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Simultaneous unbiased estimates of multiple 
downed wood attributes in perpendicular distance 
sampling 

Mark J. Ducey, Michael S. Williams, Jeffrey H. Gove, and Harry T. Valentine 

Abstract: Perpendicular distance sampling (PDS) is a fast probability-proportional-to-size method for inventory of downed 
wood. However, previous development of PDS had limited the method to estimating only one variable (such as volume 
per hectare, or surface area per hectare) at a time. Here, we develop a general design-unbiased estimator for PDS. We 
then show how that estimator can be used to develop simple measurement protocols that allow simultaneous, unbiased es- 
timation of multiple downed wood variables, including logs per hectare, length of logs per hectare, surface area or area 
coverage per hectare, and volume per hectare. 

R6sumC : L'kchantillonnage a distance perpendiculaire (EDP) est une mkthode rapide pour faire l'inventaire du bois au 
sol dont la probabilite est proportionnelle a la dimension. Cependant, cette mkthode d'EDP a jusqu'h maintenant 6tk dkvel- 
oppee pour estimer une seule variable (telle que le volume B I'hectare ou la superficie B l'hectare) a la fois. Ici, nous dB 
veloppons un estimateur non biais6 et genkral pour I'EDP. Nous montrons ensuite comment cet estimateur peut &re utilisk 
pour dkvelopper des protocoles simples de mesure qui permettent d'obtenir simultanement une estimation non biaiske de 
plusieurs variables du bois au sol, incluant le nombre de billes I'hectare, la longueur des billes a I'hectare, la superficie 
ou la surface couverte i I'hectare et le volume 2 l'hectare. 

[Traduit par la Redaction] 

lnt roduction CWM surface area; Williams et al. (20056) present solutions 
to practical problems including correction for slope and for 

The past two decades have seen dramatic growth in the curved, forked, or leaning CWM. Simulation studies (Wil- 
awareness and understanding of the role of dead downed liams and Gove 2003; Williams et al. 2005a) and field trials2 
wood (also known as coarse woody material (CWM) and show that PDS can provide substantial improvements in effi- 
coarse woody debris (CWD); hereinafter refer to as CWM) ciency over traditional methods such as line intersect sam- 
in a variety of ecosystem states and processes (Harmon et pling (e.g.. Brown 1974). 
al. 1986; Hagan and Grove 1999; Stihl et al. 2001) includ- An limitation of the previously developed 
ing wildlife habitat, carbon and nutrient sinks and cycles, variants of PDS is that only one CWM variable can be esti- 
and wildland fire behavior. This growing interest has been mated at a time. For in PDS with probability pro- 
coupled with increased attention to efficient methods for portional to volume a simple count of tallied logs multiplied 
sampling CWD. by a volume factor gives an estimate of volume per hectare. 

One promising set of techniques is perpendicular distance However, without additional and seemingly difficult meas- 
sampling (PDS; Williams and Gove 2003). PDS is a probabil- urements no estimate can be provided for number of logs 
ity proportional to size sampling (PPS) technique; in its origi- per hectare or for other CWM variables (Williams et al. 
nal development, sampling was done with probability 2005~) .  The situation is similar to that in the most familiar 
proportional to volume. As a result few, if any, actual meas- PPS technique in forestry, horizontal point sampling. In 
urements of log size are needed to obtain a design-unbiased horizontal point sampling, a count of tallied trees at a point 
estimate of the volume of CWM (whether per unit area or to- multiplied by the basal area factor gives an estimate of basal 
tal for a tract). The result is a sampling method that is nearly area per hectare. To expand other tree attributes to a per 
optimal in terms of its theoretical variance (Williams and hectare basis, one must also measure the basal area of the 
Gove 2003) and very fast. Williams et al. (2005a) generalized trees (or diameter at breast height, which is converted to 
the method for sampling with probability proportional to basal area under an assumption of circularity, giving a 

Received 3 August 2007. Accepted 10 December 2007. Published on the NRC Research Press Web site at cjfr.nrc.ca on 26 June 2008. 

M.J. Ducey.' Department of Natural Resources, University of New Hampshire, Durham, NH 03824, USA. 
M.S. Williams. Risk Assessment and Residue Division, Food Safety Inspection Service, USDA, 2 150 Centre Avenue, Building B, Mail 
Stop 2E7, Fort Collins, CO 80526, USA. 
J.H. Gove and H.T. Valentine. USDA Forest Service, Northeastern Research Station. P.O. Box 640, Durham, NH 03824, USA. 

'Corresponding author (e-mail: mjducey@cisunix.unh.edu). 
'~ucey ,  M.J., Williams, M.S., Roberge, S., Kenning, R., and Gove, J.H. Distance limited perpendicular distance sampling for coarse 
woody material: theory and field results. Environ. Ecol. Stat. Submitted. 

Can. J. For. Res. 38: 2044-2051 (2008) doi: 10.1 1391x08-0 19 8 2008 NRC Canada 



Ducey et al. 

nearly exact approximation for almost all trees; Grosen- 
baugh 1958). A similarly direct attack on the problem in 
PDS would require, for example. accurate measurement of 
the volume of downed logs that are tallied. This task is a 
forbidding one considering the variety of irregular shapes 
that downed, decaying logs may take. Exacting measure- 
ment of the volume of irregular logs would eliminate any 
practical advantages, especially in terms of speed, that PDS 
might have. 

Here, we solve the problem of obtaining design-unbiased 
estimates of multiple CWM variables in PDS using simple, 
familiar, and quick measurements. First, we develop a gen- 
eral design-unbiased estimator that takes advantage of the 
deep connection between PDS and importance sampling 
(Gregoire et al. 1987). We then use the estimator to develop 
specific measurement techniques and estimators for CWM 
variables including logs per hectare, length per hectare, sur- 
face area coverage, and log volume and biomass per hectare 
when PDS is used with probability proportional to volume 
or probability proportional to surface area. 

Overview of PDS 
We begin with a very brief review of PDS for the conven- 

ience of readers who may not be familiar with this new 
method and to establish notation for later sections. This re- 
view is not exhaustive; for greater detail, readers may wish 
to consult Williams and Gove (2003) and Williams et al. 
(2005~1, 20056). 

Suppose we are interested in the total of some attribute of 
pieces of CWM that lie within a defined tract, A, that has 
area IAl (ha). For example, we might be interested in V, the 
total volume of CWM (m3), or equivalently the volume per 
unit area VI IAI (m3/ha). There are N logs lying in A, but we 
do not know N. We will sample the population by establish- 
ing one or more sample points uniformly at random within 
A. Without loss of generality, we initially consider a single 
sample point. 

From the sample point. which plays the same "plot cen- 
ter" role as a sample point in horizontal point sampling, we 
scan for all logs that may qualify to be tallied. First, we de- 
termine whether a log has a "perpendicular point," that is, a 
point on the log (or the axis connecting the ends of the log; 
Williams et a]. 2005b) where the line of sight from the sam- 
ple point is perpendicular to the log axis. If not, the log is 
disregarded. If so, then the distance from the sample point 
to the perpendicular point is compared with a critical or lim- 
iting distance that depends on some attribute of the log 
taken at the perpendicular point. Specifically, let Di be the 
distance to the perpendicular point on the ith log. The log 
will be tallied if Di 5 DL where 

Here, xi(h) is the value of some attribute x on the ith log 
evaluated at the perpendicular point, which is located at a 
distance h (m) from the basal end of the log. Let the total 
length of the ith log be Hi. The inclusion zone for the ith 
log is the zone in which sample points can fall and the log 
will be tallied. Let the inclusion zone be ai  and its area be 
denoted as lail (m2). Then 

Fig. 1. Overview of perpendicular distance sampling (PDS). (a) A 
sample point (*) has fallen in the vicinity of four logs. The obser- 
ver sights on the perpendicular point of each log; the perpendicular 
line of sight is shown as a broken line. Note that there is no per- 
pendicular point for log 4 because of its position and orientation; 
log 4 is ignored. (b) "lnclusion zones" for the four logs. In this 
case, because the sample point has fallen within the inclusion zones 
of logs 1 and 2, they are tallied: logs 3 and 4 are not. 

a b 

Fig. 2. Expanded view of the inclusion zone for an individual log 
in perpendicular distance sampling (PDS). Hi is the length of the ith 
log axis in the horizontal plane and xi(h) is an attribute of the ith 
log taken perpendicular to the log axis at point h. The choice of the 
attribute x determines the "size" proportional to which PDS sam- 
ples. The choice of the constant k determines the effective "factor" 
(e.g., volume factor, area factor) in PDS. 

The field procedure and corresponding inclusion zones are 
illustrated in Fig. 1. An expanded view of the inclusion 
zone of a single log is shown in Fig. 2. 

The design of a PDS method involves two choices. The 
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first is the selection of an attribute to use as xi(h). PDS is a 
PPS method; the choice of xi(h) determines the meaning of 
"size." For example, if xi(h) is the cross-sectional area of 
the log x,,i(h), then PDS samples are taken with probability 
proportional to the volume vi of logs since 

The second choice, the value of k, determines the effective 
"volume factor" of the sampling approach. The probability 
that the ith log will be tallied, or ri in a standard Horvitz- 
Thompson estimator (Horvitz and Thompson 1952), is 
T; = laill[(10 000 m2/ha) 1 All. Let Si be an indicator variable; 
Si is equal to I if the ith log is tallied and Si is equal to 0 
otherwise. The corresponding estimator for volume per hec- 
tare is 

lo000 
= Chi--- 

i= l 2k 

10 OOOn 

where n is the number of logs tallied and 1000012k is the 
volume factor (Williams and Gove 2003). 

Development of PDS for sampling surface area or ground 
area coverage is similarly straightforward. When xi(h) is log 
circumference, PDS samples with probability proportional to 
surface area (or almost exactly so; Williams et al. 2005a). 
When xi(h) is the width of the log perpendicular to the log 
axis and parallel to the horizontal plane, PDS samples with 
probability exactly proportional to horizontal ground surface 
coverage. 

We emphasize that in the original development of PDS, 
few actual log measurements were needed because it was 
only necessary to determine whether a log was close enough 
to the sample point to be tallied. In practice, the ability of 
experienced foresters to estimate diameters and distances 
coupled with a simple chart allows rapid and accurate deter- 
mination of the inclusion or exclusion of most logs without 
direct measurement. Measurement is only needed when a 
log is "borderline." The situation is directly analogous to 
horizontal point sampling when basal area is the variable of 
interest (although a chart is used in PDS rather than a phys- 
ical gauge of some sort). The result is an extremely rapid 
field t echn iq~e .~  

PDS (and PPS sampling in general) provides a "size fac- 
tor" because the inclusion zone area is proportional to size, 
so that size cancels out in the standard Horvitz-Thompson 

estimator (Horvitz and Thompson 1952) when size is also 
in the numerator. However, when other variables are in- 
serted in the numerator, size does not necessarily cancel 
out. To use the Horvitz-Thompson estimator for other varia- 
bles, we would have to measure the size of downed logs ac- 
curately, where size might be volume, surface area, or 
ground surface coverage. This task can be difficult, if not 
impossible, for real logs in the field. We need another ap- 
proach. 

General design-unbiased estimator 

As an alternative to the Horvitz-Thompson estimator 
(Horvitz and Thompson 1952) we consider an estimator mo- 
tivated by the connection between PDS and importance sam- 
pling (Gregoire et al. 1987). PDS is a direct physical 
implementation of importance sampling via von Neumann's 
(1951) acceptance-rejection method, in which A is the re- 
gion within which an initial uniform random deviate is gen- 
erated. For the purpose of considering the ith log in the 
population, let us assign this uniform random deviate Carte- 
sian coordinates that depend on the position and orientation 
of the log. The first Cartesian coordinate is h, and the sec- 
ond is Dl. Let the origin [0,0] be at the basal end of the log 
axis, and let the distal end fall at [H,, 01. The deviate is re- 
jected if it falls outside ai, the shape of which is governed 
by the value along the h-axis of x,(h). If h c 0 or h > H, 
then the deviate will certainly be rejected because the log 
does not extend into this region (i.e., xi(h) = 0). But, if 0 5 
h I Hi then the coordinate I), comes into play. The deviate 
will be accepted if and only if -hi(h) I Dl I kxl(h) and re- 
jected otherwise. In other words, 2kx,(h) is an auxiliary 
function for an importance sample of h from the ith log. 

This connection between PDS and importance sampling 
motivates an alternative estimator. which we develop here 
as a conjecture and then prove below. Let Y = x:lyi 

where yi = J: xi(h)dh be an attribute of a population of N 
logs in A. We sample using PDS with DL = 2kxi(h), which 
provides a straightforward estimate of Y or of YIIAI, as 
shown above. But suppose we are interested in some other 
quantity Z = x:,zi where zi = ~:f;(h)dh. We will show 
that a general design-unbiased estimator of 2 1  141 is 

where 6, = 1 if log i is sampled and 6; = 0 otherwise, as be- 
fore. 

Two equally valid proofs of the design-unbiasedness of 
the estimator in eq. 3 are available. Here, we take up the 
proof from a conventional probability sampling perspective. 
A proof based on a Monte Carlo approach, which is less fa- 
miliar in forestry literature, is presented in Appendix A. 

To prove that eq. 3 is design-unbiased, we first consider 
the distribution of h given that a log has been sampled. Con- 
sider inclusion zones such as those in Fig. 2. If the sample 
point is located uniformly at random within the inclusion 
zone then h is not selected uniformly at random on the inter- 
val 0 I h I Hi, but has an unequal probability distribution. 
The cumulative distribution function is 
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2k ,h' xi(h)dh 
P(h < h') = 

2k xi (h)dh 
[41 

- - 
2k S,h' xi(h)dh 

Differentiating with respect to h', we obtain the probability 
density function 

The next step in the proof is to calculate the expected 
value of the joint random variable ri = SA(h)lxi(h). Now, 
with probability (1 -ri). ri = 0. SO we may write 

Now, conditional on the event that the ith log is sampled, 
h is sampled with probability proportional to xi(h) (eq. 5). 
So we may rewrite eq. 6 as 

Note that if the ith log is sampled then ri = J(h)lxi(h). So 
we may further simplify 

But, accounting for units, 

so that 

Substituting eq. 8 into eq. 3, we obtain 

which proves the design-unbiasedness of the estimator in 
eq. 3. 

Sampling with probability proportional to 
volume 

It may not be intuitively obvious that the general estimator 
in eq. 3 leads to field procedures and specific estimators 
that are simple and practical. To arrive at such procedures 
and estimators, let us first consider the case in which PDS 
is used with probability proportional to volume, so that 
xi(h) = x,,;(h) is the cross-sectional area of the log taken 
perpendicular to the horizontal projection of the log axis 
(Williams and Gove 2003; Williams et al. 2005b). We 
will consider several candidate variables (Z or zi) in turn. 
For simplicity in presenting the estimators, we will use the 
"volume factor" of the sample. F,. = 10000/2k, which has 
units m31ha. 

Logs per hectare 

Z = N when estimating logs per hectare, so zi = 1. A sim- 
ple approach uses j(h) = 1 I Hi, since 47 l /H i  dh = I .  The 
summand in the estimator, J(h)lxi(h), is simply 
1 I [,u,,i(h)Hi]. So the estimator for logs per hectare is 

Note that for convenience, we have dropped the bi term, 
so the summation is only over the logs that are actually tal- 
lied at the sample point. The log length (m) and the log 
cross-sectional area at the perpendicular point (m2) are the 
required measurements for design-unbiased estimation of 
logs per hectare. 

Length (m) per hectare 

L = c:,H, is naturally estimated by line intersect sam- 
pling (cf. Brown 1974; de Vries 1986) as a constant times 
the number of log intersections. In our context, zi = Hi and 
J(h) = 1, since J: dh = Hi. The summand in the estimator 
J(h) lxi(h) is 1 l~ , ,~(h) .  So the estimator for length of logs 
per hectare is 

The log cross-sectional area at the perpendicular point 
(m2) is the only required measurement for design-unbiased 
estimation of log length per hectare. 
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Surface area (m2) per hectare 
Up to a correction factor for taper that is negligible in 

practice and ignoring the log ends. the surface area, s , ~ ,  of 
a log is r,,, = J: c,(h)dh. where ci(h) is the circumference 
of the log or the relevant portion of the circumference (Wil- 
liams et al. 2005a). For example, if the surface area not in 
contact with the ground is of interest then the relevant por- 
tion of the circumference is that part not in contact with the 
ground. Here, A(h) = c,(h), with ci(lz) measured in metres, 
and the summand in the estimator J;:(h)lx,(h) is c,(h) lxu,,(h). 
So the estimator for surface area of logs per hectare is 

The best method of measuring the ratio ~~(h) lx , ,~ (h )  will de- 
pend on the application. However, one special case deserves 
further mention: if the log is approximated by a circular 
cross-section 

ci(h) - ndi (h)/100 
m -  d 4 0  OOOdi (h) 

- - 
400 

di (h) 

where di(h) is the log diameter at the perpendicular point 
(cm). 

Ground coverage (m2) per hectare 
The ground coverage, gi, of a log (projected onto the sur- 

face) is gi = J? wi(h)/lOOdh, where wi(h) is the ground- 
width of the log (cm) measured perpendicular to the log 
axis and parallel to the horizontal plane. Here, J(h) = 
wi(h) 1 100 and the summand in the estimator j(h) l xi(h) is 
wi(h)/ 1 0 0 ~ ~ , ~ ( h ) .  So the estimator for ground coverage of 
logs per hectare is 

Again, the best method of measuring the ratio 
[wi(h) l1001 l [.~,.~(h)] will depend on the application and 
may even depend on the characteristics of the log. If the 
log is well-approximated by an elliptical cross-section 

wi (h)/ 100 - - 
wi (h)/ 100 

xa,i(h) d 4 0  OOOwi (h)d,,, j (h) 

where d,,,i(h) is the log "diameter" measured in the "vertical 
direction" (cm). If the log is approximately circular, then 
w,(h) z d,,i(iz) di(h), so 

wi(h) - 400 -_- 
xu, i ( h ) rdi (11) 

Finally, for highly irregular logs, note that the fraction 
[wi(h)l 1001 / [xaJi(h)] is just the reciprocal of the mean depth 
of the log (m), measured along wi(h). For heavily decayed 

logs. this measurement can be obtained by systematic or 
random sampling across the log, using a sharpened metal 
rod as a probe. 

Log biomass (kg) per hectare 
The biomass, b ,  of a log is hi = f' ~~(h)x ,~ (h )dh ,  where 

pi(h) is the mean dry density (kg/m3) of an infinitesimal 
"cookie" perpendicular to the log axis at h. For practical 
purposes, the fraction bf;(h) lxi(h)] = pi(h) will be well- 
approximated by the dry mass to volume ratio (kg/m3) of 
a reasonably finitely thin sample cookie cut at h. The cor- 
responding estimator is 

If such a cookie is too large for transportation or drying, 
estimation of the dry mass to volume ratio can be easily 
turned into a straightforward subsampling problem. For 
example, plugs might be centered on points on the cookie 
surface using simple random, systematic, or stratified 
sampling and removed with a tenon cutter for later analysis 
(including volume and dry mass determination) in the 
laboratory. The appropriate estimator for obtaining pi(h) 
from the plug samples would depend on the specific 
sampling approach used. 

Sampling with probability proportional to 
ground coverage 

Sampling with probability proportional to surface area 
(Williams et al. 200%) or ground coverage changes the var- 
iable in the denominator of the estimator. In this section, we 
will present the estimators associated with a range of varia- 
bles when ground coverage is the "size" of the log. Com- 
parison of the estimators in this section with those in the 
previous section should amply illustrate the procedure for 
constructing estimators when other variables (e.g.. surface 
area) are used as log size. 

Sampling with probability proportional to ground cover- 
age is of special interest in practical sampling. The only vari- 
able needed to check whether "borderline" logs are 
included in the sample is the horizontal "diameter," wi(h), 
which can almost always be measured simply and exactly 
using calipers. Furthermore, sampling with probability pro- 
portional to surface area (DL x wi(h)) avoids the problem 
of "runaway" limiting distances that can occur in sampling 
with probability proportional to volume (DL x x,,,(h) x 
d m 2 > .  

As in the previous section, we simplify the presentation of 
the estimators by using the "ground coverage factor. " 
FG = 10 000 / 2k. which has units m2/ha. 

Logs per hectare 
As before, Z = N when estimating logs per hectare, so zi = 

1 and j (h)  = 1 /Hi. The summand in the estimator, 
f,(h)lxi(h), is now 1001 [wi(h)Hi] where the 100 in the 
numerator converts wi(h) from centimetres to metres. So the 
estimator for logs per hectare is 
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The log length (m) and the log ground-width at the 
perpendicular point (cm), which are both reasonably easy to 
measure accurately, are the required measurements for 
design-unbiased estimation of logs per hectare. 

Length (m) per hectare 

Once again, zi = Hi and f;(h) = 1 since J: dh = H,.  The 
summand in the estimator, accounting for units, is 
[fi(h) lxi(h)] = [ 1 00 1 wi(lz)]. So the estimator for length of 
logs per hectare is 

Only the ground-width is needed for design-unbiased esti- 
mation of log length per hectare. 

Surface area (m2) per hectare 
Surface area is sa,i ci(h)dh, where ci(h) is the rele- 

vant portion of the circumference of the log (m). Now the 
summand in the estimator, accounting for wi(h) in centi- 
metres, is If,(lz) lxi(h)] = [lOOci(h) 1 wi(h)], so the estimator 
for surface area of logs per hectare is 

s 1 OOci (h) 
-= F.C- 
I AI i wi (h) 

Again, the best method of measuring the ratio 
[c;(h)] I [wi(h)] will depend on the application. But if the log 
is approximated by a circular cross-section, so that di(h) = 
wi(h), then {[ci(h)l l [wi(h)l } = { [rwi(h) 11001 I [wi(h)] ) = 
n 1 100, and the estimator becomes 

where n is the number of logs tallied. 

Volume (m3) per hectare 
The volume, V;, of a log is, as before, Vi = J: x,,i(h)dh. 

Now, A(h) = ~ , , ~ ( h )  and the summand in the estimator, 
L(h) lxi(h), is 10O[~,,~(h) 1 wi(h)]. So the estimator for volume 
of logs per hectare is 

Again, the best method of measuring the ratio ~ , ,~ (h ) lw~(h)  
will depend on the application and may depend on the char- 
acteristics of the log. If the log is well-approximated by an 
elliptical cross-section, with one axis oriented vertically and 
the other horizontally, then 

If the log is approximately circular, such that wi(h) z 
d,,,i(h) z di(lz), then 

1 OOxaTi (h) - 7TWi (h) 
- 

wi (h) 400 

Finally, for highly irregular logs, note that the fraction 
~ , , ~ ( h ) l  [wi(h)/ 1001 is just the mean depth of the log (m), 
measured along wi(h). As suggested before, for heavily de- 
cayed logs, this measurement can be obtained by systematic 
or random sampling using a sharpened metal rod as a probe. 

Log biomass (kg) per hectare 
The biomass, b,, of a log is bi = J: p,(l~).r,,~(h)dh, where 

p,(h) is the mean dry density (kg/m3) of an infinitesimal 
cookie perpendicular to the log axis at h. The fraction 
V;(h) lx,(ti)] = { [p,(h)xaJi(h)] 1 [wi(h) 11001 } can still be well- 
approximated by measurements on a finitely thin sample 
cookie cut at h, though now not only the density, but also 
the dimensions of the cookie are needed. The value of wi(h) 
can be measured in the field or on the cookie in the lab if 
the orientation of the cookie is marked in the field. The 
cross-section ~ , , ~ ( h )  can be measured accurately using a 
planimeter or by scanning. As before, if such a cookie is 
too large for transportation or drying, estimation of the dry 
mass to volume ratio can be easily turned into a straightfor- 
ward subsampling problem. The same is true of x,,;(h), for 
which design-unbiased procedures and accompanying esti- 
mators are presented by Gregoire and Valentine (1995). 

Practical issues 
The estimators above are for single sample points. In 

practice, of course, one would ordinarily distribute a number 
of sample points in the tract A. If m sample points are dis- 
tributed uniformly in A by simple random or systematic 
sampling, then the sample mean of the m estimates is a de- 
sign-unbiased estimate of the population mean. If the points 
are distributed by simple random sampling then the sample 
variance, s2, is a design-unbiased estimate of the variance 
of the possible sample points and the squared standard error 
s2/m is a design-unbiased estimate of the variance of the 
sample mean. These familiar results can be derived in 
straightforward fashion from either finite-population 
Horvitz-Thompson theory (Horvitz and Thompson 1952) or 
from an infinite-population Monte Carlo approach (Eriksson 
1995; Valentine et al. 2001 ; Williams 2001). 

In the field, it is common to encounter logs that are 
sloped (either because they are elevated above the terrain or 
because the terrain itself is sloping). Forked and crooked 
logs also occur. We emphasize that the principles and esti- 
mators developed above remain valid in all these situations, 
but one must be mindful of the geometry of measurement in 
PDS. In PDS, the log axis is always in the horizontal plane 
and connects the projections of the two ends of the log onto 
that plane by a straight line. For forked logs, one of the 
forks (typically the one with apex farthest from the basal 
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end of the log) establishes one end. Hi is always measured 
along this axis and will not equal the physical length of the 
log when the log is sloping or crooked. All other measure- 
ments (such as h, ~, ,~(h) ,  ci(h), and wi(h)) are taken perpen- 
dicular to this log axis. For sloping logs, this means these 
measurements remain in a vertical plane and will not be per- 
pendicular to the "physical" axis of the log. For example. 
cookies to be cut for biomass estimation must be cut in a 
strictly vertical direction and may slice "on the bias" across 
the pith of the log. For forked logs, measurements are accu- 
mulated among branches in the vertical plane defined by the 
line of sight perpendicular to the log. For example, wi(h) 
might have to be measured as the sum of the ground-width 
of several forks or branches. Although the estimators pre- 
sented here are more general, the principles outlined in Wil- 
liams et al. (2005b) still apply. 

Some variables (especially xu,,(lz) and p,(h)) may be 
inherently difficult to measure accurately in the field. The 
impact of this inaccuracy depends on whether these 
variables appear in the numerator or the denominator of the 
estimator. If a variable appears only in the numerator and it 
can be approximated using a design-unbiased sampling 
method (as is true for ~ , ,~ (h )  using cookies; Gregoire and 
Valentine 1995), there will be an increase in variance but 
no bias. Where such a variable is in the denominator and a 
design-unbiased estimator is not available or a geometric 
approximation (e.g., the assumption of an elliptical cross- 
section) is used, some bias will be present. It may still be 
possible to correct this bias using an appropriate second- 
order sampling approach, but bias correction is often 
counter-productive, owing to the resulting increase in 
variance (Efron and Tibshirani 1993). We must emphasize 
that this is a limitation of all known sampling methods for 
CWM, including fixed-area plots and line intersect 
sampling. What PDS does avoid with certainty is any bias 
associated with the assumption of particular taper rates (of 
diameter, area, volume, or density) along the stem (e.g., 
Bebber and Thomas 2003). 

Finally, we must point out that while the estimators given 
here are design-unbiased, that does not necessarily mean 
they will have small variance. For example, the sampling 
variance for logs per hectare, when using PDS with 
probability proportional to volume, will almost certainly be 
very large. (The presence not only of Hi. which may vary 
considerably from log to log, but also of the random 
variable ~,,,~(h), in the denominator of the estimator means 
these estimates will almost certainly have high variability.) 
The situation is analogous to that of horizontal point 
sampling for standing trees; the variance of HPS for basal 
area is nearly optimal, but the variance for trees per hectare 
can be atrocious. The solution suggested by Williams et al. 
(2005n), using PDS to estimate "difficult" variables such as 
volume or surface area and using a simple count of logs on 
a small. fixed-area plot to estimate number of logs per 
hectare, may remain advantageous even when PDS-based 
design-unbiased estimators for logs per hectare are available. 
What PDS offers is the ability to sample with probability 
proportional (or very nearly proportional) to the variable 
that is of most interest to a particular investigation; that 
advantage need not be sacrificed simply because more than 
one variable is of interest. 

Conclusions 
Previous development of PDS had only allowed for esti- 

mating one variable at a time. By focusing on the deep con- 
nection between PDS and importance sampling, a general 
design-unbiased estimator can be developed. The resulting 
protocols allow simultaneous estimation of multiple CWD 
variables. In addition to the count of tallied logs, these pro- 
tocols require only fairly simple and familiar measurements 
(such as the length of tallied logs or one or more diameter 
measurements taken at the "perpendicular point" on each 
tallied log). These results should facilitate the extension of 
PDS from relatively simple inventories in which only a sin- 
gle variable (such as volume per hectare) is important to 
more general inventory contexts in which many variables 
may be of interest. 
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Appendix A 
The design-unbiasedness of the general estimator (eq. 3) 

can be shown quite simply from a Monte Carlo integration 
perspective (Valentine et al. 2001; Williams 2001). In this 
approach, we consider that the attribute of interest for the 
ith log, zi, is spread out over the two-dimensional inclusion 
zone, ai, of the log. Any attribute that can be expressed as a 
Lebesgue integral can be zi 

r 

where Hi is the axis of the ith log and J(h)dh is the amount 
of the attribute located in an infinitesimally thin "cookie7' 
of width dh centered at point h on that axis. H,, fi(h), zi, 
and a, are considered fixed for all logs in the population, 
which is located within a defined tract, A, that has area IAl 
(ha). 

Denote the sliver of ai, having vanishingly small width 
AH and crossing perpendicularly at h on Hi, as ai(h). The 
length of this sliver perpendicular to the axis is 2kxi(h), as 
described by the protocol for perpendicular distance sam- 
pling (PDS). We spread the attribute zi within ai, such that 
the attribute density within ai(h) is 

- f ,  ( h )  - -  
2kxi (h) 

at any and all points in ai(h). For all points outside ai, pi(h) 
is defined as zero. Note that the attribute density pi(h) is not 
to be confused with physical density. 

Now, suppose we select a sample point s E A, with prob- 
ability density p(s). Denote Izi(s) as the value of h for the ith 
log when the sample point is s. (When no perpendicular 
point exists, the definition of hi(s) is irrelevant.) Then, an 

unbiased estimator of Z = CLl zi is 
pi [hi (s)I 2= C - 

i : s ~ u ,  [h, b)] P(S) 

If s is selected uniformly at random within A then p(s) = 
1 / IAl and 

Note that in the above expression, iAl and lail are assumed 
to be expressed in the same units. If that were not the case 
(e.g., IAl is in hectares and lail is in square metres), an ap- 
propriate unit conversion would be needed. The correspond- 
ing estimator of Z per unit area is 

In the special case in which z; = JHlxi(h)dh, for example 
when zi is volume and xi(h) is cross-sectional area, 

where n(s) is the number of logs tallied from point s. This is 
the estimator developed by Williams and Gove (2003). 

The proof of design-unbiasedness is straightforward. By 
our Monte Carlo design 

pi(s) = { [hi ( s )  s t ai ; 
s 4 ai 

Hence, 

Zi = .I pi (s) ds 
SEU, 

= / pi (s)dr 
s€A 

Therefore, taking p(s) = 1 / IAl and assuming no slopover 

- - pi (s) ds 
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