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Leaves are the primary interface where energy, water and carbon exchanges

occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is

a measure of the amount of leaf area in a stand, and the tree crown size

characterizes how leaves are clumped in the canopy. Both LAI and tree crown

size are of essential ecological and management value. There is a lot of interest in

extracting both canopy structural parameters from remote sensing. The LAI is

generally estimated with spectral information from remotely sensed images at

relatively coarse spatial resolution. There has been much less success in

estimating tree crown size with remote sensing. The recent availability of

abundant high spatial resolution imagery from space offers new potential for

extracting LAI and tree crown size, particularly in the spatial domain. This study

found that the spatial information in Ikonos imagery is highly valuable in

estimating both tree crown size and LAI. When the conifer- and hardwood-

dominated stands are pooled, tree crown sizes of conifer stands relate best to the

ratio of image variance at 262 m spatial resolution to that at 363 m spatial

resolution, while LAI relates best to image variance at 464 m spatial resolution.

When the conifer- and hardwood-dominated stands are separated, image spatial

information estimates tree crown size much better for conifer-dominated stands

than for the hardwood-dominated stands, while the relationship between image

spatial information and LAI is strengthened after the two types of stands are

combined. Tree crown size is more sensitive to image spatial resolution than LAI.

Image variance is more useful in estimating LAI than normalized difference

vegetation index (NDVI) and simple ratio vegetation index (SRVI). Combining

both spatial and spectral information provides some improvement in estimating

LAI compared with using spatial information alone. Therefore, future efforts to

estimate canopy structure with high resolution imagery should also use image

spatial information.

1. Introduction

Leaves are the primary interface where energy, water, and carbon exchanges occur
between forest ecosystems and the atmosphere. The amount of leaf area in a stand is

a crucial structural parameter. The amount of leaf area in a forest stand is usually

measured by leaf area index (LAI), which is defined as the ratio of one-sided leaf

areas in a stand to the ground area it occupies (Monteith and Unsworth 1973). For

*Corresponding author. Email: csong@email.unc.edu

International Journal of Remote Sensing

Vol. 29, No. 19, 10 October 2008, 5605–5622

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2008 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/01431160802060904



conifer species, the projected leaf areas are generally used in calculating LAI

(Barclay and Goodman 2000). It is extremely laborious and costly, and usually

impractical, to estimate LAI in the field through direct measurement by destructive

sampling. Therefore, numerous optical instruments have been developed to estimate

LAI indirectly (Gower and Norman 1991, Welles and Norman 1991, Chen et al.

1997). Although using these optical instruments to estimate LAI saves much effort

compared to destructive sampling, it remains a laborious process, and is impractical

to estimate LAI at the landscape scale.

Remote sensing has been deemed as the only viable option to obtain a continuous

LAI surface over large areas. Although algorithms have been developed to map LAI

from local (Welles and Norman 1991, Chen and Cihlar 1996) to global scales

(Knyazikhin et al. 1998, Myneni et al. 2002), rigorous validation efforts found that

significant errors may exist in existing LAI products (Cohen et al. 2003). The recent

availability of high resolution optical imagery offers new potential in estimating LAI

from remote sensing. Past efforts have focused primarily on the spectral signals

(Chen and Cihlar 1996, White et al. 1997, Turner et al. 1999, Peddle et al. 2001,

Stenberg et al. 2004). The potential of using the spatial information in high

resolution imagery for extracting LAI has not been fully investigated. Previous

studies found that window-based image texture improved the retrieval of LAI in

combination with spectral vegetation indices (Wulder et al. 1998, Colombo et al.

2003). It is not clear how well image spatial information alone relates to LAI at a

stand scale.

The exchanges of energy, water and carbon between forest ecosystems and the

atmosphere are not only determined by the amount of leaves in the canopy, but are

also strongly influenced by how the leaves are arranged. Leaves in the canopy are

often clumped at multiple scales from shoots to whorls, branches and crowns (Ni

et al. 1997). However, crowns are the most important scale with respect to energy

interception (Kucharich et al. 1999), hence carbon assimilation and transpiration in

the canopy.

Measuring tree crown size is also very laborious, and it is nearly impossible to

obtain a tree crown size map over the landscape via direct measurements in the field.

Estimating tree crown size with remote sensing proved to be difficult before the

advent of space-borne high resolution optical imagery because there is little

relationship between spectral signature and tree size. Furthermore, spatial

resolution of the remotely sensed imagery from space is too coarse (Cohen et al.

1995). Franklin and Strahler (1988) and Wu and Strahler (1994) did have some

success in using the Li–Strahler model (Li and Strahler 1985) for estimating tree size

and cover with Landsat TM imagery. Woodcock et al. (1994, 1997) also found that

Landsat TM imagery can be used to map tree cover, but to separate tree cover into

tree crown size and density was difficult. With the advent of high spatial resolution

optical imagery from space, there is now great potential for mapping many forest

biophysical parameters (Franklin et al. 2001, Asner et al. 2002, Hurrt et al. 2003,

Clark et al. 2004, Kayitakire et al. 2006). Based on the theory of the disc scene model

(Jupp et al. 1988, 1989), Song and Woodcock (2003) developed an analytical model

that directly links scene structure to the spatial properties of multiple resolution

imagery. The theory has proved effective in retrieving tree crown size, particularly

for conifer stands (Song 2007).

The objective of this study is to further investigate how well image spatial

information at the stand scale can be used to retrieve tree crown size and LAI for
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forested landscapes and how the relationships between image spatial information

and both tree crown size and LAI differ. Tree crown size and LAI are critical canopy

structure parameters that are highly valuable in forest ecology and management.

They can be used directly as model input to simulate canopy processes (Ni et al.

1997, Song and Band 2004). An improved LAI product could also be used to

calibrate LAI products derived from imagery with coarser spatial resolution.

2. Methodologies

2.1 Field data collection

The study area is located in the Blackwood Division of Duke Forest (35u589420 N,

79u059390 W) and surrounding areas in the Piedmont region of North Carolina. The

local terrain is relatively flat (,5% slope). Conifer species are dominated by loblolly

pine (Pinus taeda). The hardwood stands are dominated by white oak (Quercus

alba), red oak (Quercus rubra), sweet gum (Liquidambar styraciflua), red maple (Acer

rubrum), yellow popular (Liriodendron tulipifera) and hickory (Carya ovata).

The objectives of the fieldwork were to estimate the mean tree crown size and LAI

for the stands sampled. Twenty-one circular plots with variable diameters were

established during late spring and early summer of 2005. The default plot diameter

was 30 m, but the size was increased for stands with fewer large trees, and decreased

for stands with many small trees so that the sampling plot was representative of the

stand. The plots were established in the middle of relatively large and uniform

stands. The average plot attributes were assumed representative of the stand. The

centre location of each plot was recorded with a Garmin 12XL GPS receiver. After

the centre of a plot was located, the plot boundary was identified with flagging tape.

All trees around the edge were marked whether they were inside or outside the plot.

The diameter at breast height (DBH) of each individual tree greater than 2.5 cm was

measured and its species was recorded. Repeat measurements were avoided by

marking stems with chalk. The tree crown diameter (CD) was measured in two

orthogonal directions (one along the maximum width) with fibreglass tapes. The

average CD in the two directions is used to represent the tree crown size.

For each plot, a minimum of 16 individuals, uniformly distributed within the

range of the DBH of the plot, were selected for crown diameter measurements. At

the end of the fieldwork, all the tree crown measurements from all plots were pooled

and sorted by species. The allometric relationship was developed on a species-

specific basis. The following species-specific allometric relationship between DBH

and CD was assumed:

ln Y~b0zb1 ln X , ð1Þ

where b0 and b1 are constants, the independent variable (X) is the DBH, and the

dependent variable (Y) is the CD. The tree crown sizes for the individuals that were

not measured in the field were then calculated by species using equation (1). After

the CD was calculated for each individual within a plot, the mean crown diameter of

the plot was calculated as:

D~
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where Di is the CD of a given individual within a plot, D̄ is the mean CD of the plot

and n is the number of trees within the plot.

The LAI for the sample stands was estimated from the DBH and species-specific

allometric relationships from a comprehensive database compiled by the US Forest

Service (Jenkins et al. 2004). The allometric relationships were first used to calculate

leaf biomass for each individual. The biomass was then converted to leaf area, based

on the generalized specific leaf area for temperate evergreen needle-leaf trees and

temperate deciduous broad-leaf trees used in Biome-BGC (Running and Hunt 1993,

Thornton 2000). The leaf area index for each plot was calculated as:

LAI~

P

n

i~1

Ai

pD2=4
, ð3Þ

where Ai is the leaf area for an individual tree, D is the diameter of the circular plot

and n is the number of trees in the plot.

As a comparison, LAI was also measured with LAI-2000 for 11 of the 21 plots.

Due to constraints of accessibility and sky conditions, LAI could not be measured

with the instrument for every sampled stand. The 90u viewing cap was applied to the

optical sensor to minimize the influences of the operator and surrounding objects.

For each sample plot, an ‘above’ canopy measurement was taken in a nearby open

area before and after measurements inside the canopy. For each plot, we took five

measurements under the canopy: one in the plot centre and one in the middle of the

radius in four orthogonal directions. Due to varying mixtures of broad leaf and

coniferous trees, it is quite difficult to adjust for the clumping effect from LAI-2000

measurements. Thus, LAI estimated with LAI-2000 is only used for comparative

purposes.

2.2 Remotely sensed data

All sampled plots were located within the scope of a remotely sensed image from the

Ikonos satellite collected on 23 September 2004 with the Blackwood Division of

Duke Forest at the centre of the image. The image covered an area of 10610 km.

The sun elevation and azimuth angles at the time of image acquisition were 59.0u
and 159.9u, respectively. The cloud cover in the image is zero. For each sampling

plot, a polygon was drawn on the Ikonos image that enclosed the entire stand. The

digital numbers (DNs) from the panchromatic image were used for spatial analyses.

The multispectral images in the red and near-infrared bands were used to calculate

vegetation indices. Because of the linear relationship between the surface reflectance

and DNs, the raw DNs can be used for spatial analysis. However, because the

relationships between vegetation indices and surface reflectance are nonlinear, the

multispectral images need to be converted to reflectance values. Since we lacked

the in situ atmospheric data for retrieval of surface reflectance, we converted the

multispectral images into at-satellite reflectance using the approach by Song (2004).

2.3 Image spatial properties

Image spatial properties refer to the spatial arrangement of digital numbers. Since

each brightness value in a remote sensing image is tied to the location of a pixel, it

can be treated as a regionalized variable, and a remote sensing image can be treated

as the realization of a spatial function in the space. Therefore, the semivariogram
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method of geostatistics can be used to study the spatial pattern of remotely sensed

imagery. In this study, our analysis of image spatial properties is based on the disc

scene model (Jupp et al. 1988, 1989), where the scene of a forest stand is treated as

discs randomly distributed on a contrasting background. The discs can overlap, but

the brightness value of the overlapped area does not change. Although simple, the

model is not unrealistic for a stand viewed from above. The semivariance of a

remotely sensed image of an unbounded forest landscape with spatial resolution Z

can be written as (Jupp et al. 1988):

cZ hð Þ~CZ{covZ hð Þ, ð4Þ

where CZ is the sill of the semivariogram for the image and is equivalent to image

variance, covZ(h) is the covariance of the brightness value of the remotely sensed

image and h is the lag in space. According to Jupp et al. (1988, 1989):

CZ~8

ð

1

0

tT tð Þcov Dp, t
� �

dt, ð5Þ

and

covZ sð Þ~ 8

p

ð

s

0

tW t, sð Þcov Dp, t
� �

dt, ð6Þ

where cov(Dp, t) is the spatial covariance of the DNs with Dp as the diameter of the

sensor instantaneous field of view (IFOV) and t is the integrative variable for

standardized distance with respect to the disc, s5h/Do. The parameter T(s) is the

overlap function between the disc with respect to the lag h and is defined as the

proportion of overlap for a disc of size Do as it moves in space:

T sð Þ~

1 h~0,

1

p
h{sin hð Þ hvDo,

0 h§Do,

8

>

>

<

>

>

:

, ð7Þ

where the parameter h is related to s as cos (h/2)5s. It holds that covZ(h)50 when

h.Do and covZ(h)5CZ when h50. The parameter W(t, s) in equation (6) integrates

the overlap function for discs over azimuth from 0 to p. Song and Woodcock (2003)

derived:

CZ~8 gD{gBð Þ2Q2

ð

1

0

tT tð Þ elAT tDp=Doð Þ{1
� �

dt, ð8Þ

where gD and gB are the disc and background brightness values, respectively. T(?) is

the overlap function, as defined in equation (7). The area of the disc is A and the

density of the disc is l. The fraction of the background not covered by the disc is

Q5exp(2lA). A standardized distance for the IFOV (t) in space translates to t

Dp/Do as the standardized distance for the disc. Equation (8) directly relates the sill

of the regularized image variogram to the scene structure, the size and density of the

objects, and the contrast between the disc and the background at a given size of

IFOV (Dp). Due to the fact that the contrast between the disc and the background
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does not change with the size of the IFOV, the ratio of the sill of the regularized

variogram at one spatial resolution to that at another spatial resolution would be

solely determined by the scene structure as:

CZ1

CZ2
~

Ð

1

0

tT tð Þ elAT tDp1=Doð Þ{1
� �

dt

Ð

1

0

tT tð Þ elAT tDp2=Doð Þ{1
� �

dt

, ð9Þ

where CZ1 and CZ2 are the sills of the image variogram with the diameter of the

IFOV being Dp1 and Dp2, respectively. Equation (9) is derived from the ratio of

equation (8) at two spatial resolutions. Due to the fact that gD, gB and Q in

equation (8) are independent of spatial resolution, they get cancelled in equation (9).

Equation (9) provides the theoretical relationship between the ratio of the sill of

image variograms at two spatial resolutions with scene structure, disc size (Do) and

density (l). In this study, we examined the relationship of tree crown size and LAI

with equation (9). We also examined the relationships between canopy structure and

image variance across different image spatial resolutions. The Ikonos panchromatic

image degraded to a series of coarser spatial resolutions through simple averaging.

3. Results and discussions

3.1 Tree crown size and LAI

The species-specific allometric relationship between the CD and the DBH developed

in this study is given in table 1. The number of samples for each species in table 1

reflects the abundance of the species in the stands sampled. The coefficient of

determination (R2) for most species is above 0.7, except for red oak (Quercus rubra)

and sweet gum (Liquidambar styraciflua), which have significant variations in the

CD for a given DBH. The species in the ‘others’ category in table 1 were not

encountered commonly enough to develop a species specific allometric relationship.

These species were pooled together to develop a single allometric relationship. The

allometric relationships in table 1 are then applied to all other individuals in the

plots to calculate mean tree crown size (see table 2).

The LAI estimated from the allometric relationships (table 2) is highly correlated

to the effective LAI estimated independently with LAI-2000 (figure 1). However, the

Table 1. Species-specific allometry between diameter at breast height (DBH) and crown
diameter (CD): ln (CD)5b0 + b1 ln (DBH). The data were collected in the Duke Forest and

surrounding areas during late spring and early summer of 2005.

Species b0 b1 R2 n

Loblolly pine 21.1013 1.0201 0.7673 103
Shortleaf pine 20.5554 0.9123 0.8239 15
Hickory 0.0707 0.8617 0.8098 7
Red maple 0.2572 0.7841 0.7361 20
Sweet gum 0.0661 0.7168 0.5454 28
Tulip popular 0.1720 0.6296 0.8348 29
Red oak 0.2335 0.7056 0.5643 8
White oak 20.0438 0.8185 0.8133 15
Others 0.4882 0.6028 0.5846 13
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Table 2. Canopy structure for each sample plot. The mixture of conifer and hardwoods for
the individuals in each plot is characterized by the percent basal area of conifers. The average

size of the individuals is indicated by the quadratic mean of the DBH.

Plot no.
Basal area
conifer (%)

Plot diameter
(m)

Stem density
(trees ha21)

Quadratic mean
DBH (cm)

Plot
LAI

Mean
CD (m)

1 86.7 30 1995 17.56 5.12 3.21
2 80.9 30 806 25.78 8.28 4.86
3 92.0 30 2080 16.93 4.09 2.92
4 92.2 30 1811 18.22 3.98 2.99
5 17.2 30 566 28.50 8.32 6.33
6 98.1 30 1500 19.90 3.63 2.94
7 83.3 30 1712 18.59 6.48 3.22
8 9.8 30 608 24.96 8.71 5.99
9 0.0 30 3240 9.82 7.18 3.13
10 38.5 30 905 23.46 9.67 5.41
11 26.9 15 8715 6.04 5.67 1.83
12 0.0 40 668 21.24 6.23 4.98
13 51.9 30 920 23.95 9.17 5.01
14 10.5 40 613 28.61 11.72 5.01
15 100.0 20 1974 15.42 3.66 2.88
16 88.6 30 1160 23.35 7.25 4.61
17 87.6 30 1075 22.73 5.51 4.38
18 76.1 30 1174 19.21 6.20 5.35
19 92.5 30 495 26.69 3.33 5.50
20 87.8 30 1146 21.37 4.74 4.06
21 86.3 30 1203 20.57 4.96 3.41

Figure 1. The relationship between effective LAI measured by LAI-2000 and LAI estimated
from allometry. The strong relationship indicates that the LAI estimated from allometry is
consistent among stands.
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LAI estimated by LAI-2000 is significantly lower than those based on allometry.

The strong relationship in figure 1 indicates that LAI estimated from allometry is

consistent across the stands, although it might be overestimated (Burton et al. 1991).

As long as the LAI estimate is consistent among the stands sampled, the subsequent

analysis is valid.

3.2 Relationships of tree crown size and LAI with image spatial properties

The relationships between mean stand tree crown size and image variance at

different spatial resolutions are given in table 3. There is a strong relationship

between mean tree crown size and image variance for conifers, while the relationship

is not significant for hardwoods. When the conifer and hardwood stands are pooled,

the relationship is still significant, but the strength of the relationship decreases

substantially compared with conifer alone. The weak relationship for hardwoods

may result from the more continuous canopy structure in hardwood stands, making

individual crowns hard to separate from above.

It is interesting to note that the R2 for the relationship between mean tree crown size

and image variance is not highest at the finest spatial resolution, but peaks at 464 m

spatial resolution for the stands in this study. Tree crown diameters are usually much

larger than 1 m, therefore, the image variance at the highest spatial resolution contains

within-crown variance. As pixel size increases to about the average tree crown size, the

image variance reflects the difference in tree crown size. This is similar to the scale

effect on local variance found by Woodcock and Strahler (1987).

Similar to results shown in table 3, the relationship between mean tree crown size

and the ratio of image variances at two spatial resolutions is stronger for conifers

than for hardwoods (table 4). When the conifers and hardwoods are pooled, the R2

Table 3. Results of regression analyses between stand mean tree
crown size and image variances at different spatial resolutions. The
regression equation is CD5b0 + b1CZi, where CZi is the image

variance at i m spatial resolution.

Image variance R2 P value

Conifers
CZ1 0.2880 0.0586
CZ2 0.5175 0.0056
CZ3 0.6127 0.0016
CZ4 0.6214 0.0014
CZ5 0.5689 0.0029
CZ6 0.5735 0.0037
Hardwoods
CZ1 0.0930 0.4627
CZ2 0.1569 0.3313
CZ3 0.2134 0.2492
CZ4 0.2227 0.2377
CZ5 0.2212 0.2396
Conifers and hardwoods
CZ1 0.2296 0.0282
CZ2 0.3003 0.0103
CZ3 0.3394 0.0057
CZ4 0.3417 0.0056
CZ5 0.3366 0.0062
CZ6 0.2983 0.0110
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value is much lower than the R2 value for conifer stands alone, and slightly higher

than the R2 value for hardwoods. The strongest relationship is for the ratio of image

variances at 2 and 3 m spatial resolutions. The relationships between mean crown

size and image variance ratios are much stronger than the relationships with image

variance at a single spatial resolution in table 3. However, the R2 values for image

variance ratios decrease much faster as pixel sizes increase than do those for

image variance at a single spatial resolution.

Table 5 shows the relationship of LAI with image variance at a single spatial

resolution. The pattern of R2 with spatial resolution in table 5 is similar to that in

table 3, i.e. the greatest R2 does not occur at the highest spatial resolution, but at

464 m spatial resolution. For conifers, the sensitivity of R2 in table 5 to changes in

spatial resolution is much lower than that in table 3. The R2 values vary between 0.29

and 0.62 for regression of conifer tree crown size with image variance for spatial

resolution of 161 m to 666 m, while the R2 values vary between 0.37 and 0.45 for

regression of conifer LAI with image variances at the same spatial resolutions. Thus,

tree crown size is nearly four times more sensitive than LAI to image spatial resolution

with respect to their relationship to image variances. Such a difference in sensitivity to

image spatial resolution for tree crown size and LAI is not seen for hardwoods. Unlike

the relationships between mean tree crown size and image variance in table 3, the

relationship between LAI and image variance at single spatial resolution improved

considerably when the conifer- and hardwood-dominated stands were pooled.

The relationship between LAI and the ratio of image variances at two spatial

resolutions is shown in table 6. The pattern of R2 with spatial resolution in table 6 is

similar to that in table 4. The highest R2 value for conifer LAI occurs at the ratio of

Table 4. Results of regression analyses between stand mean tree crown
size and the ratio of image variances at two spatial resolutions. The
regression equation is CD5b0 + b1Rij, where Rij is the ratio of image

variance at i m spatial resolution to that at j m spatial resolution.

Variance ratio R2 P value

Conifers
R12 0.6175 0.0015
R23 0.7282 0.0002
R34 0.3601 0.0301
R45 0.0535 0.4473
R56 0.0513 0.4566
R67 0.0511 0.4579
Hardwoods
R12 0.3053 0.1555
R23 0.4723 0.0597
R34 0.3802 0.1035
R45 0.3467 0.1246
R56 0.3206 0.1434
R67 0.0868 0.4787
Conifers and hardwoods
R12 0.4069 0.0018
R23 0.4765 0.0005
R34 0.3479 0.0048
R45 0.1662 0.0672
R56 0.0095 0.6695
R67 0.0754 0.2367
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Table 5. Results of regression analyses between LAI and image
variances at different spatial resolutions. The regression equation is
LAI5b0 + b1CZi, where CZi is the image variance at i m spatial

resolution.

Image variance R2 P value

Conifers
CZ1 0.3665 0.0218
CZ2 0.4252 0.0115
CZ3 0.4372 0.0100
CZ4 0.4542 0.0082
CZ5 0.4099 0.0136
CZ6 0.4393 0.0098
Hardwoods
CZ1 0.2670 0.2350
CZ2 0.3041 0.1994
CZ3 0.3520 0.1602
CZ4 0.3371 0.1717
CZ5 0.3895 0.1341
CZ6 0.3002 0.2029
Conifers and hardwoods
CZ1 0.5438 0.0001
CZ2 0.5831 0.0001
CZ3 0.6018 0.0001
CZ4 0.6066 0.0001
CZ5 0.6036 0.0001
CZ6 0.5933 0.0001

Table 6. Results of regression analyses between LAI and the ratio of
image variances at two spatial resolutions. The regression equation is
LAI5b0 + b1Rij, where Rij is the ratio of image variance at i m spatial

resolution to that at j m spatial resolution.

Variance ratio R2 P value

Conifers
R12 0.4128 0.0132
R23 0.4160 0.0128
R34 0.3542 0.0247
R45 0.0665 0.3735
R56 0.0911 0.2944
R67 0.0515 0.4354
Hardwoods
R12 0.3148 0.1901
R23 0.3972 0.1292
R34 0.2644 0.2377
R45 0.5110 0.0710
R56 0.1820 0.3399
R67 0.1690 0.3595
Conifers and hardwoods
R12 0.5277 0.0002
R23 0.5446 0.0001
R34 0.5067 0.0003
R45 0.2748 0.0147
R56 0.0606 0.2819
R67 0.0976 0.1679
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262 to 363 m spatial resolutions, while the highest R2 for hardwoods is at the ratio

of 464 to 565 m. The peak R2 is greater for hardwoods than for conifers. Similar

to table 5, the R2 values are generally much greater when conifers and hardwoods

are pooled. However, the R2 values for pooled data in table 6 are much lower than

those in table 5. Therefore, for pooled data, LAI has a stronger relationship with

image variance at a single resolution, while tree crown size has a stronger

relationship with the ratio of image variances at two spatial resolutions.

The best relationships between tree crown size or LAI and image spatial

properties are shown in figure 3 with conifers and hardwoods pooled. Both tree

crown size and LAI are positively related to image variance at 464 m spatial

resolution, indicating the bigger the tree crown, or the greater the LAI, the greater

the image variance. But the relationship between LAI and image variance at 464 m

spatial resolution (figure 2(b)) is much stronger than that between tree crown size

and image variance (figure 2(a)). The R2 for using image variance to extract LAI in

figure 2(b) is much higher than that for using image spectral information (figure 3)

and is relatively high compared to other studies in the literature that use image

spectral information to estimate LAI. For example, Chen and Cihlar (1996) used

normalized difference vegetation index (NDVI) from Landsat TM imagery to

extract LAI with an R2 of 0.38 to 0.52 and Colombo et al. (2003) used NDVI from

an Ikonos image to estimate LAI with an R2 of 0.33 when all the vegetation types

Figure 2. Relationships between image spatial information and canopy structural para-
meters for pooled conifer and hardwood stands: (a) tree crown size versus image variance at
464 m spatial resolution, (b) LAI versus image variance at 464 m spatial resolution, (c) tree
crown size versus ratio of image variances at 262 to 363 m spatial resolutions and (d) LAI
versus ratio of image variances at 262 to 363 m spatial resolutions.
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were pooled. More recently, Soudani et al. (2006) used NDVI from an Ikonos image

to estimate LAI with an R2 of 0.58 (r reported as 0.76 in the original paper) when 28

conifer and hardwood plots were pooled. The usefulness of image spatial

information in extracting LAI arises from its insensitivity to the additive or

proportional shift of the remotely sensed data (le Maire et al. 2006).

In contrast to image variance, tree crown size and LAI are negatively correlated

with the ratio of image variances at 262 to 363 m spatial resolutions. The bigger

the tree crown size or the greater the LAI, the smaller the ratio is. This is due to the

fact that the image variance decreases at a slower rate when the trees are big than

when the trees are small (Song and Woodcock 2003), leading to a lower ratio for

stands with bigger trees. When the conifer and hardwood plots are pooled, the

relationship of tree crown size with the ratio of image variances at 262 to 363 m

spatial resolutions (figure 2(c)) is much poorer than for the conifers alone (table 3).

The poor relationship in figure 2(c) seems to be due to one hardwood stand, but we

cannot discard the stand as an outlier based on the information we have. Careful

Figure 3. Relationships between spectral vegetation indices and LAI: (a) SRVI and (b)
NDVI. Diamonds (e) indicate conifer and squares (%) indicate hardwood dominated stands.
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examination of figure 2(c) found that all the hardwood plots are nearly stacked

vertically, indicating that the ratio of image variances does not separate hardwood

stands of different crown sizes. Although image variance ratio estimates LAI better

than tree crown size when the conifer and hardwood stands are pooled, image

variance at 464 m spatial resolution estimates LAI much better. Even though image

spatial information does not separate tree crown sizes well for hardwoods, it

provides a good estimate for LAI, indicating a difference in the scale of spatial

variability between tree crown size and LAI.

We classified stands into conifer and hardwood based on basal area in table 2, but

we actually only have two pure hardwood stands. All other plots have varying

mixtures of conifers and hardwoods. The forests in the study area are almost always

mixed stands, while pure conifer or hardwood stands are exceptions. Therefore, it is

almost impossible for us to extract LAI for conifers and hardwoods separately. It

is encouraging to find that the relationship between LAI and image variance is

strengthened when conifers and hardwoods are pooled. However, it remains a

challenge to extract tree crown size continuously with high spatial resolution

remotely sensed imagery over landscapes with a large hardwood component.

3.3 Combining spatial and spectral information in extracting LAI

The NDVI and the simple ratio vegetation index (SRVI) are the most commonly

used spectral indices for extracting LAI (Chen and Cihlar 1996, Turner et al. 1999,

Eklundh et al. 2001, Colombo et al. 2003, Soudani et al. 2006). However, both

indices have potential problems because of signature saturation, i.e. the index may

no longer respond to increases in LAI when the LAI is high (Fassnacht et al. 1997,

Turner et al. 1999).

Figure 3 shows the relationships between LAI and NDVI and SRVI that we

found in this study. Similar to that found in the literature (Chen and Cihlar 1996,

Turner et al. 1999), the SRVI predicts LAI better than the NDVI. However, if we

separate the relationships of LAI with spectral signatures for conifers and

hardwoods, the relationship for either would be extremely poor. The relationship

is strengthened when the conifer and hardwood stands are pooled, perhaps because

of the increased range of LAI. This result is quite different from Colombo et al.

(2003) who found that the relationships between the NDVI and LAI are

strengthened when different types of vegetation are considered separately. But the

R2 values between the NDVI and LAI for forest in Colombo et al. (2003) are lower

than that for all vegetation types considered together.

The R2 values between LAI and the spectral indices in figure 3 are much lower

than those based on spatial information in table 5. Thus, we further explored the

potential in combining both the spectral and spatial information in predicting LAI.

Table 7 shows the R2 values for multiple regressions of LAI with the NDVI and

image variance at single spatial resolution, and table 8 shows R2 values for multiple

regressions of LAI with the NDVI and the ratio of image variances at two spatial

resolutions. The relationships of LAI with the NDVI and image variances are

statistically significant at 95% confidence level for conifers at all spatial resolutions

examined, but not significant for hardwoods at the same spatial resolutions. The

relationships are significantly strengthened when the conifers and hardwoods are

combined (table 7). However, the relationships of LAI with the NDVI and the ratio

of image variances at two spatial resolutions are not significant either for conifers or

hardwoods, but significant when the conifers and hardwoods are combined. The R2
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Table 7. Results of multiple regression analysis between the LAI and
NDVI and image variances at different spatial resolutions. The
regression equation is LAI5b0 + b1(NDVI) + b2CZi, where CZi is the

image variance at i m spatial resolution.

Image variance R2 P value

Conifers
CZ1 0.4221 0.0490
CZ2 0.4441 0.0396
CZ3 0.4500 0.0373
CZ4 0.4648 0.0321
CZ5 0.4231 0.0486
CZ6 0.4573 0.0347
Hardwoods
CZ1 0.3937 0.3677
CZ2 0.4060 0.3528
CZ3 0.4431 0.3101
CZ4 0.4199 0.3366
CZ5 0.4679 0.2831
CZ6 0.3478 0.4253
Conifers and hardwoods
CZ1 0.5967 0.0003
CZ2 0.6090 0.0002
CZ3 0.6216 0.0002
CZ4 0.6259 0.0001
CZ5 0.6203 0.0002
CZ6 0.6083 0.0002

Table 8. Results of multiple regression analyses between LAI and NDVI
and the ratio of image variances at two spatial resolutions. The
regression equation is LAI5b0 + b1(NDVI) + b2Rij, where Rij is the ratio
of image variance at i m spatial resolution to that at j m spatial

resolution.

Variance ratio R2 P value

Conifers
R12 0.4131 0.0534
R23 0.4169 0.0515
R34 0.3663 0.0814
R45 0.0774 0.6420
R56 0.1056 0.5413
R67 0.0587 0.7170
Hardwoods
R12 0.3453 0.4287
R23 0.4125 0.3451
R34 0.2854 0.5107
R45 0.5172 0.2331
R56 0.1826 0.6681
R67 0.1692 0.6902
Conifers and hardwoods
R12 0.5463 0.0008
R23 0.5639 0.0006
R34 0.5350 0.0010
R45 0.3481 0.0213
R56 0.2456 0.0791
R67 0.2986 0.0411
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values in table 7 are higher than those in table 8, indicating that image variances are

more useful in estimating LAI than ratios of image variances. Compared to using

spatial information alone (tables 5 and 6), there is some improvement in R2 when

spatial information is combined with spectral information (tables 7 and 8).

We also examined the benefit of combining the SRVI with spatial information for

extracting LAI. The combination of the SRVI with spatial information also leads to

some improvement in extracting LAI (results not shown). However, the value of

image spatial information is much greater than that of spectral information in

extracting LAI. Colombo et al. (2003) also found a significant improvement in

predicting LAI when the spatial information of a window-based dissimilarity index

was included with spectral information.

4. Conclusions

The spatial properties of Ikonos panchromatic imagery are highly informative for

both tree crown size and LAI. For conifer and hardwood mixed stands, mean stand

tree crown size is most sensitive to the ratio of image variances at 262 to 363 m

spatial resolutions. The LAI for mixed stands is most sensitive to image variance

at 464 m spatial resolution and it is less sensitive to change in spatial resolution

than tree crown size. In addition, image spatial information is more useful for

extracting tree crown size for conifer stands than for hardwood stands. However,

the relationship between the image spatial information and LAI is stronger when

the conifer and hardwood stands are pooled than when they are separated.

Compared to the spectral indices of NDVI and SRVI, image spatial information at

high spatial resolution is more useful in extracting LAI. Therefore, future efforts to

extract LAI from high resolution optical imagery should make use of image spatial

information.
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