rollins et al. 2002, hlt.nnuz cr al. 3005). In addition, human 
activities influence spatial patterns of wildfire risks in many modem anthropogenic fire regimes (e.g., Car-ctillc et ;il. 200 1,  i'rcsternon 
rt 31. 2002, Sypf~arJ et al. 2007h). Managers must take the effects of abiotic, biotic, and human factors into account when planning to 
reduce wildfire risk on a forest landscape (Stephcils 20115). 

Fire planning involves more than just fuel reduction and fire suppression. Federal fire policy has begun to integrate fire use into 
landscape resource management (h WCCi 200 1). Fire is an essential ecological process in many forest ecosystems. Some vegetation 
types, like Rocky Mountain lodgepole pine, are adapted to, and require, periodic high-severity, stand-replacement fires for 
regeneration (Turncr and Rorn~nc 1994). Wildland fire use policy can therefore reintroduce, or maintain, fire-favorable communities 
for forest health and conservation purposes (Stephens and liuth 20i15). Elsewhere, there are grave concerns about the escape of 
wildtires into wildland urban interface (WUI) areas, inflicting great loss of human life and property (Huigilt zt al. 3001, Radclolf et 
al. 2005). Such concerns can only be addressed when wildfire use is carefully managed based on solid understanding of spatial 
controls at a landscape scale. 

Wildland fires consist of two basic consecutive processes: fire occurrence and fire spread. Both processes are affected by a wide 
range of spatial controls. Fire occurrence is a detected fire initiation, which is primarily determined by ignition sources and fuel 
(I<3.utv\:chuk rtt 31.2000). Fire occurrence can be viewed as a stochastic spatial point process at landscape scales (b1cKenzirt ct al. 
200h). Studies have shown that the spatial pattern of fire origin location is not completely random. Rather, it exhibits a great degree 
of clustering both on landscapes dominated by lightning-caused wildfires (Diaz-Avaltrs et al. 2001, Podur r t  31. 2003) and those 
dominated by human-caused wildfires (Cardilie c't 31. 2001, Prestcnion ~t 31. 2002). Studies of fire occurrence often use empirical . 
methods to quantify spatial controls on fire origin location and fire frequency over large extents at coarse resolutions (e.g., 10000-ha 
landscape units covering a 9000000-ha extent; Kmwchuk et al. 2006). However, they offer little insight into spatial controls on fire 
growth, size, and perimeter, which are also important to fire risk assessment and planning (Fi~~ncy 2[)05) .  

Fire spread is a contagious process with behavior largely determined by weather, fuel, and topographical position at fine spatial 
scales (4gec 1~50.3). Spatial controls on fire spread are often studied using mechanistic modeling approaches. Simulation models 
such as FARSlTE (I-'innry 1998) and FlamMap (Stratton 2004) can predict where and how fast a fire will spread across a 
heterogeneous landscape. The purpose of these fire spread models is not for landscape-scale evaluation of fire pattern. They are 
designed to assess the effectiveness of fuel treatment on fire growth and behavior. The landscape scale pattern of fire origin location 
is often ignored in the design of these models. 

Effects of spatial controls on fire occurrence are different from those on fire spread. Areas with high density of fire occurrence, for 
example, do not necessarily have a high probability of being burned by large wildfires (Finncy 2005). Therefore, a thorough . 

understanding of wildfire spatial patterns requires consideration of spatial controls on both processes (hlcrcei and Prcsternc~n 3005). 
Although the influences of spatial controls on fire occurrence at broad scales have been widely documented, research that integrates 
both the spatial pattern of fire origin location, as well as mechanistic characteristics of fire growth and behavior, are scarce (Finrtey 
2005). 

This study jointly examines tire occurrence and spread in the Central Hardwood Forests of the Missouri Ozark Highlands, USA. 
We quantified spatial controls on both fire occurrence patterns (i.e., spatial patterns of fire origin locations) and spatial bum patterns 
(i.e., spatial distribution of burn probability that fire will spread to a location). Fire occurrence patterns are analyzed from reported 
data on tire origin locations using a spatial point process (SPP) modeling technique (Diggle 2002). Spatial bum patterns are 
investigated using a landscape fire simulation model (LANDIS), which simulates fire occurrence and spread processes limited by 
vegetation, topography, and human factors. The resulting high-resolution maps show predicted fire occurrence density and bum 
probability across the study area. Influences on fire occurrence patterns from vegetation, topography, and human activities are 
compared with influences on spatial bum patterns. We addressed the following specific questions: (1) Which vegetation types are 
more susceptible to fire occurrence? (2) Are those vegetation types the same ones associated with high bum probability when fire 
spread is considered? (3) How do ownership, human accessibility, and topography affect fire origin locations and spatial bum 
patterns? (4) Does the relative importance of spatial controls on fire occurrence differ drastically from the relative importance on 
spatial bum patterns? 
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STUDY AREA 

The Ozark Highlands is a plateau that covers much of the southern half of Missouri, as well as portions of northwest and north 
central Arkansas, USA. The region extends westward into northeastern Oklahoma and southeastern Kansas. The Ozark Highlands 
area, nearly 75200 km2 (47000 square miles) in size, is by far the   no st extensive mountainous region between the Appalachian and 
Rocky Mountain ranges. 

The Ozark Highlands region is characterized by many small surface wildfires (Westin 1992, Guyctte ct al. LI)OZ) .  The dominant 
upland vegetation of the south central Ozarks is an oak and oak-pine forest matrix juxtaposed with patches of open woodlands and 
grasslands. Vegetation types are characterized by differing amounts and arrangements of herb and shrub fuels, litter, twigs, and 
branches, as well as ladder fuels and canopy fuels. Hence, those vegetation types have different flammability (Grabncr et 31.200 1). 
Most wildfires in this region are caused by humans (primarily arson). Human accessibility (e.g., roadway coverage, municipalities) 
and ownership strongly affects the likelihood of fire ignition. Topography influences road locations, and hence, affects fire ignition 
patterns. Topography also affects fire spread behavior by increasing radiant energy transfer from a fi re front to upslope fuels. 
Furthennore, topography limits human accessibility for fire suppression. The influences of landscape heterogeneity are prominent in 
the surface fire regime of the Midwest Ozark Highlands region (Guycite ct al. 2002). In contrast, the crown fire ecosystems, like 
subalpine and boreal forests in the Pacific Northwest (Agcc 1992) and chaparral shrublands in the West (>lorib 2003), have less 
significant spatial controls on wildfire during extreme fire weather conditions (-1 urr1t.r and Roirllne 1934). 

The 1.3 x 1 o5 ha study area in southern Missouri is located in the Eleven Point Ranger District of the Mark Twain National Forest 
(MTNF). The area is largely covered by oak and oak-pine forests, with white oak (Quercus alba L.), post oak (Quercus stellata 
Wangenh.), black oak (Quercus velutina Lam.), and shortleaf pine (Pinus echinata Mill.) as the dominant tree species. The 
landscape is dissected by a dense stream network creating ridges and valleys, some with steep (>30°) slopes (see Plate 1). Elevation 
ranges from 140 m to 350 m above sea level. The area consists of three ownership groups with different vegetation cover 
characteristics: (I) large contiguous blocks of National Forest land (NF, 61%); (2) small patches of private forests, open woodlands, 
and cool-season grasslands of fescue inside the district boundary of the MTNF (PV, 25%); and (3) urban lands, grasslands, and 
forests outside the MTNF boundary (non-MTNF, 14%). Forests were further classified into two categories: deciduous oak forests 
and mixed oak-pine forests (Fig. I). 

Plate 1 .  The study area is heavily forested and occurs on an ancient plateau that has 
eroded to produce a ridge and valley topography. U.S. Forest Service photograph by S. R. 
Shifley. 

1 Fig. 1. Map of the study area, the Midwest Ozark Highlands region, USA, showing land 
1 ownership and vegetation type (MTNF, Mark Twain National Forest). 
t 

i 
I 
1 

The natural fire rotation (number of years necessary for an area equal to the entire area of interest to burn) was <20 years during 
the period prior to European settlement (C;uyc.ttc ct al. 2002). It now ranges between 300 and 500 years because of effective fire 
suppression beginning in about 1940 (Wrhtin 1092). Heavy logging between 1890 and 1920 followed by vigorous natural forest 
regeneration and decades of effective fire suppression dramatically changed forest composition in this area. Historic reconstruction 
of tree species composition in the early 19th century (Ratek et al. 1999) showed that fire-adapted shortleaf pine was the dominant 
tree species before European settlement. Present shortleaf pine abundance in southeast Missouri is only 25% of the level ca. 1900. 
As a result of fire suppression, oak decline, and oak mortality, the buildup of surface fuels has significantly increased in recent years. 
This may lead to large and intense wildfires that were historically rare in this region (Shang et al. 2004). Prescribed burning is now 
being widely applied in the Mark Twain National Forest for both reducing excessive fuels and restoring the fire-favorable natural 
cominunities of the Ozarks by emulating the historic fire regime (Marl, 'l'wain N;lti(li~i~l Forest 2005). Humans strongly influence this 
modem fire regime both by igniting fires and by suppressing the spread of those fires. Arson caused 75% of all wildfires reported 
between 1970 and 2002. Wildfires are frequent (0.3 fire~-km-~.decade-'), but the average size is small (<lo ha). 

METHODS 
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We started from spatial point pattern analysis of reported wildfires origin locations to derive a fire occurrence density map. There 
were 1299 fires reported to either the Mark Twain National Forest or the Missouri Department of Conservation (MDC) in the study 
area between 1970 and 2002. The derived fire occurrence density map was then used in LANDIS to simulate both fire occurrence 
and spread. Simulations were based on (I) where we expect fires to occur, and (2) how we expected fires to spread based on 
vegetation, topography, and weather. We conducted 200 fire simulation replicates to estimate the bum probability that fire will 
spread to a particular location. The estimated bum probability map was then compared to the map of burned patches (size > I0 acres) 
recorded between 2003 and 2004 (n = 3 1). A chi-square test was used to evaluate model prediction power. Finally, we used 
classification and regression tree (CART) analysis to determine the relative importance of spatial controls on tire occurrence density 
and bum probability maps (Fig. 2). The following sections describe details of the major components of our analysis. 

"--", -.-- . "< 

i Fig. 2. Flowchart of the overall methods. Each parallelogram stands for underlying data, 
i and each rounded rectangle stands for a statistical analysis or modeling procedure. : 1 1 "CART" stands for classification and regression tree. 
I x r ~ x r ~ x r ~ x r ~ x r ~ x r ~ x r d  

L14 NU/S.fir *e mode/ d~sigtl 

We used a raster-based spatially explicit model, LANDIS, to derive the bum probability map. The model simulates forest 
landscape change in response to disturbance, succession and management at large extents ( I  03-1 o6 ha) over long periods of time 
(10'-10~ years), with a 10-year time step (He and Mlatlenoff 1999). LANDIS can operate with cell sizes ranging from 0.01 ha to 
100 ha; a cell size of 0.09 ha (30 x 30 m) was used in this study. Each cell is a spatial object that tracks the presence or absence of 
age cohorts of individual plant species. LANDIS simulates ecological processes occumng at a site scale (e.g., competition, 
succession, seedling establishment, fuel accumulation, and decomposition) and a landscape scale (e.g., seed dispersal and tire 
disturbance). This paper describes the simulation of fire occurrence and spread. Additional information about LANDIS design and 
application is available from other sources (He ulld %lIaclenc>ff 1900, Gustakon et at. 2000, He et at. 2005). 

Fire occurrence in LANDIS is simulated as a two-stage process (i.e., fire ignition and fire initiation) using a hierarchical fire 
frequency model ('r'ang et al. 200-1). In the first stage, fire ignition X for a given area is modeled as a Poisson process with the 
parameter ignition rate h, which is the expected number of ignitions per unit time and unit area: 

[X I I,] .-- Pt'oi sn3r I ( i. ) . ( 1  1 

The second stage involves determining whether or not an ignition can become a wildfire (i.e., initiation). The process in this stage is 
modeled as a Bernoulli trial whose parameter initiation probability P is determined by vegetation type. LANDIS model assumes P is 
constant (i.e., vegetation remains unchanged) within a simulation time step (i-e., 10 years). Therefore, fire occurrence conditional on 
ignition in a LANDIS modeling time step follows a Binomial distribution: 

[U:X] -- Nitmmisl{X. P). { 2 )  

The marginal distribution of fire occurrence U is then another Poisson process with the parameter W: 

[ i i ' x j  -- Pt~isst,n{n -- Xi3!. #.3 

In this study, fire spread was simulated based on a minimum travel time algorithm (FinnCy 2002). The algorithm calculates, for 
each cell, the least cumulative time required for a tire to travel through from a set of source cells. It involves the calculation of rate 
of spread (ROS) for each cell in response to wind direction, wind speed, fuel type, and slope based on elliptical fire spread behavior 
(Rott~ennel 1972). However, because there are so many fires (-- 400 firesldecade) to simulate on the landscape, calculating ROS in 
this way for each simulated fire event is computationally expensive. To mitigate the computational cost, LANDIS reads in 
equilibrium head fire spread rates for all the possible combinations of fuel type, slope, and wind speed before the simulation starts. 
The model then updates ROS for all other directions along a fire front (e.g., flanks of a fire) with a direction correction factor during 
the simulation. The model simulates prevailing wind direction and speed from user-specified wind distribution for each tire spread. 
The simulated wind direction and speed are used when calculating ROS. 

To eliminate instantaneous jumps to a faster ROS, acceleration (i.e., elapsed time for a fire to reach the equilibrium ROS) is 
estimated using a formula from the Canadian Forest Fire Prediction System (Forestry Canatla Firc Danger Group IC)92): 

KOS, - -  ROSk%k ): I r ' ") 4 4 1 

where ROS, is the rate of spread at elapsed time t (mlmin), ROSeq is the predicted equilibrium rate of spread (mlmin); t is the 

elapsed time (minutes) since fire initiation; and a is a coefficient valued 0.1 15 when assuming 20 minutes to 90% of ROSeq. Fire 

spread simulation and the calculations of ROS are stopped when t reaches the burning duration. The burning duration is randomly 
drawn from a user-specified duration distribution which reflects climate conditions and fire suppression efforts for the region. The 

http://www .esajournals.org/perlserv/?requesget-document&doi= 1 0.1 890%2F07-0825.1 8/ 1 312008 



ESA Online Journals - SPATIAL CONTROLS OF OCCURRENCE AND SPREAD OF ... Page 5 of 12 

input burning duration t (minutes) was modeled as a general exponential distribution with the parameters describing average initial- 
attack response time p and control time p + (3: 

f 2 ji 1 3+ 1 gs j 

The two parameters used to simulate fire occurrence, the spatially varying ignition rate h for every cell and the initiation 
probability P for different vegetation types, were estimated using a spatial point process (SPP) modeling approach (Llig~le 200.7). 
SPP modeling has been widely used in analyzing point pattern data such as tree locations (e.g., Larsen and Bliss 19W) and fire 
origin locations (e.g., Podur c't 31. 2003, Gcrltor) ct al. 2006). In this study, SPP was used to estimate fire occurrence density across 
the landscape. Fire occurrence density ~c for any location u on the landscape was specified through a log-linear Poisson process 
model: 

where Z is a list of spatial covariates that includes abiotic, biotic, and human factors (Tiible I) ,  and 0 is the vector of coefficients to 
be estimated. We used the AIC (Akaike Information Criterion) method to select an appropriate inhomogeneous Poisson process 
model that best fits to the reported fire occurrence location data. The fitted model selected important spatial covariates and quantified 
their effects. Additional details about this procedure were described in Yang ct 31. (2007). The estimated coefficients for vegetation 
type were further separated from contributions of other factors to calculate the fire initiation probability and fire ignition rate 
(Appendix}. 

-----... 
I - - v  1 Table 1. 
I r 
i 
I 1 
i ! Estimated rate of spread (ROS, mlmin) for three fuel models over a range of slope and wind conditions 
i-------- -,-A-.-A.-l under D2L2 fuel moisture scenario (fuel moisture contents are 6%, 7%, and 8% for I -h, 1 0-h, and 1 00-h 

fuels, respectively) using the BehavePlus model (Andrews et al. 2005). 

Input equilibrium spread rates were estimated using the BehavePlus fire modeling system (.4n(fretv~ et a1. 2005). The software can 
calculate potential fire behavior in various fuel types over a range of moisture, slope, and wind conditions ('T'able 1). There are three 
distinct BEHAVE (x4nclct~sttn 1982) fuel types in our study landscape according to local fuel studies (Grabncr et ai. 200 I). In 
increasing order of ROS, they are hardwood litter (BEHAVE class 9), open woodland (BEHAVE class 2), and short grassland 
(BEHAVE class I). Cells that intersect with primary rivers and roads were treated as firebreaks in the simulation. Parameters for 
adjusting ROS at directions other than prevailing wind direction were calibrated with the computer program utility VFS (Visualized 
Fire Spread). The utility can simulate fire spread patterns comparable to that predicted by fire behavior model FARSITE (Finncy 
I 90s; B. R. Miranda, B. S. Sturtevant, J. Yang, and E. J. Gustafson, unpublished manuscript). 

Fire season wind statistics were used to define probabilities of different wind directions and corresponding wind speed classes, 
which are parameters for simulating wind events in LANDIS. Currently, average response and control times for wildfires in this 
region are within the ranges of 20-30 inin and 50-70 min, respectively, according to reported Missouri wildfire statistics (Westin 
1992). 

We conducted 200 replicates of LANDIS fire simulation for one time step (i.e., 10 years) to estimate bum probability across the 
landscape. Burn probability for each cell was calculated as the ratio of the number of replicates in which the cell is burned to the 
total number of replicates. The resulting map of burn probability was characterized further with regard to a wide range of spatial 
covariates (Tablc 2) including elevation, slope, aspect class, vegetation type, ownership, road proximity, and proximity to 
municipalities. We compared group mean bum probabilities using a univariate ANOVA test (Ket-er et al. 1985) for discrete 
covariates (e.g., ownership). The ANOVA test enabled us to show whether bum probabilities differed significantly among discrete 
categories of each tested covariate. For a continuous covariate Z (i.e., a gradient) such as elevation, a characteristic gradient function 
was calculated using the following formula: 



where C(h) denotes the departure (in percentage) of mean bum probability (MBP), for a sub-region B(h), from the total-landscape 
MBP. The total landscape is denoted by D. B(h) denotes the subregion of D in which the covariate Z S h. Using elevation as an 
example, if h = 200 m, then B(200 m) is the subregion with elevation 5 200 m. P(u) denotes bum probability for grid cell u. The 
total number of grid cells within the entire region is denoted by n, and nh is the number of grid cells within the subregion B(h). The 

range of C(h) is [-I 00%, +loo%]. C(h) < 0 when the MBP for the subregion B(h) is less than the total-landscape mean, and vise 
versa. The same analysis was also conducted for fire occurrence density to capture landscape characteristics of fire occurrence. 

Table 2. 

Description of the covariates used in modeling fire occurrence and characterizing burn patterns. 

Classification and regression tree (CART) analysis were used as an exploratory tool to discover relative importance of factors 
contributing to spatial patterns of fire occurrence and spread. CART is a nonparametric, recursive partitioning technique used for 
classification and prediction (Brcinlan et 31. 1083). CART analysis iteratively partitions a larger data set (i.e., 100000 cells randomly 
sampled from the fire occurrence density and bum probability grid maps) into two relatively homogeneous subsets (nodes) such that 
the split reduced the most impurity (i.e., the degree of heterogeneity within a node) measured by the deviance (i.e., residual sum of 
squares). Trees were pruned using the 10-fold cross-validation procedures of Atkitlsarr arid Thcn~cau (20UO), in which the 
partitioning was stopped when the control argument cp (complexity parameter) reached the threshold value 0.01. The CART 
diagram hierarchically illustrates the relative importance of variables and their thresholds in partitioning a response variable of 
interest. All the statistical analyses were done with the statistical software R. 

RESULTS 

There were 390 fires on average simulated within one decade over the entire landscape. This was very close to the observed mean 
tire frequency (394 firesldecade). Seventy three percent of simulated fires were ignited in the public lands, a value close to the 
corresponding statistic (75%) in the fire database. The standard deviation for simulated fire frequency was 19 firesldecade, about 5% 
of the mean. In contrast, the simulated fire size distribution exhibited a much larger variability. Its standard deviation was 18.2 ha, 
which is 275% of the simulated mean fire size (6.6 ha). The majority (80%) of simulated fire sizes were less than the mean. Only 3% 
of simulated fires were larger than 40 ha (1 00 acres). Such a strongly skewed fire size distributions is consistent with the observed 
data for this fire regime, which consists of many small fires and few large fires that escape initial fire suppression efforts (Wcqtin 
I 992). 

The mean bum probability on a 0.09-ha cell in the landscape over a decade estimated from 200-replicates LANDIS tire simulation 
was 0.02. Across the entire landscape, 35% of the cells ("hot spots") had estimated bum probabilities higher than the average (Fig. 
3). We used a map of burned patches reported between 2003 and 2004 (beyond the temporal range of the fire ignition data we used 
to model bum probability) to validate our estimated bum probability map. We found that the areas actually burned in 2003 and 2004 
were twice as likely to be on the hot spots as on the sites with low (5 0.02) bum probabilities (Fig. 3). The association of burned 
sites in 2003 and 2004 with predicted high (>0.02) probability was statistically signiticant (P < 0.001) based on a chi-square test. 

-"--w--" - 
1 Fig. 3. Map of estimated burn probability, defined as the probability to be burned at least 
/ once on a 0.09-ha size cell over a decade, overlaid with roadway coverage, relief, and map 1 of burned patches reported in 2003 and 2004 in the study area. 

I 
i 

i * I 
Lei%- --- - - A  > 
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Simulated fire occurrence density averaged 0.3 fire~-km-~.decade-' for the entire landscape. The densities for the three 
ownerships were distinctively different (Fig. la). The mean fire occurrence density was 0.02 fires.km"-decade-' for the non-MTNF 
land, 0.3 fires.krn-*.decade-' for private inholdings within the MTNF district boundary, and 0.38 fire~-km-~.decade-' for the public 
land. Vegetation type influenced fire occurrence with a general ranking as grassland < open woodland < deciduous forest < oak-pine 
mixed forest (Fig. 4b). Univariate ANOVA found significantly (P = 0.03) fewer fires on mesic aspects than xeric aspects. 

+... -" ------*-*-- 
!; , Fig. 4. Simulated mean fire occurrence density for different (a) ownerships and (b) 
Ir vegetation types. 1: :y .  " "  . 1 
i s  * 

T"*. 

g . . *  

The effects of the discrete ownership and vegetation type categories on bum probability differed from those for fire occurrence. 
Mean burn probability on public land was 130% higher than that on non-MTNF land, but 30% lower than that on private land within 
the MTNF district boundary (Fig. 5a). The ranking for influences of various vegetation types on bum probability was deciduous 
forest < mixed forest < grassland < open woodland (Fig. 5b). Since fire occurrence density was low in grassland and open woodland, 
the high bum probability suggests that fire sizes are generally large in these two vegetation types. There was no significant (P = 

0.61) difference in burn probability between mesic and xeric aspects. 

r- 
I .  Fig. 5. Simulated mean burn probability for different (a) ownerships and (b) vegetation 

Among all the continuous covariates, road access and municipalities exhibited the most conspicuous effects on fire occurrences. 
Increasing distance to the nearest road monotonically decreased fire occurrence density (Fig. ha). Areas closer than five kilometers 
to municipalities had relatively low fire occurrence density, but fire occurrence density within a distance of 7-1 0 km from 
municipalities was greatly elevated, resulting in a curvilinear effect (Fig. 6b). Topographical effects were also obvious, but to a 
lesser degree than those of roads and municipalities. The absolute departure from mean fire occurrence density against slope and 
elevation was <40%. Fire occurrence density was lower at the intermediate elevations and higher in valley bottoms and on ridge tops 
(Fig. 6c). The highest (10% more than average) fire occurrence density along the gradient of slope steepness was found at the scale 
of <20 degrees (Fig. 6d). 

f."--P 

I Fig. 6. Gradient analysis of fire occurrence density in response to (a) distance to road, (b) 

k * -  ,," 
distance to municipalities, (c) slope, and (d) elevation. The percentage departures were 

I calculated based on Eq. 7. I 
i L- - , ~ ~ " , , ~  

The characteristics of bum probability in response to road proximity were quite different from those of occurrence density (Fig. ?a 
vs. Fig. ha). Areas near roads had very low bum probability because primary roads served as firebreaks in the simulation. However, 
burn probability increased rapidly and reached a peak within a few hundred meters of roads, then decreased gradually afterwards 
(Fig. ?a). The effect of municipalities on bum probability was similar in form to that for fire occurrence density, but of a smaller 
magnitude (Fig. 7b vs. Fig. bb). Bum probability was lower in valley bottoms and intermediate elevations (Fig. 7c), and higher on 
moderate slopes (Fig. ?d). 

Fig. 7. Gradient analysis of burn probability in response to (a) distance to road, (b) 
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distance to municipalities, (c) slope, and (d) elevation. The percentage departures were 
calculated based on Eq. 7. 

The final CART models for fire occurrence density and burn probability (Fig. 8) illustrated the hierarchical relationships among 
spatial covariates (i-e., explanatory or predictor variables) in order of importance from top to bottom. The primary covariate affecting 
fire occurrence was proximity to road, which separated 44% of the total landscape that is far (>520 m) from roads into a relatively 
homogeneous group with a low (0.1 7 fire~-km-~.decade-*) mean fire occurrence density (Fig. Sa, node I ) .  Ownership and 
municipalities were also important covariates in characterizing landscape pattems of fire occurrence. High fire occurrence density 
was found on public land close to municipalities (<I0 km) and roads (<520 m) (Fig. Ha, node 5). Environmental variables (i.e., 
vegetation type and topography) were not identified as key descriptive covariates in the classification tree. 

i 

i i Fig. 8. Classification and regression tree (CART) partition of (a) fire occurrence density 
! ; and (b) burn probability across the landscape (MTNF, Mark Twain National Forest). End 
i 
i ! nodes are boxed and numbered in boldface. Each node shows the percentage of area (top 
I ) and underlined) and the mean (a) f i e  occurrence density (number of fires per km2 per 
i j decade) and (b) burn probability (bottom). 
f t 

I 
% 

The CART model identified four key covariates for bum probability. The primary variables remained road proximity and 
ownership; the two top covariates on the CART analysis for fire occurrence density. However, vegetation type and topography were 
also identified as important secondary factors influencing patterns of bum probability at a local level (Fig. lib). High bum 
probabilities were found in grassland and open woodland in the MTNF district (Fig. 8b, node 3) and forested land in the MTNF 
district that was on high (>290 m) elevations (Fig. Sb, node 5). 

DISCUSSION 

Many modem fire regimes in the United States are anthropogenic. Human-caused wildfires comprise 3 1 %, 55%, 22%, 64%, 94%, 
and 97% of the total amount of area burned from 1940 to 2000 in United Stated Forest Service Northern, Rocky Mountain, Pacific 
Northwest, Pacific Southwest, Southern, and Eastern regions, respectively (Stcphcns 2005). Recent studies for various fire regimes 
have shown that human-related factors are replacing fuel and topography as the primary drivers for the modem period (e.g., Cardille 
ct sf. 200 I ,  Presteinon ct 31. 2002). This was also true in our Missouri study area. CART analysis picked three of the four potential 
explanatory human-related covariates as key variables in describing fire occurrence pattems (Fig. Xa). Population density was not a 
significant factor in the analysis, partially because our study area is one of the most rural landscapes in Missouri. There is relatively 
little variation in the spatial distribution of population density in the area. Most tires were ignited in public forests within 10 km of 
the municipalities. Our CART analysis found that arsonists appeared to set fires close to roads (Fig. $a), presumably because of easy 
access and easy escape. This finding was also supported by our fire database, in which 75% of reported arson fires were ignited ~ 5 2 0  
m from roadways. There were obvious fire occurrence pattems in response to vegetation type, slope, elevation, and aspect. 
Univariate ANOVA (F test) showed that individually all these variables were significant (P < 0.05). However, such statistical 
associations were not strong enough to be included in the final CART model, suggesting that environmental factors had 
comparatively little influence on where tires occurred. 

When bum patterns following ignition were considered, biotic (i.e., vegetation type) and abiotic (i.e., elevation) factors appeared 
as important secondary factors influencing patterns of bum probability at a local level (Fig. Sb). Grassland and open woodland, 
which have high fractions of one-hour time lag fuels, can carry surface fires much faster than closed-canopy forests (Anderson 
1992). Therefore, those vegetation types are associated with higher bum probabilities (Fig. 5b), despite their association with low 
fire occurrence densities (Fig. 4b). Topography plays a bigger role in determining bum pattems than it does in shaping tire 
occurrence patterns. At the landscape scale, bum probability is higher in gentle slopes than in steep slopes (Fig. 7c). Individual fires 
generally bum faster upslope, but steep slopes imply that there is a greater topographical roughness in the highly dissected Ozarks 
Highlands, which can impede the propagation of fire across the landscape due to natural fire breaks, creeks, and cool or mesic 
aspects (Guyette el al. 2002). Elsewhere, topographically complex areas (e.g., in northern Arizona [Dickqon et ;]I. 20061) can 
actually facilitate fire occurrence and spread, suggesting that the effect of topography on wildfires is landscape specific. 
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Topography and fuel influences on spatial bum patterns were not as prominent as human factors in this landscape (Fig. 8b). This 
can be explained by the characterization of the fire regime in our study area. The Midwest Ozark Highlands region is characterized 
by Inany human-caused, small-size, low-intensity surface fires (Guyerte et 31. 2002) that are attended with rapid, effective fire 
suppression measures. The drivers of human-caused fire ignitions (e.g., road proximity) end up also being the dominant drivers of 
bum probability. The relative impact of topography and fuels will be limited if most fires do not spread far from their ignition points. 
However, one might end up with different results in a western landscape where larger fires account for a greater proportion of the 
area burned (,,2gcc 1993, Mori tz 2003). 

Human accessibility affects both fire ignition and suppression, while topography and fuel primarily influence fire spread and 
behavior. Our analysis suggests that even in a landscape dominated by human-caused fires, bum patterns are still interactively 
determined by abiotic, biotic, and human factors. Therefore, a careful landscape-scale fire risk reduction plan should consider all 
three types of influences. Anthropogenic fire regimes are characterized by fire occurrences clustered near roads (k'ang et al.2007). It 
is easier for fire managers to identify areas of higher ignition potential and design specific mitigation strategies within such areas. 
Mitigation strategy alternatives may include: (1) reducing ignition rate by limiting human accessibility and by improving both public 
education and law enforcement, (2) decreasing initiation probability through vegetation management, (3) increasing fuel 
discontinuity by prescribed burning, and (4) adding permanent firebreaks in high fire risk areas. Our resultant map of bum 
probability identified hotspots in this region which exhibited a great level of agreement with the actual burned patches reported 
between 2003 and 2004 (Fig. 3). It can be directly used to prioritize specific areas for ecosystem restoration and fuel treatment. Our 
fire simulation modeling can be used to evaluate effectiveness of various management alternatives (Sturtcvant et al. 2005). 

Our results showed that, although there were more fires occurring in National Forest owned lands, fire sizes in the private 
inholdings of the MTNF district tended to be larger. This is because private lands consist of more moderate slopes (mean slope 
steepness is 6 degrees less) and more fire-spread-prone fuel type of grassland and open woodland. A fire set in the public lands may 
spread into private lands and become an uncharacteristically large fire. Building defensible fuel profile zones (DFPZs, Agee et al. 
10011) within public-private intermix areas may effectively reduce bum probability in private inholdings. 

Silnulation modeling is one of the most effective tools for studying the causes and consequences of fire disturbance over large 
areas and long time spans. The success of simulation models for characterizing both spatial and temporal patterns of ignition, spread, 
and effects of wildfires is evident by the large number of models that have been developed (see Kciinc et al. 2004 for a general 
review). However, many landscape succession and fire simulation models only simulate the statistical properties (e.g., natural fire 
rotation, mean fire size) of a fire regime and fail to incorporate spatial patterns of fire ignitions in their simulations (e.g., Hc and 
M13tlcnoft' 1999). In this study, we linked spatial point process modeling of historical fire occurrences (Ysng ct al. 2007), minimum 
travel time algorithm for simulating fire spread (Finnry 2(102), calculation of ROS using Behaveplus (Andrcws et al. 2005), and 
object-oriented design of LANDIS (He et al. 1999) into a single fire simulation model. The resulting model integrated both 
stochastic and deteministic characteristics of fire process. Without sacrificing the prediction power of fire spread behavior at 
landscape scales, our model was able to realistically simulate occurrence and spread of frequent (400) fires across the landscape in 
about five minutes using a modem personal computer. Such a rapid computation enables users to conduct scenario analyses with a 
reasonable investment of time. Furthermore, our fire simulation modeling can be linked with other model components (e.g., 
succession, fuel, and harvest) in LANDIS to address many important ecological questions such as long term interactive effects of 
fire disturbance with ( I )  fuel management (Shang ct al. 2f )O4), (2) harvest (Shifley rt al. 2006), (3) vegetation dynamics (Sypharcj ct 
i d .  2006), and (4) land use change (Sypfiarci ot ;I]. 201)7i7) on a forest landscape. 
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APPENDIX 

Separate the contribution of vegetation type to fire occurrence from other factors in calculating fire initiation probability and fire 
ignition rate (Ecological Arrhivev A01 8-044-A 1 ). 
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