
1. INTRODUCTION 

With expenditures to suppress wildfires in the United States increasing rapidly 
during the past couple of decades1, fire managers, scientists, and policy makers 
have begun an intense effort to develop alternative approaches to managing wild- 
fire. One alternative is "fuels management,''2 which typically uses prescribed 
fire or mechanical methods (or both) to reduce fuel loads in dense, overstocked 
forests. Despite meeting strong resistance from many wildland policy makers 
and resource managers throughout much of the 20th century (Yoder et al. 2003), 
within the past decade prescribed fire has become one of the most frequently 
promoted approaches to reducing wildfire risk and intensity (Bell et al. 1995, 
Haines and Cleaves 1999, Hesseln 2000). For example, the Healthy Forests 
Restoration Act of 2003 called for dramatic increases in the use of fuel treat- 
ments to reduce hazardous fuel loads and the economic costs of wildfire, and one 
of the main objectives of the National Fire Plan (USDItUSDA 1995) is reducing 
fuels on 3 million acres annually. Graham et al. (2004) estimated that 100 million 
acres of forest lands historically burned by frequent surface fires in the western 
United States may benefit from surface fire restoration and 11 million acres need 
to be treated to protect communities (Graham et al. 2004), while Rummer et 
al. (2003) calculated that 66 million acres could benefit from fuels reduction. 
Progress has been slow, however. Obstacles include public resistance to smoke, 
planning and regulatory review difficulties, potential impacts on threatened and 
endangered species, budgetary limitations, risk of escaped fires, and lack of 
incentives (Stephens and Ruth 2005). 

Fire suppression expenditures by the USDA Forest Service rose from $160 million in 
1977 to $760 million in 2005, when adjusted to 2003 dollars (Mercer et al. 2007). 

Fuels management is defined in the USDA Forest Service Manual as the "practice of 
controlling flammability and reducing resistance to control of wildland fuels through 
mechanical, chemical, biological or manual means, or by fire, in support of land 
management objectives." (USDA 1995). 
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The objectives of this chapter are to (1) characterize the overall problem of 
economically rational interventions into wildfire processes, (2) describe how econ- 
omists and other analysts have evaluated the efficacy of fuel treatments, and (3) 
provide some empirical examples of how we have evaluated the trade-offs among 
fuel treatments, wildfire suppression, and wildfire damages. A goal of the chapter, 
however, is also to provide an overall characterization for the many complexities 
of the problem, due to its spatial and temporal dimensions and its need to account 
for the multiple impacts of both wildfire and proposed interventions. 

2. LITERATURE REVIEW - .t 
Conventional wisdom suggests that reducing fuel loads may enhance wildfire 
management efficiency by reducing the resources needed for fire suppression, 
increasing fire fighter safety, and allowing more flexibility for suppression strate- 
gies. All too often, however, fuels management advocates promise an array of 
benefits yet to be validated by science. For example, fuels reduction has been 
promoted to restore forest structure and function, eliminate today's out of control 
wildfire behavior, and reduce suppression costs, acres burned, and economic and 
ecological damages (Finney 2003). Several recent studies, however, provide 
evidence that reducing fuel loads may have only a short-lived effect on wildfire 
spread rates (Eernandez and Botelho 2003). 

The effectiveness of fuels management for reducing wildfire risk varies by 
ecosystem, fuel type, and weather. Although reducing fuel loads may facilitate 
wildfire management during most weather conditions, Graham et al. (2004) 
suggest that placing too much emphasis on fuels treatments for reducing the risk 
of catastrophic wildfire may uriderestimate the more important role played by 
weather. Under extreme weather conditions (low fuel moisture, low humidity, 
high winds), intense wildfires often bum through or breach most fuel treatments 
(Fernandez and Botelho 2003). For example, in the Southern Canadian Rockies, 
Graham et al. (2004) found surface fire intensity and crown fire initiation were 
affected more by weather rather than fuel loads. Crown spread, however, was 
slightly more dependent on fuels. 

Pifiol et al. (2005) examined the effectiveness of fuels treatments using simu- 
lation models and fire history data from Tarragons, Spain and Coimbra, Portugal. 
They found that the total amount and proportion of large fires decreased with 
increasing prescribed fire while the total area burned was not affected by fire 
suppression or prescribed fire. Suppression slightly enhanced dominance of large 
fires and prescribed fire reduced the importance of large fires. Finney (2003) 
concludes that changes in fire behavior associated with reduced fuel loads may 
enhance the effectiveness of fire suppression tactics, but it is impossible for fuel 
treatments alone to stop fires from burning or spreading. A more realistic objec- 
tive for fuel treatments may be to reduce the risk of crown fires that tend to 
produce higher economic and ecological damages (Graham et al. 2004). 



Research on the operational effectiveness of fuels management has been 
primarily based on anecdotal case studies, most of which only report on areas 
recently prescribed burned (i.e., within 4 years prior to the wildfire). However, 
since wildfires are produced from a combination of several random events (e.g., 
weather, ignition sources, ecological conditions) the usefulness of conclusions 
drawn from even the best of case studies is limited and needs to be validated with 
statistical analyses across a variety of spatial and temporal scales (Fernandez and 
Botelho 2003). 

We know of only two studies (Prestemon et al. 2002, Mercer et al. 2007) that 
have rigorously subjected time-series data to statistical analyses of the impact 
of fuels management on wildfire risk. Both studies used data on wildfires and 
prescribed fire in Florida from 1994-1999 (Prestemon et al. 2002) and 1994-2001 
(Mercer et al. 2007) and reported similar results. Mercer et al.3 more recent anal- 
ysis showed that prescribed burning reduces wildfire risk for at least three years. 
Averaged over three years, each percentage increase in prescribed burned area in 
a county reduced wildfire area by 0.27 percent. In the short run (0-2 years), a 1 
percent increase in prescribed burning acreage reduced the areal extent of wild- 
fire by 0.65 percent and, when acres burned were weighted by fire intensity, by 
0.7 1 percent (Mercer et al. 2007). 

Scant research addresses the economic success of fuels management programs 
(Hesseln 2000). The focus of most economics research on fuels management 
has been on estimating per acre costs of prescribed burning or identifying 
factors that affect those costs (GonzBlez-CabAn et al. 2004, GonzBlez-CabAn 
and McKetta 1986, Rideout and Orni 1995). Following an in-depth review of 
the economics literature on prescribed burning, Hesseln (2000) concluded that 
existing economic research and methodology is insufficient for implementing 
cost-effective fire management programs based on sound economic principles. 
Two of the most important unanswered economic questions are whether the 
resources expended to reduce wildfire risk result in net economic gains and how 
to quantify the tradeoffs between increasing expenditures on suppression and 
fuels management. 

Although some previous analyses have found that fuel treatments may produce 
positive short-term net benefits, most of the studies were site-specific (Gonziilez- 
Cabh and McKetta 1986). Little work has evaluated whether this holds for 
larger geographic areas (e-g., a county) and over longer time frames (greater than 
two years); for example, how prescribed burning in a landscape affect subse- 
quent wildfire patterns across the landscape (Prestemon et al. 2002). We need 
comprehensive risk research that focuses on stochastic processes, investment- 
return relationships, and changes in wildfire risk as a result of fire management 
activities (Hesseln 2000). This requires evaluating the effects of management 
activities on physical and financial outcomes over time. 

Previous research, however, has tended to ignore the dynamic and spatial 
aspects of wildfire. Although Donoghue and Main (1985) evaluated wildfire on a 
broad scale, they did not consider the dynamic effects of presuppression activities 



that extend beyond the current time period or the immediate location of the activi- 
ties. Since wildfires affect fuel levels by consuming and fragmenting flammable 
vegetation, the effects of wildfire and fuels management are expected to operate 
across a range of scales of space and time (Prestemon et al. 2002). 

Although anincreasing body of evidence supports the efficacy of using prescribed 
fire and other fuels management methods to .reduce the extent and especially the 
intensity of wildfires (Brose and Wade 2002, Butry 2006, Davis and Cooper 1963, 
Hesseln 2000, Koehler 1992-93, Martin 1988, Stephens 1997, Wagle and Eakle 
1979), economic analyses of the effectiveness of fuel treatment programs and of 
the tradeoffs between fuel treatments, wildfire suppression efforts, and economic 
impacts are rare (Kline 2004). The absence of trade-off analyses b e ~ e 8 n  fuels 
treatments and wildfire suppression has been attributed to problems specifying .. 
production functions for fuel treatments (Prestemon et al. 2002), lack of knowl- 
edge of the rates of technical substitution between treatment alternatives, and 
lack of fuel treatment data, which typically have not been collected or reported in 
formats that allow analysis of relative returns to treatments (Omi 2004). 

One recent exception to the lack of analyses of economic efficacy of fuels 
management is a study by Butry (2006). Butry uses propensity score techniques 
to identlfy the individual effects of suppression and prescribed fire on wild- 
fire activity in Florida. The analysis shows that a reduction in the suppression 
response time of firefighters to a reported wildfire has a large, negative impact on 
the resulting intensity-weighted acres burned-with an elasticity of about 0.40- 
implying that a 1 percent reduction in response time yields a 0.40 percent reduc- 
tion in intensity-weighted acres burned. Similarly, prescribed fire in a section3 and 
its neighboring sections has a significant negative impact on observed intensity- 
weighted acres burned, although9the current-year elasticity, generally no larger 
than -0.05, is smaller than the long-run effect identified by Mercer et al. (2007). 
Nevertheless, Butry (2006) found that the benefit-cost ratio of damages averted 
per dollar spent in prescribed fire is about 1.5. Because little is known about the 
cost of reducing suppression response times, a similar ratio could not be found for 
wildfire suppression. 

Next, we present two case studies for applying economic models to analyze the 
tradeoffs involved in fuels management for both strategic and tactical manage- 
ment applications. The first case study develops a dynamic stochastic program- 
ming and Monte Carlo simulation model to evaluate the tradeoffs between fuels 
management (prescribed fire) and resulting economic damages from wildfires. 
This approach is directed at strategic decision-making for wildfire management: 
how to allocate fuels management resources across regions in a way that maxi- 
mizes societal welfare in the long-run. The second case study uses operations 
research methods (linear-integer optimization) to examine the tradeoffs between 
-- -- - -- 

A ''section'' is a geographic area in U.S. land surveying. Sections are one mile square, 
containing 640 acres (2.6 km2). Thirty-six sections make up a survey township on a 
rectangular grid. 



investments in fuels management and wildfire suppression resource deployment 
within a fire planning unit. The second analysis is based on a tactical decision 
model, and includes assumptions about how fuel treatments affect the ability of 
initial attack resources to contain fire ignitions. Scaling up the analysis through 
a set of assumptions about landscapes and costs and losses associated with fires 
could permit a strategic analysis to identify societal net benefit of spending on 
both fuels management and initial attack resource deployment. 

The first case study shows, for one county in Florida, that prescribed fire does 
pay off for society, in terms of damages averted compared to the costs of prescribed 
fire. The second study shows that there is a trade-off between investing in initial 
attack resource deployment and fuels management and that some combination ol 
the two should yield a globally optimal outcome. 

3. CASE STUDIES 

3.1. A Stochastic Programming Simulation of 
Fuel Treatment Effects on Wildfire in ~lorida' 

Government agencies commonly intervene in wildfire processes througl 
prescribed burning and other types of fuel treatments. In Florida, manager: 
conduct and encourage landowners to reduce the risks of catastrophic wildfire: 
through prescribed fire. Little is known about the overall efficacy of prescribec 
burning in reducing catastrophic wildfire damages, often because data are lacking 
and because wildfire processes are inherently spatial and intertemporal anc 
proposed interventions have similar dimensional complexities. Because of thi: 
lack of information, decision makers find it difficult to evaluate how large scalt 
programs of prescribed fire may result in net public benefits. Recently, severa 
studies have quantified the net effects of both wildfire (Butry et al. 2001) anc 
prescribed fire and other factors on wildfire in Florida (Prestemon et al. 2002 
Butry 2006, Mercer et al. 2007). The following analysis summarizes the researcl 
of Mercer et al. (2007), who investigated how prescribed fire may affect wildfin 
activity and net econoniic benefits over the long run in Florida. 

In general, determining the publicly optimal amount of prescribed burning 
requires solving a stochastic dynamic optimization problem. Therefore, to fin( 
the optimal levels of prescribed fire (or other vegetation management) inputs fo: 
wildfire risk reduction, we maximize the sum of expected current and future ne 
present value of welfare5: 

subject to W, = W(Z, ,  W,,,x,,) + E,, x, 2 o(v~) 

' This section is derived from Mercer et al. (2007). 

This is a type of cost plus net value change model discussed in Chapter 16. 



where A is the maximization criterion (a welfare measure), V is the net value 
change per unit area of wildfire, Wt is area (acres) burned by wildfire6 in year t for 
the spatial unit of observation, v is a vector of the costs per unit area of suppres- 
sion, pre-suppression, and vegetation management inputs7, x = ( x,x,, . . . ,xT) is 
a vector of the amount of suppression, pre-suppression, and vegetation manage- 
ment inputs for year t through T (the planning horizon), x,, is a vector of k lags 
of prescribed burn area, Zt are exogenous inputs to wildfire production including 
stochastic climate variables, W t j  is a vector of j lags of wildfire area, and r is 
the discount rate. Solving this optimization problem produces a Txl vector of 
optimal input quantities, x, and a Tx 1 vector of wildfire quantities, W,, over time. 
The uncertainty associated with random events (errors in prediction of weather, 
for example) means that W(.), is known only with error, complic%%?ig the solu- 
tion process. In the presence of such error, simulation techniques may be usedBo 
identify, for example, the amounts of prescribed burning most likely to maximize 
the welfare criterion. Hadar and Russell (1969) describe how to evaluate these 
types of uncertain prospects. 

Optimization models like equation (13.1) may involve as many choice vari- 
ables as periods in the simulation8, making them difficult to solve. Alternatively, 
the problem can be simplified to identifying the single optimal (stationary) policy 
from the set of possible policies that yields the highest expected net welfare 
benefits and which is consistent with any utility function that demonstrates non- 
increasing marginal utility. 

1 3.1.1 The simulation model 

Identifying the long-run expected impact of prescribed fire requires accounting 
for variable weather and the uncertainties associated with the "true" form of 
equation (13.1). While equation (13.1) was estimated using historical data cm fire 
output and wildfire production inputs, observed wildfire output always differs 
from that predicted by an empirical model because of the random nature of the 
phenomenon and the imprecision of model specification. To identify the "best" 
level of prescribed fire to apply in a fire-prone landscape, Mercer et al. (2007) 
first estimated two versions of equation (13.1)-one expressing wildfire output 
in area burned and one in intensity-weighted area burned (tables 13.1 and 13.2). 

I W, could, alternatively, be expressed as a quantity measure of resources "saved" by 
applying resource inputs. In that case, V would be a positive number, reflecting positive 
values. As currently expressed in (I), V would be a negative value per unit, measuring 
damages per unit of wildfire realized. 

The "price" to the economy would be the net welfare change arising from the diversion 
of resources to vegetation management and away from other economically productive 
activities in the economy; in other words, this is the opportunity cost of foregone uses of 
these resources in the economy. 
The number of periods could be specified as infinite. Discounting would, of course, 

place a practical limit on the number of periods that need to be considered. 
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The wildfire intensity-weighted risk variable was calculated from observa- 
tions of the average flame length for each fire. We summed (for each county) the 
acres of fire for each flame length category and calculated the fireline intensity 
with Byram's (1959) equation, FI = 259.833(L)2.174, where FI is fireline intensity 
(kW/m) and L is flame length in meters. The annual intensity-weighted risk was 
derived by summing for each county the product of the annual acres burned 
in each intensity class times the average intensity for that class divided by the 
county's total forest area. 

Two county fixed-effects time series models1° were estimated: (1) intensity- 
weighted area burned and (2) area burned. The dependent variables for the two 
models were: (1) intensity-weighted acres per acre of forest area ip the county in 
the year and (2) total wildfire area burned per acre of forest area in the county. 

The calculations of losses associated with wildfire were based on the.1998 
wildfires (Butry et al. 2001). Two versions of losses were generated. One version $, 

assembled timber and housing losses and suppression expenditures in terms of 
market values-prices times quantities. The second version assembled losses in 
terms of social welfare--consumer plus producer surplus changes. Due to data 
limitations, suppression expenditures were not included in the social welfare 
analysis. 

3.1.2 Results 

The original statistical models, relating fire area burned and fire intensity- 
weighted area burned, show that prescribed burning at the county level has a 
large, statistically significant effect on both intensity-weighted area burned and 
on area burned in the county (tables 13.1 and 13.2). The elasticity of intensity- 
weighted area burned wijh respect to prescribed fire was -0.9 in the short-run 
(0 to 2 years) and -0.31 in the long-run (greater than 2 years). The elasticity of 
wildfire area burned with respect to prescribed fire was -0.72 in the short-run and 
-0.28 in the long-run. 

We also estimated a model describing the supply of prescribed fire servicesl1 
and found that prescribed fire services had a long-run elasticity of about 0.54. 
This indicates that the cost of prescribed fire per acre would increase twice as 
fast as the increase in the areal extent of prescribed fire. This extra cost associated 
with higher levels of prescribed fire was included in the cost plus loss simula- 
tions. 

The simulations showed that the optimal levels of prescribed fire depend on 
whether wildfire is measured in area burned or in intensity-weighted acres. Figure 
13.1 shows the impact of prescribed fire on both wildfire intensity-weighted acres 

10 A "fixed effects" time series regression model assumes that differences across units 
(counties in our case) can be captured in the constant term. 
11 Prescribed fire services refer to the human and capital inputs required for peforrning 
prescribed burns. 
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Table 13.2. Model Parameter Estimates of Fully Specified and Parsimonious Forms 
of Areal Risk Functions (Source: Mercer et al. 2007). 

Explanatory 
Variables 

Full Model Parsimonious Model 

Parameter Z value Parameter Z value 

In (Prescribed Bum Area/ 
Forest Area) 

In (Prescribed Bum Area,,/ 
Forest Area) 

In (Prescribed Bum Area,,/ 
Forest Area) 

In ( Wildfire Area,, /Forest Area) 
In (Wildfire Area,,/Forest Area) 
In (Wildfire Area,,/Forest Area) 
In (Wildjre Area,,/Forest Area) 
In (Wildfire Area,,/Forest Area) 
In (Wildfire Area,,/Forest Area) 
In ( Wildjre Area,,/Forest Area) 
In ( Wildfire A rea,,/Forest Area) 
In (Wildfire Area,,/Forest Area) 
In (Wildfire Area,,,/Forest Area) 
In ( Wildjre Area,,,/Forest Area) 
In (Wildjre Area,,,/Forest Area) 
In (Pulpwood Harvest,,/ 

Forest Area) 
In (Pulpwood Ha'rvest,,/ 

Forest Area) 
In (Pulpwood Harvest,,/ 

Forest Area) 9 

In (Housing Density/Forest Area) 
ENS0 
NAO 
1998 Dummy 
Number of Cross Sections 
Number of Years 
Total panel observations 
Wald Chi2 
Log Likelihood 

Notes: * indicates statistical significance at lo%, ** at 5%, and *** at 1%. Dependent 
variables are natural logs of each county's annual total areal extent (acres) of wildhe 
(areal risk model) and the natural logs of sum of area burned (acres) at each intensity 
level times the intensity level per county per year. Equation estimates reported here 
exclude estimates of 48 county dummies, which are available from the authors. 



amount based on the area burned effect of prescribed fire and 70 percent less than 
the optimal amount based on the intensity-weighted area burned measure. 



*Average Wildfire Area 
+ Discounted Expected Quasi-Net Welfare 
* Discounted Expected Market Value 
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Prescribed Fire Policy (AcresNear) 

Figure 13.2. The simulated schedule of input-output combinations derived from the areal 
risk model; amounts of prescribed burning yielding the maximum of net value change 
minus cost (symbols shaded black) are 17,000 acreslyear for the quasi-net welfare anal- 
ysis and 19,000 acreslyear for the market value analysis. (Source: Mercer et al. 2007) 
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3.1.3 Summary 

This analysis documented that large scale programs of prescribed fire produce 
net economic benefits (at least in Florida). The empirical analysis of wildfire 
showed that the efficacy of prescribed fire appears to be greater when the effects 
of fuel treatments on fire intensity are accounted for. The study documented 
that prescribed fire levels in an already heavily treated landscape could be up 
to four times higher and still yield significant positive net benefits. The study 
also contributed to our understanding of the role of fuel treatment markets in 
influencing prescribed fire programs. As the amount of treatment practiced on 
the landscape grows, prices of prescribed fire services rise with it. Government- 
sponsored treatment programs on land managed by the government run the risk 
that they could squeeze out prescribed fire conducted on private lands. Land 
managers should be cognizant of these kinds of off-site impacts when making 
decisions about fuels management on the lands they manage. 



3.2 Assessing Tradeoffs Between Fuel Treatment and 
Initial-Attack Investments 

The following case study seeks to model the relative impacts of investments 
in fuel treatment and fire suppression resources. In contrast to the statistical 

taken above, the following case presents an engineering model to deter- 
mine levels of investment in fuel treatment and initial attack resource deploy- 
ment that minimize the expected cost of escaped wildfires. The model is based 
on predictions of the likelihood that a fire ignition will escape as a function of 
the level of fuel treatment and the number of initial attack resources that are 
dispatched to the fire. Results of the optimization model can be used to estimate 
the efficiency of fuel treatment and the tradeoffs between investments in fuel 
treatment and initial attack resource deployment. It provides a framework for a 
new kind of analysis that could be done in Florida or elsewhere, where sufficient 
data exist to quantify the effect of fuels management on both the cost of suppres- 
sion and the losses associated with wildfire. 

Fuel treatments may change wildfire behavior and enhance the effectiveness 
of fire suppression tactics (Finney and Cohen 2003). Deploying initial-attack 
resources to meet expected demands for fire suppression in the coming days, 
weeks, or months is an important part of wildland fire planning (Martell 1982). 
Deployment decisions have been incorporated in optimization models that 
minimize operating costs while meeting pre-defined demands for initial attack 
(Hodgson and Newstead 1978, MacLellan and Martell 1996) or minimize area 
burned or number of escapes subject to budget constraints that limit the size of 
the initial-attack force (Kirsch and Rideout 2005, Haight and Fried 2007). These 
latter models include relationships between fire behavior and fire suppression. If 
those relationships could be extended to include the impacts of fuel treatment, 
then optimization models could be used to analyze the cost-effectiveness of fuel 
treatment and suppression. 

To demonstrate this potential, we modified the standard-response model of 
Haight and Fried (2007) to include the effects of fuel treatment. Their model 
determines where to deploy a fixed number of initial-attack resources to mini- 
mize the expected number of fires that do not receive a standard response, defined 
as the number of resources that must reach the fire within a maximum response 
time (Marianov and ReVelle 1991). The idea is that if a fire receives the standard 
response, the likelihood of escape is low. We modified the model to minimize 
the expected cost of escapes with assumptions about how fuel treatments and the 
number of resources dispatched affect the probability of escape. We demonstrate 
how the model can be used to construct cost curves for the relationship between 
initial attack resources in position to respond and expected cost of escapes, with 
and without fuel treatments. The cost curves can be used to estimate the cost 
savings associated with fuel treatment, in terms of reduction in expected cost of 
escaped fires under a given level of initial attack force. 



3.2.1 A risk-of-escape model for initial attack 

The optimization model is a linear-integer formulation with two objective func- 
tions: the cost of deploying initial-attack resources and the expected cost of fires 
that escape initial attack. A weighted sum of the objective functions is mini- 
mized, and the weight is ramped from large to small to generate a tradeoff curve 
showing how different levels of investment in initial attack resources affect subse- 
quent costs of suppressing escaped fires. The model is for a single fire planning 
unit. The data include the locations of fire stations and representative fires. Each 
station has a capacity to house initial attack resources, and the time required 
for resources to reach each representative fire location is known. The data also 
include fire scenarios, each representing a set of fire loca t im~ur ing  a single 
day. The model includes integer decision variables for the number of suppression 
resources deployed to each station and the number of resources dispatched from 
each station to each fire in each scenario. The probability of escape decreases 
with the number of resources that are dispatched to the fire within a maximum 
response time. Therefore, each fire is characterized by a set of parameters repre- 
senting escape risk reduction for increasing numbers of resources dispatched for 
initial attack. In our application, the values of parameters of the risk-reduction 
function depend on the level of fuel treatment. The model is formulated with the 
following notation: 

Indices: 
i, I = index and set of fire stations, 
j, J = index and set of potential fire locations, 
k, K = index and set of suppression resource dispatch classes, 
s, S = index and set of fire scenarios, 

Objective functions: 
Q, = cost of deploying suppression resources, 
Q, = expected cost of escaped fires, 

Parameters: 
h = objective weight; 0 5 h 5 1, 
a, = escape risk reduction parameter (5 0) for fire location j dispatch class k, 
bi = upper bound on number of resources deployed at station i, 
cli = fixed cost of opening station i, 
c~~ = cost of deploying a resource at station i, 
6, = cost of containing an escaped fire at location j, 
Js = 0-1 parameter; 1 if fire occurs in location j scenario s; 0 otherwise, 
p, = probability that scenario s occurs, 
t ,  = response time from station i to location j, 
T = maximum response time, 
Nj = set of stations from which resources can reach location j within the 

maximum response time; i.e., Nj = { i I t, < T }  . 





number of resources dispatched increases. The probability of escape is modeled 
as a decreasing, convex, piecewise-linear function of the number of resources 
dispatched so that the slope is negative and closer to zero with each additional 
resource dispatched. The 0- 1 variables zjk, k = 1,. . . ,K, represent resource dispatch 
classes where zjh = 1 means at least k resources have been dispatched. As a result, 
the sum of these 0-1 variables must equal the number of resources dispatched 
to the fire from stations within the required response time (equation 13.7). The 
parameter ajk is the slope of the function for probability of escape and represents 
the escape risk reduction (a,, 5 0) for dispatch class k. Because the function is 
convex, a,, 5 a,, < . . . 5 ajr If the model dispatches any resources to fire j, the 
model will choose the dispatch variables zjk with the most negative risk reduction 

t 
parameters first to minimize probability of escape. As a result, f6r any k such that 
zjk, = 1, zjts = 1 for all t < k. 

It is important to recognize that the decision variables of the model take place 
in different time periods. Resource deployment decisions take place in the first 
period to meet possible resource demands in the coming days. Dispatching deci- 
sions take place in the second period once the locations of fires are known. The 
dispatching decisions assume that fires in a single day occur close enough in time 
to compete for the same resources. 

The model's objectives and data requirements differ from other optimization 
models for initial-attack resource deployment and dispatching. Kirsch and Ride- 
out's (2005) model has an objective of minimizing area burned and includes 
binary containment variables for fires based on the ratio of fire line to fire perim- 
eter in discrete time intervals (e.g., hours) after ignition. With an objective of 
minimizing area burned, the model dispatches resources to contain fires as soon 
as possible within a budget constraint. Further, the Kirsch and Rideout model 
requires rates of fire line production and fire area and perimeter growth. In 
contrast, our model has an objective of minimizing the expected cost of escapes. 
As a result, a single variable representing escape risk, vj,, is defined for each 
fire along with parameters, a,,, representing the reduction in escape risk per unit 
increase in resources dispatched to the fire. The escape risk reduction parameters 
are proxies for fire line production and spread rates. 

The probability-of-escape model for initial attack does not explicitly include 
fuel treatment. In practice, fuel treatment may reduce the risk of escape by 
reducing fire intensity. In our model, the risk-reduction parameters, a],, will be 
greater in locations with fuel treatment. Making ajk depend on a fuel treatment 
variable in equation (13.8) would create a nonlinear equation because ajk is already 
multiplied by a variable zjk representing the number of resources dispatched t6 
the fire. To maintain linearity, we solved the probability-of-escape model for 
various assumptions about fuel treatment to investigate the tradeoffs between 
investments in fuel treatment, initial attack resources, and cost of containing 
escaped fires. 





20 minutes, we constructed a set of stations that were within 20 minutes of each 
potential fire location. We selected this response time threshold because fast- 
spreading fires tend to escape initial attack if firefighting is not well-underway 
within 20 minutes following a fire report. 

We formulated the optimization model to determine the engine locations for 
days during the "high" fire season when multiple fires occur. We focused on 
days with multiple fires because draw-down of suppression resources on such 
days increases the likelihood that fires escape initial attack. We used the daily 
fire probabilities to construct 100 fire scenarios representing days with multiple 
fires. Each scenario is a list of districts in which fires occur. Each scenari0,6~ j = 
1,. . . ,100, is a vector of 0- 1 parameters where parameterf, = 1 meants that a single 
fire ignites in district j under scenario s. The value of each parameter f, was 
determined by comparing a uniform 0-1 random number with the probability of 
ignition in district j. Because ignitions were determined randomly, each scenario 
had the same probability of occurrence, p, = 0.01. Mean daily number of fires per 
scenario was 6.04 with range 2-14. 

The probability of fire escape was modeled as a decreasing; piecewise-linear 
function of the number of engines dispatched to the fire within the 20-minute 
response time (fig. 13.4). We assumed that a standard response was four engines 

Engines dispatched 
Figure 13.4. Probability of fire escape as a function of the number of engines reaching 
the fire within the standard response time (20 minutes) in areas with and without prior 
fuel treatment. 



ng the fire within 20 minutes and the probability of escape associated with 
ndard response was zero. The shape of the relationship between escape 

and response depended on fuel treatment. Without fuel treatment, the rela- 
tionship was linear with a constant risk reduction parameter of 0.25. With fuel 
treatment, the relationship was piecewise linear with risk reduction parameters 
that decreased as the number of engines responding increased (0.6,0.2,0.1,0.1). 
In this case, probabilities of escape are lower for each engine response category; 
however, the standard response of four engines is still required to achieve zero 
probability of escape. 

The costs of escaped fires were based on observations of emergency suppression 
costs of 13 large fires (>300 acres) in national forests in the southeastern United 
States in years 2000-2003. Six fires had containment costs less than $50,000, 
five had containment costs of $100,000-500,000, and two had costs greater than 
$1,000,000. We assigned an average cost to escaped fires in each of the three risk 
classes in figure 13.3. Costs of escaped fires in districts with ignition probabilities 
of 0.10,0.06, and 0.02 were $50,000, $100,000, and $500,000, respectively. 

I 
Our analysis focused on the trade-off between the cost of deploying initial- 

attack engines and the expected cost of fires that escape initial attack. We 
computed optimal engine locations for problems in which the objective func- 
tion weight h was decreased from 1.0 (minimize cost of deploying engines) to 
0.0 (minimize expected cost of escaped fires) in increments of 0.02 subject to a 
capacity constraint of 4 engines per station. The baseline analysis was conducted 
assuming no fuel treatment. Then, trade-off curves were constructed with fuel 

The spatial optimization problems were solved on a Dell Pentium 4 laptop 
computer (CPU 2.4 GHz) with the integrated solution package GAMSICplex 
9.0 (GAMS Development Corporation 1990), which is designed for large and 
complex linear and mixed-integer programming problems. Input files were 
created in GAMS (General Algebraic Modeling System), a program designed to 
generate data files in a format that standard optimization packages can read and 
process. Cplex solves a mixed-integer programming problem using a branch and 
cut algorithm, which solves a series of linear programming sub-problems. 

3.2.3 Results 

In the baseline case without fuel treatment, the curve showing the tradeoff between 
the cost of deploying engines and expected cost of escaped fires had a convex 
shape in which cost of escapes decreased at a decreasing rate as the total cost of 
engine deployment ($10,000 times the number of engines deployed) increased 
(fig. 13.5). The points on the curve represent non-dominated solutions and their 
relative performance with respect to the two objectives. For each non-dominated 
solution, improvement in one objective cannot be achieved without simultane- 
ously causing degradation in the value of the other objective. As a result, the 
points represent a frontier below which there were no better solutions. 



The best deployment of engines depended on the objective function weight. If 
minimizing the cost of basing engines is most important (i.e., h = I), the choice is 
solution A in which no engines are deployed and the expected number of escapes 
equals the average daily fire frequency of 6.04 with expected cost of $705,000 (fig. 
13.5). As more weight is given to minimizing the cost of escapes, more engines 
are deployed resulting in higher engine deployment costs and lower costs from 
escapes. For example, with 24 engines deployed at a cost of $240,000 (solution 
B), the expected cost of escapes was $90,000,13 percent of the expected cost of 
escaped fires with no engines deployed. Increasing the number of engines from 
24 to 40 for a deployment cost of $400,000 (solution C )  reduced the expected 
cost of escaped fires to $1 1,000, 2 percent of the expected cost with no engines 
deployed. U.- 7 

The slope of the tradeoff curve is a benefit/cost ratio showing the reduction 
in expected cost of escapes per increase in cost of engines deployed for initiql 
attack. The slope was relatively steep between solutions A and B (< - 1) indicating 
that benefits of deploying more engines exceeded costs. Between solutions B and 
C, the slope was relatively flat (> -1) indicating that deploying more engines was 
not cost-effective in terms of reducing the expected cost of escapes. The slope of 
the tradeoff curve was -1 at solution B, which minimizes the sum of the costs of 
engine deployment and escapes. 

When fuel treatment was applied in risk classes 1 and 2, the curves showing 
the tradeoff between cost of engines deployed and expected cost of escapes were 

Cost of basing engines ($1000) 
Figure 13.5. Tradeoffs between the cost of deploying initial-attack engines ($10,000 per 
engine) and the expected cost of fires that escape initial attack. 





the current prescribed fire levels in Volusia County, Florida, the long-run bene- 
fit-cost ratio of prescribed fire is close to or greater than unity. This analysis, 
however, leaves out some additional benefits associated with prescribed fire- 
such as the beneficial impacts on ecosystems that depend on wildfire for their 
health and increased productivity of the remaining stand of timber. At the same 
time, the analysis omits some of the costs of prescribed fire, in terms of the risk 
of escape and some of the negative health impacts associated with the smoke 
from prescribed fires. Butry et al. (2001) showed that the asthma-related impacts 
of wildfire are not large, in economic terms. In contrast, Rittmaster et al. (2006), 
who accounted for both respiratory and cardiac-related effects, characterize the 
human health related losses associated with one large wildfire>nTAlberta, Canada, 
to have been substantial and far reaching spatially, with economic impacts second 
only to those associated with timber. But neither of these studies quantified the 
losses associated with the averting behavior of individuals who flee when wild:_ 
fires burn near their homes. It is not clear whether individuals with respiratory 
problems also flee locations undergoing active prescribed fire; this is an area 
worthy of additional research. 

The Florida case study, however, was unable to detect a significant impact 
of wildfire suppression on observed wildfire, because the statistical models of 
wildfire activity (area burned, intensity-weighted area burned) omitted a direct 
measure of wildfire suppression. Further research, such as that done by Butry 
(2006), could help to clarify those suppression impacts. Mercer et al. (2007) did 
not find a significant impact of housing density (a proxy for the availability of 
suppression resources) on observed wildfire activity; therefore, the simulation 
analysis simply assumed that a constant level of fire suppression is applied per 
unit of wildfire output, effectively assuming away any trade-off between suppres- 
sion and fuels management. Butry (2006) did find that suppression could trade 
off for prescribed fire, but he did not attempt to quantify that trade-off in a simu- 
lation as done by Mercer et al. (2007). 

The second case study examined short run tradeoffs between investments in 
fuels management versus increased initial-attack resources on the ground. The 
case study shows that decisions for basing and dispatching initial-attack resources 
can be formulated as a mixed-integer programming model that minimizes the cost 
of deploying initial-attack resources and the expected cost of suppressing fires that 
escape initial attack. The model is well suited to determining the tradeoffs between 
these objectives given uncertainties in the number and location of fires that may 
occur during the fire season. A key component is the relationship between the 
number of resources that reach a fire within a maximum response time and the 
probability of escape. The case study was based on a hypothetical relationship 
because empirical analyses of the likelihood of escape as a function of initial 
attack force and fuel treatment are rare. Butry (2006) identified the individual 
effects of suppression and prescribed fire on wildfire activity in a case study in 
Florida, and more work is needed to empirically model of these relationships. 
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el treatments may increase the probability of containment of a fire during 
tlal attack. This effect was incorporated in the model by adjusting the slope 
the relationship between the number of resources dispatched to an ignition 

the probability of escape. To maintain linearity of the initial-attack model, 
e effects of alternative levels and locations of fuel treatments were deterrnined 

as one-at-a-time changes in model parameters. Analysis of these changes allows 
determination of the cost-effectiveness of case-specific fuel treatment activities. 
Given the structure of the initial-attack model, determining optimal levels and 
locations of fuel treatment would require a non-linear formulation and heuristic 
rather than exact optimization methods. 

The strengths of the initial-attack model include spatial detail (e.g., locations 
of fire stations, suppression resources, and potential fires) and practical deci- 
sion criteria (e.g., minimizing the expected cost of escape). However, this detail 
makes it difficult to reach general conclusions about optimal levels of investment 
in fuel treatment and initial attack. The results will depend on case-specific model 
parameters, including the number and location of fire stations, probabilities of 
fire occurrence, and relationship between probability of escape and resources 
dispatched during initial attack. Nevertheless, incorporating fuel treatment into 
an initial-attack optimization model is a first step toward evaluating the cost- 
effectiveness of these two important fire preparedness activities. 

In this chapter we presented two methods for examining the strategic and 
tactical tradeoffs between fuels management and wildfire suppression. Sepa- 
rately, each approach provides essential insights into the economics of wildfire 
management. However, to make the most effective use of these analyses requires 
combining the approaches so that both the tradeoffs between fuels management 
and suppression expenditures and the tradeoffs between fuels management, 
suppression and the economic damages from subsequent wildfires can be exam- 
ined simultaneously. This will require a wide array of additional research in the 
economics of wildfire. 

At the same time, the case studies highlight the complexity of the problem 
of wildfire management. Wildfire management can be approached from many 
different angles, from fire prevention, fuels management (as described in our first 
example), resource pre-placement (as described in our second example), wildfire 
suppression (our second example, as well). Wildfires occur in time and space, and 
wildfire occurrence is driven by both natural and human factors. Wildfire manage- 
ment actions have intertemporal effects across multiple spatial scales and are 
inherently uncertain. Therefore, simulation models are not able to account for all 
the ways that managers can intervene in wildfire processes and can only roughly 
approximate the spatial and temporal interdependencies among both wildfire and 
management efforts. Likewise, economic analyses are limited by a lack of under- 
standing of the full economic effects of wildfires on society, including public 
health and secondary impacts on economic sectors beyond forests. The research 
presented in this chapter demonstrates advancements in our understanding of the 



problem of designing better combinations of interventions, but they should b e  
followed by modeling that can better account for other forms of management 
(e-g., fire prevention, mechanical fuel treatments) and for the interactions between 
fuel treatment design, fire suppression, and the landscape and how actions may 
affect risks in both spatial and temporal dimensions. 
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