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Abstract

We modeled and mapped, using the predictive data mining tool Random Forests, 134 tree species from the eastern United States for potential

response to several scenarios of climate change. Each species was modeled individually to show current and potential future habitats according to

two emission scenarios (high emissions on current trajectory and reasonable conservation of energy implemented) and three climate models: the

Parallel Climate Model, the Hadley CM3 model, and the Geophysical Fluid Dynamics Laboratory model. Since we model potential suitable

habitats of species, our results should not be interpreted as actual changes in ranges of the species. We also evaluated both emission scenarios

under an ‘‘average’’ future climate from all three models. Climate change could have large impacts on suitable habitat for tree species in the

eastern United States, especially under a high emissions trajectory. Of the 134 species, approximately 66 species would gain and 54 species would

lose at least 10% of their suitable habitat under climate change. A lower emission pathway would result in lower numbers of both losers and

gainers. When the mean centers, i.e. center of gravity, of current and potential future habitat are evaluated, most of the species habitat moves

generally northeast, up to 800 km in the hottest scenario and highest emissions trajectory. The models suggest a retreat of the spruce-fir zone and

an advance of the southern oaks and pines. In any case, our results show that species will have a lot less pressure to move their suitable habitats if

we follow the path of lower emissions of greenhouse gases. The information contained in this paper, and much more, is detailed on our website:

http://www.nrs.fs.fed.us/atlas.
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Keywords: Climate change; Eastern United States; Tree species distributions; Composition changes; Species shifts; Random Forests; Regression tree analysis;

Bagging

1. Introduction

Climate change has been shown to affect an increasing

number of species across the world (Fitter and Fitter, 2002;

Cotton, 2003; Parmesan and Galbraith, 2004; Laliberte and

Ripple, 2004; Wilson et al., 2004). Evidence is mounting that

these changes will continue to accelerate. Recently there have

been many studies that use a modeling approach to predict the

effects of future climatic change on ecological systems (e.g.,

Natl. Assess. Synth. Team, 2001; Yates et al., 2000; Hansen

et al., 2001; Retuerto and Carballeira, 2004; Guisan and

Thuiller, 2005; Lovejoy and Hannah, 2005; Ibanez et al., 2006;

Thuiller et al., 2006; Rehfeldt et al., 2006). A recent study on

the boreal forests of Siberia, Canada, and Alaska reported that

many of the modeled predictions of forest change are now

occurring: a northern and upslope migration of certain trees,

death or dieback of certain species, and increased outbreaks of

insects and fire (Soja et al., 2007). The projected increases of

atmospheric CO2 concentration and changes in temperature and

precipitation patterns have the potential to alter ecosystem

functions, species interactions, population biology, and plant

distribution (Melillo et al., 1990; Kirschbaum, 2000).

Paleoecological evidence also supports the notion that tree

species eventually will undergo radical changes in distribution

(Davis and Zabinski, 1992; DeHayes et al., 2000).

Groups of species will not shift as intact groups, but rather

changes in distribution will occur independently so that the

various species that combine to form a community will come

together in different combinations under climate change (Webb

and Bartlein, 1992). Because of the nature of species
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combinations, it is important to evaluate potential changes in

tree species individually rather than through predetermined

groups of species or forest types. We used an updated statistical

approach to model changes in habitat for 134 individual tree

species that are found in the eastern United States.

Our group has been statistically modeling potential change

in habitat for common tree species in the eastern United States.

We initially developed DISTRIB around regression tree

analysis, a procedure of recursive partitioning, to predict the

potential future habitat for 80 tree species (Iverson and Prasad,

1998; Iverson et al., 1999a; Prasad and Iverson, 1999). This

model was run at the scale of the county and used 33 climatic,

edaphic, and land-use variables.

In this more recent effort, we again focus on the eastern

United States for the modeling but have made a series of

improvements that increase our confidence in the outcomes: (1)

the models run at a finer scale of resolution, 20 km � 20 km

rather than at the county scale; (2) newer forest inventory data

are used; (3) estimates of soil and land use are updated; (4)

analysis of model behavior and fit are improved; (5) an

additional 54 species are modeled; and (6) an improved

modeling tool, Random Forests, is used to develop the models

(Iverson et al., 2004a; Prasad et al., 2006). We also ran the

models for three new climate scenarios with two emission

trajectories each (see Hayhoe et al., 2006).

2. Methods

2.1. Data

We used the most recent downscaled data for current and

future climates, created by Hayhoe et al. (2006) from three

general circulation model outputs: the HadleyCM3 model

(hereafter abbreviated ‘Had’) (Pope, 2000), the Geophysical

Fluid Dynamics Laboratory (‘GFDL’) (GFDL CM2.1) model

(Delworth et al., 2006), and the Parallel Climate Model (‘PCM’)

(Washington et al., 2000). These three scenarios are among the

latest generation of numerical models that couple atmospheric,

ocean, sea-ice, and land-surface components to represent

historical climate variability and estimate projected long-term

increases in global temperatures due to human-induced

emissions. Atmospheric processes are simulated in these models

at a horizontal resolution of 2.5� 2 degrees (GFDL), 3.75 � 2.5

degrees (HadCM3) or �2.8 � 2.8 degrees (PCM). Monthly

temperature and precipitation fields were statistically down-

scaled from monthly to daily values by Hayhoe et al. (2006) for

regions with a resolution of one-eighth degree (Wood et al.,

2002). Downscaling entailed the use of an empirical statistical

technique that maps the probability density functions for

modeled monthly and daily precipitation and temperature for

the climatological period (1961–1990) onto those of gridded

historical observed data. In this way, the mean and variability of

both monthly and daily observations are reproduced by the

climate model data. We used data for two emission scenarios: the

A1fi (high emissions – which assume that the current emission

trends continue for the next several decades without modifica-

tion, hereafter abbreviated ‘hi’ when paired with a model

abbreviation) and the B1 (significant conservation and reduction

of CO2 emissions, hereafter abbreviated ‘lo’). These two

emissions scenarios bracket most of the emission futures as

outlined by the Intergovernmental Panel on Climate Change’s

evaluation of emission scenarios (Nakicenovic et al., 2000), and

end the century at roughly double (550 ppm-B1) and triple

(970 ppm-A1fi) the pre-industrial levels of CO2. We also

averaged the three models for each emission scenario to yield an

average high (Ave hi) and average low (Ave lo) emission set of

climate predictors. We used these two averages plus the PCM B1

(coolest scenario, PCM lo) and HadleyCM3 A1fi (warmest

scenario, Had hi) to represent the averages and extremes of

possible outcomes from the climate analysis. Average climate

data show that all four scenarios predict a warmer and wetter

eastern United States (Table 1).

Tree data were obtained from more than 100,000 Forest

Inventory and Analysis (FIA) plots for the eastern United

States. From these plots (Miles et al., 2001), importance values

(IV) for 134 tree species were calculated based equally on the

relative number of stems and the relative basal area in each plot

(formula in Iverson and Prasad, 1998). Thus, some species with

large numbers of medium stems may be calculated as more

important than species with fewer, but larger stems. For

example, elms (Ulmus), maples (Acer), and ashes (Fraxinus)

commonly have very high numbers of small stems and thus may

have higher IV values than expected if evaluating only canopy

trees. The plot data were averaged to yield IVestimates for each

20 km � 20 km cell for each species. To minimize species that

have too few samples to build a respectable model (see

Schwartz et al., 2006), species were only included if they

were native and had roughly 50 cells or more of occupancy in

the eastern United States based on the FIA data (32 species

were dropped). As a result, all common and many uncommon

species are included, but a few of the rare endemics have

insufficient data for modeling with our methods. FIA data also

tend to undersample riparian areas as they are usually narrow

strips within an upland matrix. Currently, FIA data allow

species-by-species analysis only in the United States. The data

set for the eastern United States is the most complete, so our

work is focused on this region. Other data, including four land-

use, one fragmentation, seven climate, five elevation, nine soil

classes, and 12 soil property variables, were obtained from

various agencies and data clearinghouses to provide the 38

predictor variables (Table 2).

Table 1

Average climate conditions in the eastern US: currently and for four future

scenarios: Hadley A1fi, PCM B1, and average A1fi and B1 for Hadley, PCM,

and GFDL

Variable Current Hadley

high

PCM

low

Ave

high

Ave

low

PPT (mm) 1027 1118 1082 1066 1083

PPTMAYSEP (mm) 499 498 536 485 515

TJAN (C) �0.9 4.7 0.9 3.5 1.5

TJUL (C) 24.0 32.4 26.1 31.4 27.4

JULJANDIFF (C) 25.0 27.6 25.2 27.9 25.9

TMAYSEP (C) 21.1 29.0 23.2 27.9 24.4

TAVG (C) 12.1 19.1 14.2 17.8 15.1
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2.2. Modeling

We used a tri-model approach to model each species:

Regression Tree Analysis (RTA), Bagging Trees (BT), and

Random Forests (RF). The purpose of such an approach is to

make the best data set available for interpretation (RTA),

reliability assessment (BT), and prediction (RF). RTA builds a

regression tree based on a set of decision rules for the predictor

variables by recursively partitioning the data into successively

smaller groups with binary splits based on single predictor

variables (Breiman et al., 1984; Therneau and Atkinson, 1997).

RTA was used in our earlier work (Iverson and Prasad, 1998) as

it showed clear advantages over general linear models. We

continue to use RTA as a valuable interpretive tool for models

with high reliability (see next section). However, it may

generate an unstable output where a small change in a predictor

variable occasionally may produce a large change in predicted

output. This is where BT and RF have advantage. Multiple

training sets obtained by resampling 67% of the data with

replacement create an average output that is much more stable.

In this study, we use BT to produce 30 bootstrapped regression

trees (Breiman, 1996) and RF to produce 1000 regression trees

(Breiman, 2001), documented in Prasad et al. (2006).

RF is similar to BT in that samples are drawn to construct

multiple trees; however in RF, each tree also is grown with a

randomized subset of predictor variables (in our case, 15 of the

36 variables were randomly selected for each perturbed tree).

The large number of trees (1000 in our case) are grown (hence a

‘‘forest’’ of trees) and averaged to yield more accurate

predictions as compared to other RTA or BT (Prasad et al.,

2006). We used the ‘‘out of bag’’ outputs from RF (37% of the

data that are not used for the individual regression tree-model

building) so that the resulting RF models do not overfit the data.

Our previous work and that of others have shown that RF

provides reasonable outcomes when faced with predicting into

novel parameter space (see Prasad et al., 2006).

In all our tests, we have been pleased with the capabilities of

RF to empirically model species current and future habitats.

The modeled current outputs typically produce a very good

wall-to-wall surface from the relatively sparse point data, as

shown by various spatial metrics used to evaluate the models’

predictive properties by us and others (Iverson et al., 2004a;

Prasad et al., 2006; Rehfeldt et al., 2006). However, we also

recognize that there are certainly limitations to this or any

modeling approach. In this approach, we cannot include

changes in land use and land cover likely to occur in the next

100 years, or disturbances such as pests, pathogens, natural

disasters, and other human activities. Coupling these outputs

with process-based ecosystem dynamics models which include

disturbance (e.g., Chaing et al., 2006; Cushman et al., 2007;

Scheller et al., 2007) would be a productive line of research.

2.3. Model reliability assessment

We developed a reliability rating for the models of each

species because not all species can be modeled to the same

degree of accuracy using the same model. In addition to the

Table 2

Variables used to predict current and future tree species habitat

Climatea

TAVG Mean annual temperature (8C)

TJAN Mean January temperature (8C)

TJUL Mean July temperature (8C)

TMAYSEP Mean May–September temperature (8C)

PPT Annual precipitation (mm)

PPTMAYSEP Mean May–September precipitation (mm)

JULJANDIFF Mean difference between July and January

temperature (8C)

Elevationb

ELV_CV Elevation coefficient of variation

ELV_MAX Maximum elevation (m)

ELV_MEAN Average elevation (m)

ELV_MIN Minimum elevation (m)

ELV_RANGE Range of elevation (m)

Soil classc

ALFISOL Alfisol (%)

ARIDISOL Aridisol (%)

ENTISOL Entisol (%)

HISTOSOL Histosol (%)

INCEPTSOL Inceptisol (%)

MOLLISOL Mollisol (%)

SPODOSOL Spodosol (%)

ULTISOL Ultisol (%)

VERTISOL Vertisol (%)

Soil propertyd

BD Soil bulk density (g/cm3)

CLAY Percent clay (<0.002 mm size)

KFFACT Soil erodibility factor, rock fragment free

(susceptibility of soil erosion to water movement)

NO10 Percent soil passing sieve no. 10 (coarse)

NO200 Percent soil passing sieve no. 200 (fine)

OM Organic matter content (% by weight)

ORD Potential soil productivity (m3 timber/ha)

PERM Soil permeability rate (cm/h)

PH Soil pH

ROCKDEP Depth to bedrock (cm)

SLOPE Soil slope (%) of a soil component

TAWC Total available water capacity (cm, to 152 cm)

Land use and fragmentatione

FRAG Fragmentation index (Riitters et al. (2002))

AGRICULT Cropland (%)

FOREST Forest land (%)

NONFOREST Nonforest land (%)

WATER Water (%)

a From Hayhoe et al. (2006). See text for further description.
b From the United States Geological Survey’s Digital Elevation Models built

from 1:100,000 scale maps, and produced at the 30 m � 30 m resolution (U.S.

Geological Survey, 1990). We calculated the five elevation variables for each

20 km � 20 km cell based on the 30 m elevation cells contained with the

20 km � 20 km cell.
c From Olson et al. (1980). These estimates, made by Olson et al. to the county

level from the Soil Conservation Service’s National Resources Inventory of 1977,

were area-weighted resampled to each 20 km � 20 km cell.
d From the Natural Resource Conservation Service’s STATSGO data (Soil

Conservation Service, 1991). STATSGO data contain physical and chemical soil

properties for about 18,000 soil series in the United States. The maps were

compiled by generalizing more detailed soil-survey maps into soil associations at

a scale of 1:250,000. Weighted averages by depth and by area were calculated for

each 20 km � 20 km cell.
e From Riitters et al. (2002). Riitters et al. prepared the database from

30 m � 30 m classified Landsat data; we aggregated the land-use data to

20 km � 20 km cells, and calculated the fragmentation index for each cell

according to the methods described in Riitters et al. (2002).
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pseudo R2 of the RF model, we generated additional

reliability indicators based on the BT analysis and combined

them for a final rating. Because we have 30 model outcomes

from BT, we can use the variability among these 30 outcomes

to assess the consistency of the results. With a stable model,

the deviance explained would vary little across trees; an

unstable model would yield trees explaining varying degrees

of deviance. The CVbag variable (coefficient of variation of

BT outcomes) was calculated by: (1) taking the weighted

sums of the predictor importance of each of the top five

predictors; (2) calculating the coefficient of variation (0–1)

among the 30 outcomes from BT (all outcomes had standard

deviations less than the mean); and (3) subtracting this value

from 1 to obtain a 0–1 score with 1 being most stable. Thus, it

considers the amount and consistency of contribution of the

top five predictors. The Top5 variable uses the rank order of

the top five predictors to compare between the top five RF

variables vs. the top five variables of each of the 30 BT

outputs. We chose five variables arbitrarily to represent the

primary drivers. This is another 0–1 scale with 1 indicating

that all five variables match the order exactly between RF and

a bagging output. Conversely, a 0 indicates a completely

different set of top five variables.

The Fuzzy Kappa variable is based on a cell-by-cell

comparison between the actual FIA map and the modeled

current map derived from the out-of-bag RF environmental

predictor data (see Prasad et al., 2006), again on a 0–1 scale

with 1 being a perfect match. Kappa and Fuzzy Kappa are

better measures than percentage correct (which are always in

the 90+ percentile) because the Kappa statistics account for

uneven quantities of classes (Hagen-Zanker et al., 2006). The

‘‘fuzzy’’ part of the Kappa takes into consideration that

classes closer together, i.e., IV 1–3 vs. IV 4–6, should be

considered a closer match than classes farther apart, i.e., IV 0

vs. IV 21–30. The final model reliability score was calculated

as the average (R2*2, CVbag, Top5IV, FuzKap) with a double

weight for R2 because it is the most direct measurement of

model fit. We classified these into three arbitrarily chosen

classes: green (reliable, score > 0.5), amber (moderately

reliable, score > 0.3 and < 0.5), and red (poor reliability,

score < 0.3). We also indicate the portion of the current range

that is within the United States (based on Little, 1971, 1977)

because if the species is primarily a Canadian species, there

will be less confidence in the model as well (because models

are built with FIA data from the U.S. only). These also were

coded green (>67% in U.S.), amber (33–67%) and red (<33%

in U.S.).

2.4. Analysis

With 134 species, three scenarios, two emission pathways,

and multiple ways to analyze the data, we selected a subset of

these results for this paper (full range of outcomes, plus the

averages), which allows an overview of potential impacts of

climate change on the eastern U.S. forests. Additional analysis

and species-by-species results and maps for all scenarios can be

found at http://www.nrs.fs.fed.us/atlas.

2.4.1. Evaluation of predictor importance

We developed an index of variable importance (VarImpIndx)

to rate the 38 predictors for overall, collective importance as

driving variables in models for the 134 species. The index was

calculated as the average of three normalized (0–100) scores:

(1) the sum of predictor importance scores across all species

(SumVarImp); (2) the sum of the reciprocal of rank of each

predictor across all species (SumRankRecip); and (3) the

frequency of the predictors ranking in the top 10 of importance

across all species (FreqTop10).

2.4.2. Percentage occupancy and change in percentage of

the region occupied

This tabulation allows a quick assessment of the species that

likely would have gains or losses in the area of suitable habitat.

We divided it into species gaining at least 10% new suitable

habitat in the eastern U.S., species gaining 2–10%, no change,

and species losing 2 to 10 or >10% of the area.

2.4.3. Area-weighted importance values

This statistic incorporates both area and the relative

abundance of each species, so it is a better indicator of

suitable habitat gains or losses. Because all cells occupy the

same area (400 km2), it is simply a sum of the IV values for all

pixels in the area of interest. A species may gain area but

become so minor that the overall importance of the species is

diminished in the study area. In this case, we took the ratio of

future to present modeled condition to calculate change: a value

<1 indicates a decrease in area-weighted importance and a

value >1 indicates an increase.

2.4.4. Changes in mean center of spatial data

ArcGIS 91 includes spatial statistic tools for measuring

geographic distributions. We used the function Mean Center to

calculate the current and future ‘‘center of gravity’’ of the

species ranges. The coordinates of the mean center were used to

calculate distance and direction of potential movement of the

suitable habitat. We used the Direction Distribution function to

generate ellipses that captured one standard deviation of the

data for visual purposes. Analysis of mean center distance and

direction yielded information on potential changes in suitable

habitat by species and by scenario. Viewed together in a polar

graph, one can see the clustering of distance and direction of

movement of suitable habitat.

2.4.5. Analysis of dominants, gainers, and losers by region

and state

We used the area-weighted importance value variable to

assess current species dominance in the entire eastern United

States, in five regions, and in 37 states and the District of

Columbia. Because we used the 100th meridian as our western

1 The use of trade, firm, or corporation names in this paper is for the

information and convenience of the user. Such does not constitute an official

endorsement or approval by the U.S. Department of Agriculture or Forest

Service of any product or service to the exclusion of others that may be suitable.
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boundary (an arbitrary line through the prairie states which

divides western and eastern U.S. forests), several states in this

western region are cut off approximately midway (North

Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Texas).

Because they are prairie states, few forested regions are missed

with the notable exception of the Black Hills of western South

Dakota. We scored each species and selected the top three

species currently for each state or region. Then we calculated

the potential change in this value under the average climate

model for low (Ave lo) and high (Ave hi) emissions. The entire

species lists are available online, along with the top 10 gainers

and top 10 losers for each spatial unit.

2.4.6. Species-level maps

We produced a page of six maps for each species. The maps

are: the FIA estimate of current distribution of abundance, the

modeled current map, and scenarios of PCM lo, Ave lo, Ave hi,

and Had hi. These maps captured the range of possible future

conditions according to the models used. Two species have

maps sets included in this publication with an additional six

species as supplements to this article online. All species can be

viewed at our website, http://www.nrs.fs.fed.us/atlas.

2.4.7. Forest-type mapping

By combining the individual species into groups of species

according to the USDA Forest Service’s classification of forest

types (Miles et al., 2001), we are able to make some

assessments of the potential changes in suitable habitat at

the forest-type level. The species’ importance values for the

selected species within a forest type were summed. For each

20 km � 20 km cell, the forest type with the highest sum was

then coded as that forest type in the resulting maps. These

calculations were conducted for current and future scenarios.

2.5. Scope and limitations

Our modeling and analysis should be interpreted in the context

of data limitations and our assumptions. It should be stressed that

we are not trying to model the actual future distributions as that

would be beyond the scope of our study. Our models show how

future potential suitable habitats could change if climate were to

change according to the GCM models. These changes in suitable

habitat would impact primarily the regeneration, rather than

mature growth, phase of a tree’s life cycle. It should be borne in

mind that we are modeling the potential niche space that would be

available for the species in the future climates, and not the

realized niche. Therefore any disturbances would be operating

within this future suitable habitat. It should also be noted that the

FIA data that we use are integrating the results of past

disturbances and climate events, and are thus based on at least

a partial realized niche for individual species. Because of genetic

plasticity and potential changes in the biotic controls on species

ranges, species could expand northward (or southward) even

without climate change. Comprehensive modeling of the realized

niche would require data on future disturbances, including fires,

exotics, severe storms, and human-induced land-use and land-

management changes, as well as mortality, growth, and

competition for each species – all out at least 100 years which

of course is impossible to achieve. Indeed, the spatial and

temporal patterns of these factors are impossible to predict even

under the current climate regime, though simulations using the

variation of historical data can provide course-level indications of

potential future conditions, at least for fire (Keane et al., 2004;

Cary et al., 2006; Scheller and Mladenoff, 2007). However, it will

never be possible to predict major events such as the invasion of

the next emerald ash borer, recently introduced and threatening

all native ashes (Fraxinus spp.) on the continent (Iverson et al., in

press-a). Under future altered climates, these factors can manifest

themselves in novel and unexpected ways; our models (nor any

model), therefore, cannot take these into account. However, the

potential future habitats that we do model for each species can be

used to investigate further the effect of possible outcomes with

respect to modeled disturbances or competition. For example, we

have built a spatially explicit cellular model with built-in

stochasticity called SHIFT to examine the effects of habitat

fragmentation on the future colonization probabilities using the

outputs of our models (Iverson et al., 1999b, 2004c,d). It is also

possible to combine simulation modeling of future species

dynamics with the potential future niche space for various species

from our model to achieve a realistic species list that can be

modeled forward (e.g., Chaing et al., 2006). Finer scale studies

can also be conducted to test our model for species of interest in

places where our model is predicting drastic changes (e.g.,

hotspots).

Therefore, our predictions of increase in range (potential

future suitable habitat) are very likely to be overestimates of the

actual ranges that would be achieved by the end of this century,

as migration of most species will not keep up with relatively

abrupt changes in climate, unless humans get seriously

involved in moving species.

The RF model is a highly robust model for predictions as it

uses thousands of trees with resampled data and randomized

subset of predictors. As we have emphasized in our modeling

section, this makes it highly resistant to overfitting. However,

there is concern that when modeling the future climate by

swapping the current with the GCM predicted future, we are

sometimes making predictions into novel parameter space

through extrapolation. Our investigations into the nature of RF

predictions (Prasad et al., 2006) and the fact that RF uses tree-

based step-functions rather than splines (e.g., models using

adaptive splines such as general additive models or multiple

adaptive regression splines) gives us confidence that our

extrapolations are not wild projections in future parameter

space but are suitably constrained by the robustness of our

current modeled response. We do provide model reliability

estimates using a tri-model approach (see next section on model

reliability) for identifying problematic species.

3. Results

3.1. Model reliability assessment

In general, we found high (>0.5) model reliability scores for

the most important species. If the data were abundant, the
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models usually were reliable according to our rating scheme.

Most of the species undergoing the greatest reduction in habitat

also were in the green (reliable) zone, while many of the species

making an increase in suitable habitat from a low level had a

lower reliability rating because of fewer samples from where it

is now located.

Results of this assessment show different degrees of

reliability, ranging from 0.07 with Salix amygdaloides to

0.75 with Abies balsamea (Supplement 1). According to our

rating scheme, 31 species are in the red (poor reliability) zone,

49 are in the amber (moderately reliable) zone, and 55 are in the

green (reliable) zone. We marked these reliability colors on the

maps of suitable habitat to help ensure that model reliability is

considered when viewing the results. Many of the poor-

reliability species are small ranged, that is, the model may have

failed to capture the underlying drivers and spatial pattern. This

phenomenon was identified and analyzed with respect to

forecasting extinctions by Schwartz et al. (2006). There also are

13 species in the red zone due to the low proportion of their

current range existing within the eastern United States, and

Table 3

Assessment of variable importance across all 134 species

SumRankRecip1 FreqTop102 SumVarImp3 VarImpIndx4

Score Scaled Score Scaled Score Scaled Overall score

Climate

TAVG 6.5 22.8 42 44.7 1828.2 75.5 47.6

TJAN 6.7 23.7 42 44.7 1838.3 75.9 48.1

TJUL 9.2 35.5 47 50.0 1921.9 79.4 54.9

TMAYSEP 11.2 45.1 40 42.6 1825.5 75.4 54.3

PPT 14.6 61.6 73 77.7 2143.8 88.6 76.0

PPTMAYSEP 22.5 100.0 94 100.0 2416.7 100.0 100.0

JULJANDIFF 6.9 24.8 37 39.4 1731.0 71.4 45.2

Elevation

ELV_CV 5.6 18.4 39 41.5 1728.2 71.3 43.7

ELV_MAX 7.8 28.8 51 54.3 1817.5 75.0 52.7

ELV_MEAN 8.4 31.6 50 53.2 1856.9 76.7 53.8

ELV_MIN 6.8 24.2 37 39.4 1765.3 72.9 45.5

ELV_RANGE 7.9 29.5 48 51.1 1874.7 77.4 52.6

Soil type

ALFISOL 7.5 27.3 32 34.0 1628.7 67.2 42.8

ARIDISOL 1.8 0.0 0 0.0 16.8 0.0 0.0

ENTISOL 4.3 12.1 10 10.6 1259.3 51.8 24.8

HISTOSOL 3.5 8.1 7 7.4 921.8 37.7 17.8

INCEPTIS 4.6 13.5 25 26.6 1576.0 65.0 35.0

MOLLISOL 10.4 41.2 39 41.5 1660.4 68.5 50.4

SPODOSOL 3.6 8.5 6 6.4 819.6 33.5 16.1

ULTISOL 6.0 20.4 33 35.1 1574.5 64.9 40.1

VERITSOL 2.4 2.8 3 3.2 446.0 17.9 8.0

Soil properties

BD 2.4 2.7 2 2.1 971.0 39.8 14.9

CLAY 6.9 24.7 50 53.2 1864.7 77.0 51.6

KFFACT 7.5 27.3 13 13.8 1230.7 50.6 30.6

NO10 9.7 38.3 46 48.9 1886.7 77.9 55.0

NO200 11.3 46.0 53 56.4 1959.0 80.9 61.1

OM 4.7 13.8 19 20.2 1560.6 64.3 32.8

ORD 13.3 55.7 63 67.0 2090.4 86.4 69.7

PERM 5.9 19.7 35 37.2 1749.2 72.2 43.1

PH 6.5 22.5 41 43.6 1782.7 73.6 46.6

ROCKDEP 5.1 15.9 31 33.0 1631.3 67.3 38.7

SLOPE 17.6 76.2 76 80.9 2180.8 90.2 82.4

AWC 4.9 15.1 27 28.7 1707.9 70.5 38.1

Landscape

FRAG 2.4 2.7 0 0.0 875.9 35.8 12.8

AGRICULT 11.0 44.5 55 58.5 1947.6 80.5 61.2

FOREST 11.8 48.4 59 62.8 1969.0 81.3 64.2

NONFOR 5.5 17.6 20 21.3 1575.5 64.9 34.6

WATER 2.6 3.9 5 5.3 502.8 20.3 9.8

Variable names are described in Table 2. Score indicates actual score, while Scaled indicates scores scaled on 0–100 basis. SumRankRecip1 = sum of the reciprocal of

rank of each predictor across all species. FreqTop102 = frequency of the predictors ranking in the top 10 of importance across all species. SumVarImp3 = sum of

predictor importance scores across all species. VarImpIndx4 = Variable Importance Index is overall importance as driving variables in models for the 134 species.

L.R. Iverson et al. / Forest Ecology and Management 254 (2008) 390–406 395



another eight in the amber zone. We did not detect a

relationship between the percentage within the eastern United

States and the model reliability score.

3.2. Predictor importance analysis

The three indices that made up our overall index,

VarImpIndx, were all highly correlated to each other (Pearson

correlation = 0.77–0.98), so that we can be confident that the

index relates well to the importance of these predictors as

drivers for species distributions of the 134 trees studied

(Table 3). Fortunately, the RF procedure is not hampered by

inclusion of correlated predictors as it is in general linear

regression modeling (Breiman, 2001). The primary single

driving predictor is growing season precipitation (PPTMAY-

SEP). This is not a surprising result as trees respond to

variations in available moisture, and that moisture is mostly the

result of rainfall that falls in the growing season. Second is

SLOPE, the average amount of slope in any 20 km � 20 km

cell. It is indicative of dissected landscapes, such as is common

in the Appalachians and its foothills. It is correlated (r = 0.54)

with ELV_RANGE, the variation in elevation within a cell.

Because species can move up slope as well as northward in a

warming climate, this indicator is important for a number of

species centered on the Appalachians. Next is PPT, emphasiz-

ing the importance of precipitation, followed by ORD, a soil

productivity predictor. ORD probably integrates many of the

other soil property predictors into a value correlated with

overall capacity of the soil to grow trees, but is most correlated

in the eastern U.S. to PPT (r = 0.75). Next in importance are

FOREST and AGRICULT, which are negatively correlated

(r = �0.87) because for most cells, if not in agriculture, the area

is mostly forested. If an area has survived to date in forest, it is

probably well suited for forest (and not as suitable to other land

uses), and thus this variable is a good driver for many species.

Next in importance are two texture variables, NO200 and

NO10. NO200 indicates fine material and is correlated with

KFACT (r = 0.65) and CLAY (r = 0.71), while NO10 indicates

coarse textured soils, and is not correlated (r < 0.5) with other

variables.

The predictors ranked 9 and 10 in importance are the

temperature predictors, TJUL and TMAYSEP. However, we

believe that temperature, when considered collectively,

ranks first or second next to precipitation in importance

across all species because of the high correlation among

temperature-related variables. For example, TJUL and

TMAPSEP are very highly correlated (r = 0.98), and TJAN

and TAVG are also highly correlated with these two

(r > 0.9). It is likely that the high correlation among

temperature predictors lead to substitution among the four

predictors in the models so that the overall importance for a

single variable is diminished relative to other, lesser

correlated predictors. Thus the ranking of the temperature

predictors are lower than if we had included only one or two

in the models. Indeed, many species clearly have a

temperature variable as their primary driver, but this driver

role is shared among four temperature-related variables so

that none emerge on top of the predictor list. Though the RF

technique allows the incorporation of correlated variables

into the models, a disadvantage is that a clear ranking of the

contributing factors is somewhat masked by the substitutions

among related variables.

Three elevation predictors follow next in importance

(ELV_MEAN, ELV_MAX, ELV_RANGE). The mean and

maximum are very highly correlated (r = 0.98), but not range.

Therefore as with temperature, part of the lower ranking for

mean and maximum may be attributed to their substitution

capability within the models. After these elevation predictors

follows percentage CLAY, a soil texture predictor that relates to

tree growth for certain species and then percent MOLLISOL, a

typically deep prairie soil common in the western part of the

region and the first soil type predictor appearing. When

MOLLISOL is high, it forms the western border of a number of

eastern tree species.

At the bottom of the list of predictors are six of the soil types,

BD, and FRAG. These predictors do not distinctively separate

many species of trees because of rarity (e.g., ARIDISOL,

WATER, ENTISOL) or their widely dispersed nature (e.g., BD,

FRAG).

Table 4

Summary of decreasing and increasing species’ area of suitable habitat by

scenario for (a) all species of the eastern United States, (b) species bounding

Canada, and (c) species not bounding Canada. Scenarios refer to model (PCM,

GFDL, Hadley, and average of 3 models) and emission level (low vs. high)

Scenario Decrease

>10%

Decrease

2–10%

No

change

Increase

2–10%

Increase

>10%

Total

(a)

PCM lo 0 21 49 48 16 134

PCM hi 2 18 35 27 52 134

Ave lo 0 21 45 37 31 134

Ave hi 2 19 39 23 51 134

GFDL lo 0 19 46 32 37 134

GFDL hi 1 15 36 22 60 134

Had lo 1 21 39 37 36 134

Had hi 3 19 34 24 54 134

(b)

Bounding Canada

PCM lo 0 19 19 24 7 69

PCM hi 2 18 14 11 28 73

Ave lo 0 19 20 19 15 73

Ave hi 2 17 19 7 28 73

GFDL lo 0 17 19 16 20 72

GFDL hi 1 11 17 8 36 73

Had lo 1 20 20 16 16 73

Had hi 3 19 17 7 27 73

(c)

Not bounding Canada

PCM lo 0 2 30 24 9 65

PCM hi 0 0 21 16 24 61

Ave lo 0 2 25 18 16 61

Ave hi 0 2 20 16 23 61

GFDL lo 0 2 27 16 17 62

GFDL hi 0 4 19 14 24 61

Had lo 0 1 19 21 20 61

Had hi 0 0 17 17 27 61

See text for details.
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3.3. Estimates and changes in area of suitable habitat

RF model outputs yielded estimates of percentage of the area

for each of 134 species, as modeled for the current time, and for

year 2100 according to the three models, and their averages,

under both low and high emission scenarios (Table 4,

Supplement 2). Over all scenarios, we find that more than

half (55% on average) of the species show increases in suitable

habitat by at least 2% of the total area in the eastern U.S., while

only 14% show decreases of at least 2% (Table 4). This might

be expected because of the large number of species occupying

the southern half of the United States (often with climatic

pressure to move north) and a lesser number across the northern

tier. According to this assessment, the GFDL hi has the most

species gaining area (82, or 61%), while the PCM lo had the

lowest percentage of species (64, or 48%) modeled to increase.

On the other hand, all scenarios showed only 19–22 species

(14–16%) that could decrease by at least 2% (Table 4). Note

that 73 of the 134 species currently bound Canada (Table 4,

Supplement 2), so a full assessment of the potential change in

suitable habitat is not possible, i.e., only habitat within the

United States was analyzed. Our data show that almost all of the

decreasing species bound Canada; many of these species would

find additional suitable habitat in Canada (McKenney et al.,

2001). Of those not bounding Canada, 62 of them (46%) are

modeled to increase in suitable habitat, and only 0–4 species

would decrease at all. Most of the increasing species do not yet

reach the Canadian boundary because they are more southern in

nature. In either case, the northward shifting of habitat is

responsible for these patterns.

Our models indicate that two rare species may lose all

suitable habitat in the eastern U.S. under the high emission

scenarios: Quercus durandii (Durand oak) and Sorbus

americana (American mountain ash, Supplement 2). Several

other species would have severely diminished habitat,

especially under the harsher scenarios: Picea mariana (black

spruce), Acer spicatum (mountain maple), and Juglans cinerea

(butternut).

3.4. Species importance values weighted by area

We believe that a calculation that simultaneously includes

species area and species importance yields a better indicator of

potential change in overall species habitat under various

scenarios of climate change. To evaluate, we calculated the

ratios of future to current area-weighted importance value for

each species and scenario, then classified them for easy

interpretation (Table 5, Supplement 3). Averaged across all

scenarios, 66 species showed increases, 54 showed decreases,

and 14 had no change as compared to the current modeled

distribution (Table 5). As such, the inclusion of importance

value into the calculations increases the number of decreasing

species relative to the area-only evaluation. Many species may

not be eliminated entirely but would have a large reduction in

suitable habitat. Some of the hardest-hit species under this

evaluation include the five species mentioned above plus

Table 5

Potential species changes in area-weighted importance value for habitat suit-

ability for 134 species in the eastern United States

Scenario <0.5 0.5–0.9 0.9–1.1 1.1–2 >2 Total

PCM lo 14 37 21 54 8 134

PCM hi 25 25 14 40 30 134

Ave lo 15 38 20 48 13 134

Ave hi 23 35 9 37 30 134

GFDL lo 14 40 15 44 21 134

GFDL hi 26 28 12 31 37 134

Had lo 20 34 13 50 17 134

Had hi 25 31 12 36 30 134

Allowing for a 10% buffer around 1.0, a future: current ratio below 0.9 indicates

a loss, while a value above 1.1 indicates a gain. Scenarios refer to model (PCM,

GFDL, Hadley, and average of three models) and emission level (low vs. high).

See text for details.

Fig. 1. Ellipses of 1 standard deviation for (a) Acer saccharum (sugar maple) and (b) Fagus grandifolia (American beech) along with mean centers for the current

distribution and suitable habitat according to scenarios of Parallel Climate Model – low emissions (PCM lo), average of three models – low emissions (Ave lo),

average of three models – high emissions (Ave hi), and HadleyCM3 model – high emissions (Had hi).
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Table 6

Summary of distance and general north and south direction of mean centers of suitable habitat for the 134 species in the eastern United States

Scenario Kilometers

<10 10–50 51–100 101–200 201–300 301–400 >400 Total

Northward

PCM lo 4 23 32 37 11 4 0 111

Ave lo 4 18 29 30 18 12 3 114

Ave hi 1 7 16 28 16 10 21 99

Had hi 0 9 16 20 18 10 26 99

Southward

PCM lo 2 10 4 4 1 1 1 23

Ave lo 1 7 5 3 3 0 1 20

Ave hi 1 6 9 11 4 2 2 35

Had hi 1 6 7 11 7 2 1 35

Scenarios refer to model (PCM, Hadley, and average of three models) and emission level (low vs. high). See text for details.

Fig. 2. Potential changes in distance and direction of mean centers of suitable habitat for 134 species, according to the (a) Parallel Climate Model – low emissions

(PCM lo) (note the 0–500 km scale on the spokes); (b) average low emission scenarios (PCM, Hadley, GFDL, 0–600 km scale); (c) average high emission scenarios

(PCM, Hadley, GFDL, 0–800 km); and (d) HadleyCM3 model – high emissions (Had hi) (0–900 km scale).
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species such as Betula papyrifera (paper birch), Populus

tremuloides (quaking aspen), P. balsamifera (balsam poplar), A.

balsamea (balsam fir), Thuja occidentalis (northern white-

cedar), Acer nigrum (black maple), Picea rubens (red spruce),

Picea glauca (white spruce). Notice that many of these species

are common components of the spruce-fir zone. Species

showing increases of area-weighted importance values include

Quercus stellata (post oak), Q. marilandica (blackjack oak),

Carya illinoensis (pecan), C. texana (black hickory), Gleditsia

triacanthos (honeylocust), and Morus rubra (red mulberry)

(Supplement 3).

3.5. Changes in mean center of spatial data

The potential changes in mean centers of suitable habitat

under various scenarios of climate change generally show

movement in a northerly direction, with a longer distance of

movement in the hotter (high emission) scenarios. For example,

the map of sugar maple shows a general northward-moving set

of ellipses of one standard deviation of the data (Fig. 1a).

However, Fagus grandifolia (American beech) exemplifies a

situation with the mean center moving south due to a general

loss in abundance (not necessarily area) of suitable habitat in

the currently rich zones of New England and New York

(Fig. 1b). The mean center locations and potential movements

in distance and direction are tabulated for each species and

under four possible scenarios (Supplement 4). We also have

maps like Fig. 1 for all species available online at http://

www.nrs.fs.fed.us/atlas.

When we evaluate the mean center distances and directions

of all species together across the entire eastern United States,

we see some patterns and trends (Table 6, Fig. 2). The great

majority of species move northward, and for these species, the

high emission scenarios (Fig. 2c and d) push the habitat further

north than the low emission scenarios (Table 6, Fig. 2a and b).

For example, the Had hi scenario moved suitable habitat

northward in excess of 400 km for 26 species (Table 6).

Interestingly, the high emission scenarios also pushed several

more species in a general southward direction. In most cases,

the southward trend was due more to geographical or

physiographic anomalies rather than biological or physiologi-

cal aspects of the species under climate change. For example, a

species may lose importance in the northern parts of its range

but remain in the highlands of southern Appalachia, or a species

may lose importance in northern Minnesota/Wisconsin/

Michigan but retain habitat in southern New England. Even

if the area of habitat remains the same into the future, the mean

center would move south if the importance drops disproportio-

nately more in the northern part of the species range. Most of

the species of significance move north or northeast (Fig. 2).

3.6. Analysis of dominants, gainers, and losers by state

In this analysis, we identified the dominant species in the

eastern U.S., selected regions (Fig. 3), and the states within

the region. We then evaluated what our models suggest with

respect to the potential change in suitable habitat for the top

three current species according to the average low and high

emission scenarios (Table 7). A total of 34 species are

required to rank the top three for each state and region,

including the eastern U.S. (Table 7). The species securing one

of the top three positions most frequently are red maple

(Acer rubrum, 24 out of 44 states/regions), sugar maple

(A. saccharum, 12/44), and loblolly pine (Pinus taeda, 12/44).

These are followed by Ulmus americana and Liquidambar

styraciflua with 10/44 each. If tallied by genus, Quercus sp.

appears in the top three category 22 times, while Pinus sp.

appears 21 times (Table 7). Remember that these importance

values are based equally on the number of stems and the basal

area for each species, so that species with extremely large

numbers of medium-sized stems will often emerge as more

important than the larger canopy trees with fewer stems. For

example, an oak appears only once as the top species but

many states in the Central Hardwoods region have a mixture

of oak species dominating the canopy, with many smaller

A. rubrum stems in the midstory.

If we average the percentage values of current for the top

ranked species in each state/region, we see an overall reduction

to 82% of current area-weighted importance values under the

Ave lo scenario and 65% under the Ave hi scenario (Table 7).

The same pattern holds for the second ranked (83 and 73% of

current importance) and third ranked (85 and 77% of current

importance): the greater the emissions, the greater the loss of

primary species importance. Although there are some species

which seem to be enhanced in the changed climate (e.g.,

P. taeda, U. americana, Acer saccharinum, Quercus macro-

carpa, and Populus deltoides), most species of high rank are

diminished in suitable habitat under climate change.

3.7. Species-level maps

We prepared maps for each species based on FIA, current

model, Had hi, Ave hi, Ave lo, and PCM lo that also reflect our

Fig. 3. Regions and states as defined for summarization in Table 7.
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estimate of model reliability (Figs. 4–5). We have included in

print two species: one of large economic value but subject to

decrease (Acer sacharum, sugar maple, Fig. 4), and one southern

pine species with potential to move northward and gain

significant importance (Pinus elliottii, slash pine, Fig. 5). As

supplemental material to this paper, we show three important

northern (spruce-fir) species with modeled reduction in

importance of suitable habitat: Abies balsamea (balsam fir,

Supplement 5), Picea mariana (black spruce, Supplement 6), and

P. rubens (red spruce, Supplement 7); one northern species

modeled to lose importance: Populus tremuloides (quaking

aspen, Supplement 8); a species of moderate reliability with new

expansion of suitable habitat northward: Quercus falcata falcata

(southern red oak, Supplement 9); and a rare species with new

habitat according to a model of low reliability: Q. shumardii

(Shumard’s oak, Supplement 10). As with other data and maps,

they are all available online at http://www.nrs.fs.fed.us/atlas.

3.8. Forest-type maps

The forest-type maps resulting from the combination of

species provides a perspective on how the suitable habitat might

change at this biological level under various scenarios of

climate change (Fig. 6). Most of the changes are apparent in the

northern latitudes, especially the northeastern United States

(Iverson et al., in press-b). We find that, in future, only PCM lo

(the least harsh scenario) retains any presence of suitable

habitat for the spruce-fir type in the United States. Habitat for

Table 7

Top three species currently in each region and state, along with the percentages of current projected under average low and high emission scenarios

State/region First species Lo Hi Second species Lo Hi Third species Lo Hi

Eastern US Acer rubrum 76 62 Pinus taeda 118 123 Ulmus americana 115 114

Northeast Acer rubrum 80 49 Acer saccharum 79 48 Fraxinus americana 83 57

North Central Ulmus americana 113 93 Populus tremuloides 39 19 Acer saccharum 60 33

Great Plains Ulmus americana 116 100 Fraxinus pennsylvanica 118 116 Celtis occidentalis 120 91

Southeast Pinus taeda 111 108 Acer rubrum 66 63 Pinus elliottii 123 130

South Central Pinus taeda 116 113 Liquidambar styraciflua 101 105 Acer rubrum 80 85

Alabama Pinus taeda 105 96 Liquidambar styraciflua 89 91 Quercus nigra 105 96

Arkansas Pinus taeda 126 113 Liquidambar styraciflua 113 111 Quercus alba 62 58

Connecticut Acer rubrum 61 29 Pinus strobus 50 33 Quercus rubra 74 42

Delaware Acer rubrum 63 50 Liquidambar styraciflua 127 117 Quercus alba 60 41

District fo Columbia Acer rubrum 42 42 Liriodendron tuliperfia 15 15 Quercus alba 68 64

Florida Pinus elliottii 105 104 Taxodium distichum (var. nutans) 98 110 Quercus virginiana 107 109

Georgia Pinus taeda 101 95 Liquidambar styraciflua 89 88 Pinus elliottii 113 103

Illinois Ulmus americana 133 54 Quercus alba 60 42 Prunus serotina 35 22

Indiana Acer saccharum 30 10 Ulmus americana 89 42 Fraxinus americana 42 29

Iowa Ulmus americana 142 104 Quercus macrocarpa 126 115 Acer saccharinum 136 113

Kansas Celtis occidentalis 67 43 Ulmus americana 61 37 Fraxinus pennsylvanica 79 77

Kentucky Acer saccharum 11 5 Acer rubrum 49 54 Quercus alba 97 86

Louisiana Pinus taeda 94 83 Liquidambar styraciflua 85 90 Quercus nigra 87 86

Manie Abies balsamea 29 16 Acer rubrum 116 91 Picea rubens 37 31

Maryland Acer rubrum 56 42 Quercus bicolor 84 68 Maclura pomifera 36 27

Massachusetts Acer rubrum 72 33 Pinus strobus 47 31 Quercus rubra 81 47

Michigan Acer rubrum 80 62 Acer saccharum 55 33 Populus tremuloides 34 11

Minnesota Populus tremuloides 42 19 Quercus macrocarpa 125 130 Acer negundo 114 151

Mississippi Pinus taeda 102 95 Liquidambar styraciflua 90 92 Quercus nigra 112 104

Missouri Quercus alba 53 44 Quercus velutina 85 69 Ulmus americana 64 43

Nebraska Populus deltoids 119 113 Fraxinus pennsylvanica 153 145 Juniperus virginiana 114 89

New Hampshire Acer rubrum 104 64 Pinus strobus 66 51 Acer saccharum 80 67

New Jersey Acer rubrum 61 42 Fraxinus americana 45 30 Pinus rigida 86 85

New York Acer rubrum 89 54 Acer saccharum 73 44 Fraxinus americana 84 46

North Carolina Pinus taeda 129 119 Acer rubrum 52 44 Liquidambar styraciflua 103 101

North Dakota Acer negundo 94 97 Quercus macrocarpa 93 132 Ulmus americana 110 194

Ohio Acer saccharum 45 9 Fraxinus americana 41 22 Ulmus americana 81 34

Oklahoma Ulmus alata 114 125 Pinus echinata 118 127 Quercus marilandica 123 111

Pennsylvania Acer rubrum 66 31 Prunus serotina 46 19 Acer saccharum 79 37

Rhode Island Acer rubrum 58 26 Pinus strobus 40 31 Quercus rubra 60 29

South Carolina Pinus taeda 93 78 Liquidambar styraciflua 79 72 Acer rubrum 73 75

South Dakota Fraxinus pennsylvanica 149 153 Populus deltoides 210 233 Quercus macrocarpa 113 162

Tennessee Acer rubrum 66 61 Quercus alba 84 77 Liriodendron tuliperfia 39 34

Texas Pinus taeda 90 72 Liquidambar styraciflua 82 77 Ulmus alata 106 117

Vermont Acer saccharum 70 52 Acer rubrum 105 80 Fagus grandifolia 78 45

Virginia Acer rubrum 54 40 Liriodendron tuliperfia 40 21 Pinus taeda 177 208

West Virginia Acer rubrum 62 37 Acer saccharum 60 20 Quercus prinus 68 50

Wisconsin Populus tremuloides 39 16 Acer rubrum 78 58 Acer saccharum 62 37
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the white-red-jack pine type is eliminated according to our

model, though this type came out as sporadic to start with in our

model algorithm, and thus more difficult to model future

habitat. The aspen-birch type is severely curtailed in suitable

habitat under low emissions, but is eliminated under higher

emissions. The oak-hickory type is modeled to expand into the

north, especially under higher emission scenarios. Though the

maple-beech-birch is fairly stable under low emissions, its

habitat is reduced under higher emissions as oak-hickory and

oak-pine expand. In this analysis, the southern pine types

remain fairly stable even though individual southern pine

habitat increases to the north for many pines. The explanation

for this pattern is that the oak species also generally increase so

that the proportions stay similar, or even favor oak-pine over

loblolly pine for a portion of the current southern pine habitat

(Fig. 6).

Fig. 4. Maps of current and potential future suitable habitat for Acer saccharum (sugar maple) including the FIA estimate of current distribution of abundance, the

modeled current map, and scenarios of Parallel Climate Model – low emissions (PCM lo), average of three models – low emissions (Ave lo), average of three models –

high emissions (Ave hi), and HadleyCM3 model – high emissions (Had hi).
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4. Discussion

The forests of the eastern United States are likely to undergo

radical changes as the climate changes. Evidence that shifts are

already taking place continue to mount (e.g., Soja et al., 2007),

and in ways predicted in this modeling effort. Similar work in

the western United States (Rehfeldt et al., 2006) has also shown

modeled changes to be in line with shifts reported by Soja et al.

(2007). Although we cannot put an exact timeline to the

potential changes outlined here, we estimate suitable habitat

will increase for many species, especially the southern species

with expansion northward. Using the more dependable metric

Fig. 5. Maps of current and potential future suitable habitat for Pinus elliottii (slash pine) including the FIA estimate of current distribution of abundance, the

modeled current map, and scenarios of PCM Parallel Climate Model – low emissions (PCM lo), average of three models – low emissions (Ave lo), average of three

models – high emissions (Ave hi), and HadleyCM3 model – high emissions (Had hi).
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of area-weighted importance value, about 66 (61–68 depending

on emission scenario) of 134 species show the potential for

increases of at least 10%, and 8 (low emission) to 37 (high

emission) species could increase in importance by at least 50%.

Several of these species are currently important commercial

species of oak (Quercus) or pine (Pinus). Increased habitat for

oak could indicate an increased commercial and wildlife

resource (especially in the northern part of the country), but

oaks currently are undergoing a regeneration crisis in the

absence of fire or other agents that can partially open the canopy

(Loftis and McGee, 1993; Iverson et al., 2004b). It is possible

that some disturbances promoted by climate change may open

Fig. 6. Maps of current and potential future suitable habitat for the USDA Forest Service forest types, including the FIA estimate of current distribution of abundance,

the modeled current map, and scenarios of Parallel Climate Model – low emissions (PCM lo), average of three models – low emissions (Ave lo), average of three

models – high emissions (Ave hi), and HadleyCM3 model – high emissions (Had hi).
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the canopy sufficiently to enhance the probability of oak

regeneration. Additional research on this topic is needed.

Besides the oaks and pines, many of the other expansion species

are fairly small-ranged species that do not have a highly reliable

model.

Another 54 species (50–58) show a loss of at least 10% in

area-weighted importance value, and 14 (low emission) to 26

(high emission) species could drop by more than 50% in

importance. There are many northern species that bound

Canada in this 50% loss category, at least under the high

emission scenarios: Picea mariana, Acer spicatum, Betula

papyrifera, Abies balsamea, Populus tremuloides, Populus

grandidentata, Acer nigrum, Betula alleghaniensis, Picea

rubens, Acer pensylvanicum, and Acer saccharum. The

evaluation of forest types reveal essentially the same thing:

the models suggest a retreat of the spruce-fir zone as seen in the

past (DeHayes et al., 2000). Additionally, the forest-type

summaries show loss of the aspen-birch, white-red-jack pine,

and maple-beech-birch habitat, as well as gains in oak-hickory

and oak-pine. The extent of the changes depends largely on the

emission scenario selected by humans over the next century –

changes would be much less dramatic if humans follow a low

emissions pathway. The species listed as potential losers

currently provide much of the commercial and tourism value of

the North. The potential economic impact of such changes

could be substantial.

Coupled with the changing habitat for these species is the

increasing onslaught of disturbances inclined to accelerate

compositional changes: pests, diseases, land-use change,

invasives, fire, and climatic disturbances. Pests such as the

Hemlock wooly adelgid (Paradis et al., in press) and emerald

ash borer (Poland and McCullough, 2006; Iverson et al., in

press-a), spruce budworm, and pine bark beetle, and diseases

such as the white pine blister rust, beech bark disease, maple

decline, and spruce/fir decline (cited in Ayers and Lombardero,

2000) are threatening and killing several of the species likely to

substantially change under climate change. Thus, the composi-

tional changes of forests will be accelerated by these

disturbances. Invasive plants also are likely to spread under

climate change as niches open, because the invasives are

adapted to wider conditions and rapid colonization and growth

after disturbance and elevated carbon dioxide (Williamson,

1999; Weltzin et al., 2003). Of course, other human-derived

disturbances associated with changes in land use and land cover

have had and will continue to have profound impacts on the

species composition (Foster and Aber, 2004).

A changing climate has already been shown to be increasing

other disturbances, with more changes coming (Hayhoe et al.,

2006). Climatic effects such as increases in wind and ice

damage, hurricane intensity, heavy precipitation events,

drought in the later parts of the growing season, flooding

during the growing season, and warmer winter and summer

temperatures (Hayhoe et al., 2006) can increase stress on

species, leading to further changes. An analysis of 806 northern

temperate trees and shrubs (worldwide) showed that few

species can tolerate more than one of the following stresses:

shade, drought, or waterlogging (Niinemets and Valladares,

2006). Climate change will change the proportions of these

stresses, e.g, increases in both drought and waterlogging

potential, again leading to changes in species composition.

Wildfire is also likely to increase under climate change, at least

in some portions of the country (McKenzie et al., 2004; Keane

et al., 2004). In places like the uninterrupted forests in Maine,

the New Jersey pine barrens, and the pine forests of the

Southeast, fire could have an especially substantial effect on

hastening species changes that are undergoing changes in

habitat suitability.

With respect to the evaluation of mean centers of current and

potential future habitat, the habitat for most species generally

moves northeast. As expected, with each hotter scenario, the

distances increase for movement of mean center of habitat. The

maximum distances of habitat centers range from about 400 km

with PCM lo to about 800 km with Had hi scenarios. The high-

emission trajectory shows a much higher maximum movement

and a much larger number of species moving compared to the

low-emission trajectory.

Importantly, we do not here model potential species ranges

by the year 2100. We model the suitable habitat related to each

species. This suitable habitat is primarily based on climate,

though soil, elevation, and land-use variables also are also

important for many species. Notably, we have not modeled the

changes in soil or land-use that would also likely change under

climate change. For example, agricultural practices or carbon/

nutrient retention in soils would likely change. Because of the

long-lived nature of trees, we would not expect the changes

presented here to be realized by 2100 unless disturbance agents

exert a profound acceleration effect on the changes. We also

would expect that there is a greater likelihood that disturbance

agents would hasten declines to a greater degree than they

would accelerate emergence of new species entering newly

available suitable habitat; however, if the species already is

present (like some of the common pines), they may increase in

importance as the competitors decrease. We have attempted to

determine actual estimated ranges for several species in other

work using a companion model (SHIFT). We found that the lag

times and fragmented nature of the remaining forests greatly

slow migration rates. We estimated that, for four species, less

that 15% of the suitable habitat would have a 1 in 50 chance of

being naturally colonized within 100 years (Iverson et al.,

2004c,d). Thus, it appears that humans could play a vital role,

either accidentally or purposefully, in moving selected species

into their newly emerging suitable habitat, and in modulating

the role of competition through vegetation management

practices.

5. Conclusions

We model and map the potential changes in degrees of

suitable habitat for 134 individual tree species in the eastern

United States under three recent GCM models and two

emission scenarios. We also use a tri-model approach to assess

the reliability of each model. These models show potentially

very large changes in species importance and forest type

habitat, especially under the higher emissions trajectory. Our
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results show that species will have a lot less pressure to move,

and species disruption will be much less severe, if we follow a

path of lower emissions of greenhouse gases. Readers are

encouraged to visit the companion website to obtain details on

their favorite species or location: http://www.nrs.fs.fed.us/atlas.
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