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Summary

Stand structures from a combined density manipulation and even- to uneven-aged conversion
experiment on the Bartlett Experimental Forest (New Hampshire, USA) were examined 25 years after
initial treatment for rotated sigmoidal diameter distributions. A comparison was made on these
stands between two probability density functions for fitting these residual structures: the Burr Type
III and a finite mixture of Weibulls. All stands exhibited some form of uneven-aged structure (either
reverse J or rotated sigmoid) after 25 years. The Burr distribution fits the final distributions as well as
the more complicated finite mixture model in all cases.

Introduction

As we learn more about the structure of uneven-

aged forests, we find that often the diameter dis-

tribution structure encountered may not fit the

widely accepted, quintessential reverse J-shaped

model. An example of such a departure is the

so-called rotated sigmoid form. Rotated sigmoid-

shaped tree diameter distributions have a slight

to pronounced plateau or even a mild hump in

the mid-diameter range of the distribution, of-

ten associated with small sawtimber size classes.

These structures, when plotted with the logarithm

of number of trees vs diameter, show a more ex-

aggerated plateau or bump in the mid-diameters.

In contrast, reverse J-shaped distributions plot as

a straight line on the log scale and have a smooth,

constant negative exponential decrease in number

of trees from small to large diameters. Such dis-

tributions are often characterized by de Liocourt’s

q quotient (de Liocourt, 1898).

A consequence of the departure from the the-

oretically reverse J condition as found in stands

characterized by rotated sigmoid structures is that

traditional diameter distribution models are gen-

erally not flexible enough to model the plateau

or hump in the mid-diameter classes (e.g. Zhang

et al., 2001). Traditional models such as the nega-

tive exponential (Meyer, 1952; Leak, 1964)

do well with reverse J-shaped stands following
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a given q. Weibull distributions (Bailey and Dell,

1973) contain the negative exponential as a special

case, but offer a wider range of reverse J and uni-

modal shapes. Both of these models are relatively

easy to work with and have been used exten-

sively in forestry in the past several decades. Other

distribution models, such as Johnson’s SB , have

been put forth (Hafley and Schreuder, 1977), but

mostly as general models, not specifically aimed

at uneven-aged stands, and their use is somewhat

more complicated. Recently, Zhang et al. (2001)

have shown that finite mixtures of Weibull distri-

butions may be useful in modelling rotated sig-

moid distributions. Finite mixture distributions

can take on a wide variety of shapes, including

bimodal structures (Liu et al., 2001), but they can

also be more demanding to work with, at least in

the estimation phase.

While rotated sigmoid distributions seem to turn

up with increasing frequency in uneven-aged man-

agement, the cause for their genesis still appears

to be open to research. Apparently open also is the

question of whether or not they are characteristic

of an equilibrium, or steady state, condition. For

example, Goff and West (1975) argued that the

rotated sigmoid form is a characteristic equilib-

rium condition in old-growth stands. These au-

thors supported their hypothesis by examining 49

small old-growth stands, which they found to be

characteristic of one of several rotated sigmoid

forms. This evidence also seems to be supported by

various modelling exercises. For example, growth

models for northern hardwoods that have been set

in the context of a non-linear optimization have

produced rotated sigmoid structures when they

have not been constrained otherwise (e.g. Adams

and Ek, 1974; Gove and Fairweather, 1992). Simi-

larly, Hansen and Nyland (1987) used simulations

to arrive at a diameter distribution of pure sugar

maple (Acer saccharum Marsh.) that was of the

rotated sigmoid form. Both the optimization and

simulation methods resulted in target stands that

were sustainable in these modelling studies.

Other authors report that stands that appear

as rotated sigmoid have been caused by distur-

bance of one form or another. Lorimer and Frelich

(1984), for example, contend that the existence of

a plateau or hump in such stands is due to past

disturbance and provide simulations that support

their contention that the plateau will disappear in

time. Leak (1996), who examined several man-

aged and old-growth stands, also notes that the

existence of a rotated sigmoid structure may be

due to past disturbance; however, he does not

conjecture as to the equilibrium status of such

stands. In a 20-year simulation study with several

combinations of growth and mortality schedules

acting on different initial stand structures, Leak

(2002) found that different combinations would

lead to, or maintain, rotated sigmoidal structures

over time, while others would maintain or create a

balanced negative exponential distribution. These

simulations were designed to address the origins

and maintenance of rotated sigmoid stands over

the period of a cutting cycle, rather than the long-

run steady state.

In Europe, the wisdom of strong management

adherence to reverse J conditions is also being

questioned, while rotated sigmoid structures are

evidently beginning to be considered (Kerr and

O’Hara, 2000; Westphal et al., 2006). An ex-

ample of this is the plenter management system,

which often prescribes rotated sigmoid structures

(O’Hara and Gersonde, 2004). Plentering has been

around for over a century, and is described as

a fully irregular forest, characterized by stems of

all sizes and age classes (Schütz, 1997a). Anthro-

pogenic in origin, plenter stands begin with a re-

verse J structure as the initial aim, which is then

adjusted based on a simple growth model biased

towards large-tree retention, with the overall goal

of sustainability and stand volume maximization

(Schütz, 1997b). Schütz (1997a, b) contends that

there must be continuous surveillance to establish

and realize sustainability of the target structure.

Evidently, however, once established, it is largely

self-regulating; therefore, the rotated sigmoid

structures defined by plentering appear to be dis-

turbance oriented initially, with apparent longer-

term steady-state properties (Schütz, 1997a).

Whatever the cause of rotated sigmoid stand

structure – and there may be many – it is clear

that these are important distributional forms

in uneven-aged management and silviculture.
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Equally important then, is the ability to model

such structures by relatively straightforward meth-

ods. In this paper, we apply a particular form of

the Burr distribution, known as the Type III Burr

for use in fitting rotated sigmoid diameter distri-

butions. It is compared against a more flexible, but

more complicated, finite mixture model (FMM).

Both models are applied to 25-year remeasure-

ments from a single long- term density manage-

ment case study located in the White Mountains of

central New Hampshire, to help assess the useful-

ness of the Burr Type III distribution in modelling

rotated sigmoid stand structures. We look at the

untransformed rather than the log scale as this is

what is used for management and growth simu-

lation models. Although distributions that appear

reverse J, but with steep initial slope in the smaller

classes, and nearly level numbers in the larger

classes also plot as rotated sigmoid on the log

scale, we restrict attention here to the stand struc-

tures found in this study, all of which appear ro-

tated sigmoid on the untransformed scale.

Study area and methods

The Bartlett density study

The Bartlett density study was established in 1964

in a second- growth northern hardwood stand on

the Bartlett Experimental Forest in Bartlett, New

Hampshire, USA. The stand originated in the late

1800s from clear-cutting. At study inception, it

was a typical even-aged northern hardwood stand

composed primarily of American beech (Fagus
grandifolia Ehrh.), red maple (Acer rubrum L.)

and paper birch (Betula papyrifera Marsh), with

minor components of sugar maple (A. saccharum
Marsh.), white ash (Fraxinus americana L.) and

yellow birch (Betula alleghaniensis Britton); scat-

tered stems and localized clusters of eastern white

pine (Pinus strobus L.), red spruce (Picea rubens
Sarg.) and eastern hemlock (Tsuga canadensis (L.)

Carr.) also occur. The soils in the study area were

predominantly well drained, loamy sands derived

from granite; over time, beech with an admixture

of hemlock has become the predominant climax

species on these soils (Leak, 1982). The results

from this study apply particularly to stand/site

conditions similar to these. The original purpose

for the study was twofold: (1) to determine treat-

ment combinations that would efficiently con-

vert even-aged northern hardwood stands to an

uneven-aged structure and (2) to determine

the level of stand density that produced the best

residual growth.

Prior to treatment, 48 1/3- acre (0.13 ha) plots

were established, with 50 ft (∼15 m) wide buffers

on all sides. The plots and adjoining buffers were

treated conformably. Twelve treatment levels were

applied in a randomized design resulting in four

replications per treatment. The treatment levels

correspond to four residual basal area density lev-

els of 40, 60, 80 and 100 ft2 acre−1 (9.2, 13.8,

18.4, 23 m2 ha−1, respectively) and three levels

of residual stand structure at 30, 45 and 60 per

cent sawtimber. The residual per cent sawtimber

levels were in terms of basal area of trees larger

than 10.5 in (26.7 cm) diameter at breast height

(d.b.h.). Unfortunately, no pre-treatment inven-

tory was undertaken on the study area, hence we

have no information on the pre-treatment stand

structure. However, post-treatment (1964) meas-

urements and several subsequent remeasurements

of all trees greater than 4.5 inches (11.4 cm) d.b.h.

have been conducted. Initial post-treatment stand

structures for the 12 treatments are shown in

Figure 1. Note that some of the stands show a clear

rotated sigmoidal structure for the merchantable

stems, while others are unimodal, or even ap-

proaching bimodal. Note also that the maximum

d.b.h. in the stand post-treatment was 19 inches

(48 cm). The stand was treated a second time in

1990, but not consistently with the first treatment.

Therefore, we concentrate on the stand structures

after the first 25 years of growth (the 1989 remea-

surement), just prior to retreatment, and attempt

to address the success of the conversion strategy

to uneven-aged structure.

The Burr distribution

A flexible family of probability distributions,

which can be derived from a single differential

equation, was developed by Burr (1942). Two

members of the family, the Burr Types III and
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Figure 1. Residual 1964 post-treatment stand structures by treatment (basal area density:per cent
sawtimber) on the Bartlett density study. (Note: 1 inch equals 2.54 cm.)

XII have been introduced to forestry by Lindsay

et al. (1996). These distributions are important

because they are inherently more flexible than the

Weibull, which is often used in forestry applica-

tions. Both the Burr Types III and XII cover a

much larger area of the skewness–kurtosis plane

than the Weibull (Fry, 1993; Lindsay et al., 1996;

Rodriguez, 1977; Tadikamalla, 1980), with the

Type III being the most flexible of the three. In

this paper, we therefore restrict attention to the

Type III Burr.

To derive several members of this family of dis-

tributions, Burr (1942) considered the simple dif-

ferential equation on the cumulative distribution

function (CDF) and a shaping function g(x), with

basic form

d F = F(1 − F)g(x)dx,

where 0 � F � 1 is the CDF. When this expression

is integrated, the solution becomes

F(x) = (
1 + e− ∫

g(x)dx)−1
.



ROTATED SIGMOID DISTRIBUTION IN NORTHERN HARDWOODS 165

Letting g(x) = cx−1 and generalizing the inverse

exponent above to −k produces the CDF for the

Type III form of the distribution presented by Burr

(1942). Burr (1942) suggests that the CDF can be

further modified by adding scale and location pa-

rameters for greater flexibility. Doing so yields the

form of the Burr Type III CDF given by Lindsay

et al. (1996) as

F(x ; θθθ) =
(

1 +
(

b

x − a

)c)−k

, x > 0,

with shape parameters c, k > 0, location param-

eter a < x and scale parameter b such that θθθ =
(a, b, c, k)′; the CDF is zero otherwise. The corre-

sponding probability density function (PDF) is

f (x ; θθθ) = kc

b

(
b

x − a

)c+1(
1 +

(
b

x − a

)c)−(k+1)

.

This particular version of the Burr distribution

is notable, not only in the general flexibility of

form mentioned above, but specifically because it

is able to fit certain rotated sigmoid distributional

forms. Figure 2 presents a set of Type III PDFs with

scale parameters 5 � c � 9 and 0.09 � k � 0.13,

illustrating a number of possible rotated sigmoid

and reverse J shapes over a scaled region of the

random variable x . Given this range of k, distri-

butions with c < 5 tend more to reverse J shaped,

while those with c > 9 tend to be more unimodal.

Parameter estimation was accomplished via

maximum likelihood (ML). The log likelihood

for the Burr Type III is particularly simple and

is given as

L(x; θθθ) = n (log k + log c − log b)

+(c + 1)

n∑
i=1

log

(
b

xi − a

)

+(1 − k)

n∑
i=1

log

(
1 +

(
b

xi − a

)c)
,

where n is the sample size. This expression can

be maximized directly for the parameter estimates

θ̂θθ = (â, b̂, ĉ, k̂). In addition, the location parame-

ter, a, can be held fixed and the expression L(x; θθθ)

is then maximized for the remaining three

parameters.

The Burr Type III distribution has been used

in other fields and goes by various synonyms.

For example, in economics it is known as

the Dagum distribution (Dagum, 1977), and

McDonald (1984) noted that it was related to the

generalized beta of the second kind. Mielke (1973)

and Mielke and Johnson (1974) have used this in

meteorology and water resources applications and

shown it to be a special case of their Kappa distri-

bution (Mielke and Johnson, 1973; Tadikamalla,

1980).

Finite mixtures of Weibull distributions

In general, finite mixtures are composed of g in-

dividual PDFs, not necessarily all of the same form

or family, which are individually ‘mixed’, or

weighted by proportions 0 � πi � 1 such that

πππ = (π1, π2, . . . , πg) and
∑g

i=1 πi = 1. Here, we

use Weibull densities as the components of the

mixture and take g = 2 as in Zhang et al. (2001).

The three- parameter Weibull PDF is given as

f (x ; ξξξ) = c

b

(
x − a

b

)c−1

e−((x−a)/b)c
,

where a < x is the location parameter, with scale

and shape parameters b > 0 and c > 0, respec-

tively, and ξξξ = (a, b, c)′. Note that these parame-

ters are distinct from those in the Burr distribution

presented earlier and we assume in what follows

that the context will allow differentiation between

the different models. The corresponding CDF is

simply

F(x ; ξξξ) = 1 − e−((x−a)/b)c
.

In general, the g- component mixture density is

defined as

f (x ; ���) =
g∑

i=1

πi fi (x ; ξξξ i ),

where fi (x ; ξξξ i ) is the ith component density,

i = 1, . . . , g. Note that each component density is

parameterized in terms of an m-dimensional

vector of parameters ξξξ i such that ��� = (ξξξ1, ξξξ2,

. . . , ξξξ g). Therefore, collecting all parameters,
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Figure 2. Examples of possible rotated sigmoid structures for the Burr Type III distribution with shape
parameters 5 � c � 9 and 0.09 � k � 0.13, over the scaled random variable x on the abscissa.

��� = (πππ,���). The log likelihood follows naturally

as (McLachlan and Peel, 2000, p. 47)

L(x, ���) =
n∑

j=1

log f (x ; ���)

=
n∑

j=1

log

{ g∑
i=1

πi fi (x ; ξξξ i )

}
,

where random vector x = (x1, . . . , xn) denotes

a sample of diameters. Conceptually, parameter

estimation for FMMs is straightforward, but te-

dious, as it is complicated by multimodality of

the likelihood surface (McLachlan and Peel, 2000,

p. 54). We maximize the log likelihood indirectly

by driving the sums of squares of the gradient

equations to zero using the following objective.

min
{πππ,���}

g−1∑
i=1

(
∂L(x, ���)

∂πi

)2

+
m∑

k=1

g∑
i=1

(
∂L(x, ���)

∂ξξξ i,k

)2

,

(1)
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where in the second term the derivatives with re-

spect to ξξξ i,k are the individual parameter deriva-

tives with respect to the kth parameter, summed

over all g mixture components. As with the Burr

Type III, the location parameter, a, for each

Weibull component density may be fixed rather

than estimated, in which case, the respective gra-

dient components do not contribute to the second

term above. One constraint was applied to this

minimization problem to ensure that the means

for each component were ordered in ascending

order; that is, x̄1 � x̄2 �, . . . ,� x̄g. This con-

straint is merely a convenience to assure that the

component PDFs appear to increase in X and does

not affect the resulting solutions.

For the two- component mixture used in this

study, π2 = 1−π1. Therefore, our mixture density

is simply

f (x ; ���) = π1 f1(x ; ξξξ1) + (1 − π1) f2(x ; ξξξ2).

In general, estimating all g proportions makes for

an overdetermined system; therefore, only π1 is

estimated in equation (1) with this two-component

mixture. Hence, in the following we simply drop

the subscript and refer to π as the known propor-

tion or π̂ as its maximum likelihood estimate

(MLE). The full vector of estimated parameters

under the two- component Weibull mixture is �̂�� =
(π̂, â1, b̂1, ĉ1, â2, b̂2, ĉ2). Therefore, if both loca-

tion parameters are to be estimated, this FMM

requires seven total parameters to be estimated

whereas the Burr only requires four.

Results

Figure 3 presents the histograms and fitted Burr

and FMM PDFs for the Bartlett density study in

1989; the histograms may be compared directly

with Figure 1. The first point to notice is with

regard to the stand structural evolution over the

25- year growth period from 1964 to 1989. As

previously mentioned, the initial stand diameter

distributions after treatment ranged from uni-

modal rotated sigmoid to bimodal, to a few that

do not fall readily into any apparent smooth form.

However, over the 25- year growth period, growth

and mortality have smoothed the stand structures

such that the terminal stand conditions fall into

one of two reasonably well-defined structures; i.e.

either rotated sigmoid or approximate reverse J

shaped with the former predominating. In addi-

tion, the maximum tree d.b.h. has increased from

19 to 26.3 inches (66.8 cm) over the 25-year

period.

The well- defined stand structures at the end

of the growth period facilitated the estimation

of the proposed PDF models in Figure 3. Perhaps,

the most striking result of the model fits is that

the Burr and FMM curves are so similar for every

treatment level. Indeed, in a few of the treatments,

such as the 100-ft2 level, the curves appear to be

almost coincident. For the other stands, the trend

seems to be that the Burr decreases more rapidly

in the smaller diameter classes and does not reach

as well- defined a ‘plateau’ in the larger classes as

the FMMs. The only exception to this is the 80:45

treatment, where the appearance of a small spike

in the number of trees in the 9- inch class is enough

to cause the FMM to actually develop a mode in

this region.

In general, the higher basal area treatments tend

to all have developed well-defined rotated sig-

moidal diameter distributions 25 years after treat-

ment (Figure 3). However, the low-density (40 ft2)

treatments have a somewhat different character-

istic. Note that in the 40:30 treatment, the Burr

tends to fit a slight ‘hump’ in the mid-diameter

range, but in the FMM this is less pronounced.

This slight difference between the two model fits

may point to a stand in transition to a reverse

J-shaped form. The other two residual sawtimber

treatments in this low density set of treatments

show a clearly defined transition to approximate

reverse J in both of the model fits. Note that the

stand is not in the quintessential reverse J con-

dition since the FMM is still composed of two

components: if the stand were exactly negative

exponential, then the best fit would be a single

Weibull density with unity shape parameter. In-

stead, both the Burr and the FMM PDFs tend to

have a slightly smaller negative slope in the mid-

diameter classes than a reverse J.

The best fits for both the Burr (Table 1)

and FMMs (Table 2) were with fixed location
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Figure 3. Stand structures with fitted Burr (solid) and FMM (dashed, component PDFs light dot-dashes) by
treatment (basal area density:per cent sawtimber) after 25 years of growth on the Bartlett density study.
(Note: 1 inch equals 2.54 cm.)

parameters. In the case of the Burr distribution,

parameter estimates converged with the loca-

tion parameter free in all cases, but the

Akaike information criteria (AIC) (Burnham and

Anderson, 1998) was minimized in the limit as this

parameter is shifted towards the minimum diame-

ter value. Thus, a value close to the minimum was

fixed as shown in the table. The minimum diam-

eter value itself cannot be used due to numeri-

cal considerations in the likelihood equations in

both the Burr and FMMs. It is well-known that a

simple three-parameter Weibull distribution, with

location, shape and scale parameters, is more

challenging to fit than the two-parameter version

without the location parameter (Murthy et al.,
2004, p. 81). Therefore, it should not be sur-

prising that, when desiring to estimate two free

Weibull location parameters in a FMM context,

the challenge becomes somewhat Herculean.

Indeed, estimates for only a few of the stands

converged after numerous attempts with differing

starting values when estimating the location
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Table 1: ML parameter estimates for the Burr Type III distribution by treatment in 1989 (location parameters
fixed)

Treatment a k̂ ĉ b̂

40:30 4.495 0.108 6.666 8.801
40:45 4.495 0.178 3.699 8.088
40:60 4.495 0.182 3.828 7.895
60:30 4.495 0.084 8.422 9.703
60:45 4.495 0.058 10.802 11.291
60:60 4.495 0.073 8.838 11.492
80:30 4.495 0.117 6.906 9.634
80:45 4.495 0.077 9.206 10.422
80:60 4.495 0.072 9.505 12.206
100:30 4.495 0.138 6.188 8.887
100:45 4.495 0.129 6.077 9.993
100:60 4.495 0.093 8.252 13.015

Table 2: ML parameter estimates for the FMM distribution by treatment in 1989 (location parameters fixed)

Treatment π̂ a1 ĉ1 b̂1 a2 ĉ2 b̂2

40:30 0.571 4.495 0.993 2.234 4.495 2.246 6.609
40:45 0.193 4.495 0.632 0.963 4.495 1.175 4.569
40:60 0.166 4.495 0.695 1.207 4.495 1.166 4.339
60:30 0.482 4.495 0.956 1.779 4.495 2.574 7.100
60:45 0.632 4.495 1.018 2.209 4.495 2.946 8.484
60:60 0.679 4.495 0.976 2.661 4.495 3.255 9.265
80:30 0.561 4.495 0.930 3.082 4.495 2.813 7.156
80:45 0.265 4.495 0.701 1.185 4.495 1.904 6.280
80:60 0.602 4.495 1.025 2.541 4.495 3.182 9.615
100:30 0.372 4.495 0.999 2.088 4.495 2.050 6.421
100:45 0.475 4.495 0.996 2.476 4.495 2.099 7.425
100:60 0.478 4.495 0.989 2.926 4.495 2.436 9.452

parameters as well. It should be noted that in those

cases where the free location fits did converge,

the corresponding fixed- location fits proved bet-

ter, as in the case with the Burr. Thus, the lo-

cation parameters for the FMMs were also fixed

at the same value as the Burr (Table 2). Even

with this constraint, the resulting FMM likeli-

hoods can be multimodal, as will be discussed

subsequently.

Many indexes of fit have been used for judging

the adequateness of PDF models. For example,

Zhang et al. (2001) used both root mean square

error (RMSE) and likelihood ratio χ2 statistics.

Information–theoretic approaches, however, pro-

vide another, perhaps better, alternative as de-

tailed in Burnham and Anderson (1998). These

authors suggest several such criteria and provide a

very cogent discussion of their strengths. In gen-

eral, these criteria are applicable to both nested

and non- nested models, which is often not

the case with other statistics (Burnham and

Anderson, 1998, p. 63). They also have an ap-

pealing interpretation of providing a method for

selecting the best model from a pool of candidates

based on the ‘strength of evidence’ from the data

supporting a given model. We use AIC since the

ratio of n/K is large for each treatment (Burnham

and Anderson, 1998, p. 76); the model with the

minimum AIC value is the best of the two can-

didate models. AIC takes a very simple form that

is easy to calculate from the optimization results

(Burnham and Anderson, 1998, p. 60):
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Table 3: AIC and RMSE (in trees per acre) values for the Burr and FMM fits by treatment in 1989

AIC RMSE

Treatment FMM Burr Best fit FMM Burr

40:30 1399.3 1394.2 Burr 2.6 3.3
40:45 1349.5 1345.7 Burr 1.8 2.2
40:60 1410.4 1411.3 FMM 2.7 3.1
60:30 1439.6 1434.8 Burr 2.0 2.6
60:45 1571.8 1577.2 FMM 2.0 3.0
60:60 1384.4 1380.4 Burr 1.8 2.6
80:30 1525.2 1517.5 Burr 2.3 2.5
80:45 1540.9 1532.1 Burr 2.3 2.1
80:60 1352.2 1351.0 Burr 1.8 2.5
100:30 1905.8 1901.0 Burr 3.0 3.2
100:45 1678.9 1673.5 Burr 2.6 3.0
100:60 1382.2 1374.4 Burr 1.2 1.4

AIC =



−2L(x; θ̂θθ) + 2K , Burr Type III,

−2L(x, �̂��) + 2K , FMM,

where K is the number of estimated model pa-

rameters in each case. Because we have fixed the

location parameters, these do not count in the de-

termination of AIC for either model. Therefore,

K = 3 for the Burr Type III, while K = 5 for the

Weibull FMM. Notice that the number of param-

eters acts as a type of penalty on the likelihood,

so that models with fewer parameters benefit.

Table 3 shows the AIC values for both models and

for each of the treatments. This table also indicates

the ‘best’ model based on choosing the model with

lowest AIC value. It is interesting to note that the

simpler Burr model tends to be preferred in all but

two cases. However, the AIC values for the two

models are quite close in many of the treatments –

in fact all – suggesting that either model could

be used. This conclusion is validated by the fit-

ted curves in Figure 3, where, for most practical

purposes, the results are quite similar.

It is also instructive to look at the so-called

residuals from each of the model fits. These are

defined as simply the predicted minus the actual

number of trees for each model and treatment, by

diameter class, and are shown in Figure 4. These

plots essentially echo what can be gleaned from

the differences between the histograms and the

fitted curves in Figure 3. They do, however, help

to highlight the fact that the major differences be-

tween the model predictions and the actual data

are in the smaller diameter classes. They also show

that, with few exceptions, there are only minor

differences between the two models in all treat-

ments, representing only a few trees per acre at

worst in any given diameter class.

For completeness, we also present the RMSE

statistic used by Zhang et al. (2001). It is simply

the square root of the mean- squared residuals and

so may be thought of as a summary index of the

residual graphs – a standard deviation of sorts.

The RMSE values are also presented in Table 3.

In almost all cases, the RMSEs are slightly lower

for the FMM. However, it should be noted that

RMSE is in terms of trees per acre; therefore, the

overall error is quite small. Indeed, if we average

the RMSE values over all treatments, we find a

difference of only 0.46 trees per acre (∼1 tree per

ha) between the two models. Again, these results

support the conclusion that there is very little dif-

ference – none in practical terms – between the

two models.

Discussion

Residual stand structure

The treatments applied in this study have resul-

ted in two fairly distinct stand structures over
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Figure 4. Residuals from fitted Burr (solid) and FMM (dashed) by treatment (basal area density:per cent
sawtimber). (Note: 1 inch equals 2.54 cm.)

time: those evidently approaching reverse J and

rotated-sigmoid. The quasi-reverse J-shaped struc-

tures are characteristic of the low-density treat-

ments, although the 40:30 treatment with low

residual sawtimber component still has retained

some of its sigmoidal form. As previously men-

tioned, all of the initial stand structures were some-

what similar post-treatment in 1964 (Figure 1).

Therefore, the question arises as to why the low-

density treatments have tended to the reverse J

structure? Unfortunately, while density may play

a role, it is undoubtedly not the sole driver, but

may contribute subtly to changes in species com-

position in certain diameter classes whose growth

rates could push the stand in one structural direc-

tion or the other. Trends from the remeasurements

over time do, however, show that the 40- and

60-ft2 treatments have had a very large amount

of ingrowth into the smallest diameter class, in-

flating the distribution in these lower diameter

classes, while the higher density treatments show

little change in these classes over time. Indeed,

Leak and Gove (2008) have reported that the in-

growth in the 40- and 60-ft2 classes are two to
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three times that of the 80- and 100-ft2 classes in

terms of basal area. However, no measurements

of sapling or seedling size classes were taken until

after the second treatment in 1990, so we have

no early quantitative information on the structure

and dynamics of these smaller trees.

Another interesting question is whether the

rotated sigmoid structure may only be transitional

in northern hardwoods, and that given enough

time, they will eventually move to a more reverse

J form regardless of initial density. Leak (1996)

looked at a number of uneven-aged compartment

studies on the Bartlett Experimental Forest, plus

one old-growth stand in New Hampshire’s White

Mountains known as the Bowl. The Bowl showed

a stand distribution that could only be charac-

terized as reverse J, while the other stands had ei-

ther reverse J or rotated sigmoidal structures. Leak

(1996) concluded, in accordance with Schmelz and

Lindsey (1965), that the rotated sigmoid form

was caused by disturbance and that something

close to reverse J was the ‘steady-state’ condition

for old-growth northern hardwoods. Unfortuna-

tely, we may not be able to answer this question

with any degree of confidence based on

remeasurements from the current study, since the

retreatment in 1990 left only one replicate for

long-term tracking of the original treatments. We

can, however, address whether the initial treat-

ments were successful in structural conversion

from even- to uneven-aged stands. Whether

transitional, or steady state, both the reverse J and

rotated-sigmoid diameter distributions are now

generally regarded as being indicative of the

uneven- aged condition and all of our stands in

the current study fit into one of these two struc-

tures. This, coupled with the fact that there are at

least three extant age classes on the study (Leak

and Solomon, 1975; Leak, 2004), allows us to

conclude that at least one of the initial goals of

the study was indeed successful after 25 years.

Stand structural modelling

The 25-year residual stand structures encountered

in this study offer a good range of at least quasi

steady-state structures encountered in uneven-aged

stands. The simplicity and flexibility of the Burr

Type III distribution commends it as a useful model

for reverse J and rotated-sigmoidal stand struc-

tures, as well as many unimodal structures of-

ten found in even-aged stands. However, the Burr

Type III does not possess the ability to contort,

for example, to multiple modes like the FMMs

do, making it less than suitable for some of the

initial structures found, for example, in Figure 1.

The ease with which the Burr Type III is able to be

fit using simple optimization methods directly on

the log likelihood is also a very important feature

of this distribution.

FMMs allow added flexibility in general when

compared with simple probability models like the

Burr. For one, as we have seen here (e.g., the 80:45

treatment), and has been shown more lucidly in

other studies (Liu et al., 2001; Zhang et al., 2001),

the ability to model bimodality in the diameter

distribution is often useful, especially in mixed-

species stands. In addition, Zasada and Cieszewski

(2005) indicate that the component distributions

might be used to discriminate other biologically

relevant information, such as tree height classes.

This may indeed be possible, as these authors

demonstrate, depending on the component PDFs

used and the type of information desired. It should

be noted, however, that Zasada and Cieszewski

(2005) were unable to use the Weibull distribution

as a component model for their unimodal stands

because the estimation method used, which at-

tempts to estimate the means and standard devia-

tions of the component PDFs rather than estimate

the parameters directly (Macdonald and Pitcher,

1979), can fail when there is strong overlap in the

component densities.

It would be interesting to think that the weight

parameter played an intuitive role in the final form

of the mixture distribution. For example, one

would think that π would weight more heavily

towards the reverse J-shaped component in the

40:45 and 40:60 treatments since that seems to be

the predominant structure, but exactly the oppo-

site is the case: the J-shaped component density

(reverse J PDFs are those whose shape parameter

is in the range 0 < c � 1 for Weibulls) receives lit-

tle weight in these cases (Table 2). This may be in
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Figure 5. Four ML solutions for the FMM (heavy dashes, component densities light dot-dash) in the 80:45
treatment illustrating the multimodality of the likelihood with AIC values (a) 1594.8, (b) 1540.9, (c) 1587.4
and (d) 1593.4. (Note: 1 inch equals 2.54 cm.)

part due to the multimodality of the likelihood –

perhaps we did not find the overall optimum –

but is more likely due to the fact that the model

does not necessarily translate as well to biological

interpretation as one would like to hope. In other

words, it is fitting the data as best it can, with

no constraints or preconceptions with respect to

foreknowledge of inherent reverse J conditions.

The added flexibility of the FMM approach

does also bring with it some associated concerns to

be aware of that may make estimation more dif-

ficult than with simple non-mixture PDF models

such as the Burr. First, as we have already men-

tioned, with distribution models like the Weibull,

where there is an inherent difficulty fitting one of

the parameters in the single-PDF setting, these re-

sults will be magnified in the mixture setting. With

the three- parameter Weibull model, the concern is

with the location parameters of the mixture. The

inability of a time-tested non-linear solver, such
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Table 4: Correlations between parameter estimates over all treatments

FMM Burr

π̂ ĉ1 b̂1 ĉ2 b̂2 k̂ ĉ b̂

π̂ 1.0 0.86 0.82 0.94 0.84 −0.75 0.69 0.62
ĉ1 1.0 0.82 0.79 0.78 −0.59 0.56 0.55

b̂1 1.0 0.77 0.79 −0.47 0.42 0.62
ĉ2 1.0 0.89 −0.84 0.81 0.73

b̂2 1.0 −0.81 0.79 0.93

k̂ 1.0 −0.98 0.79
ĉ 1.0 0.80

b̂ 1.0

as GRG2 (Lasdon et al., 1978) to converge in all

but a few treatments when the location

parameters were free, speaks to the difficulty of

estimation in such situations. In those treatments

where it did converge, only one of the components

was selected (π ≡ 0 or 1). As mentioned earlier,

Zasada and Cieszewski (2005) had similar prob-

lems fitting component Weibulls with the

Macdonald and Pitcher (1979) approach.

A second potential concern with the mixture

approach, which has also been mentioned previ-

ously, is the evident multimodality of the log like-

lihood surface. Based on the experience of fitting

the Weibull mixtures to the Bartlett density study

data, it is important to try multiple starting val-

ues when endeavouring to find the optimum, as

the likelihood surface appears to be multimodal,

at least in some cases. In fact, it might not be a

bad idea to embed the optimization within an-

other directed search algorithm to try to find the

global maximum; however, in such a scenario, it

should be kept in mind that the embedded mix-

ture optimization may not always converge from

every starting point, and non-convergent results

must be rejected. Finally, it is often the case that

a likelihood solution mode is coincident with the

boundary case of π = 0 or 1 and such solutions

are easily distinguished. This is illustrated in Fig-

ure 5a, along with three other convergent solu-

tions. These four solutions illustrate that there are

indeed local optima in the likelihood surface for

these data. Figure 5b shows the final solution with

minimum AIC as reported in Table 2. Note that it

is relatively easy to choose the best fitting FMM by

eye based on these results. However, consider the

case where the ML algorithm was run in a batch

mode for fitting FMMs to many stands, say in

a large modelling effort. This example illustrates

the need for testing AIC values at multiple starting

points in such a setting. If the likelihood surface

were not suitably explored, one could end up with

one of the less desirable fits shown in this figure.

Again, to our knowledge, the Burr Type III like-

lihood does not suffer from such multimodality

concerns.

In all FMMs, the first component was some

form of reverse J (or very close, e.g. the 60:45 and

80:60 treatments have ĉ1 > 1, but only slightly)

and the second possessed a clear mode as indi-

cated by the respective shape parameters ĉ1 and

ĉ2 (Table 2). These components are clearly vis-

ible in the component densities shown in

Figure 3. It is interesting to note that correla-

tion among the parameters of both distributions

is high not only within the given distribution but

also between the FMMs and Burrs in some cases

(Table 4). For example, all three of the Burr

parameters are fairly strongly correlated with both

the scale and shape parameters of the second

Weibull component (b̂2 and ĉ2). These two Weibull

parameters are also correlated to a lesser extent

with the corresponding parameters for the first

component in the mixture. In addition, the

second component’s shape parameter, ĉ2, is very

highly correlated with the FMM weight, π̂ . It is

difficult to draw any conclusions with regard to

causality from these correlations. However, it

might be inferred that the reason for the high
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correlations between the Burr and the second

FMM component parameters goes back to

Figure 2, where we note that the Burr is rotated

sigmoidal in this range of parameters (compare

with Table 1) and that the second Weibull com-

ponent defines the associated plateau in the fit-

ted FMM. Because the plateau in the rotated

sigmoid fits is a strong definer of the overall dis-

tribution shape, it is also plausible that this might

explain the correlation between the estimated

FMM weight and ĉ2. Regardless of the possible

explanations, the relatively high correlations may

be useful in subsequent modelling contexts where

parameters are predicted from a combination of

both stand variables and associated parameter

estimates from previously fitted stands.

Conclusions

The diameter distributions for the northern hard-

wood stands in this study were equally well fit

by both the Burr Type III and a finite mixture of

Weibull distributions. We have shown that while

the FMM distribution is a more flexible distribu-

tion for modelling overall, it is significantly more

difficult to find correct parameter estimates for it

than for the Burr. Therefore, while either method

could be used for fitting reverse J shaped to rotated

sigmoidal stand structures similar to those found

in this study, the Burr Type III distribution can be

recommended in such stands based on parsimony

and ease of fit for the modeller. If, however, a pro-

nounced hump or other mode occurs in the mid

range of the diameter distribution, finite mixtures

will probably be a better choice.
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