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Researchers quantifying the effects of these additional sour
ces of error in forestry applications have generally focused
on point-in-time estimation (Gertner 1990; Gertner and
Kohl 1992; Gal and Bella 1995) or the propagation of error
over time using a growth projection system (Gertner and
Dzialowy 1984; Mowrer 1991; McRoberts et a1. 1994; Gert
ner et a1. 1995).

Most of this research has been based on a known "true"
value and measured deviations from this value; thus, the
term measurement error. In nearly every case, these known
values are assumed so a basis for comparison can be
formed. In contrast, McRoberts et a1. (1994) analyzed differ
ences among field crews measuring the same trees without
making assumptions regarding deviations from a true value.
As Lischke (2001) noted, differences in values that arise
from the same repeated measurement protocol are indicative
of uncertainty, not error. In this context, the term "meas
urement variability" is appropriate as it describes differen
ces between measurements of the same attribute.

In this paper, an approach similar to that of Canavan and
Hann (2004) is taken to describe the distribution of measure
ment variability of several tree-level attributes that affect net
volume growth estimation. Measurement variability is simu
lated by applying measurement variability distributions to
forested sample plots measured at two points in time and
evaluating the resulting effects on error of estimates of total
volume change. The purpose of this research is to evaluate
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Abstract: Using quality assurance data, measurement variability distributions were developed for attributes that affect tree
volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured
sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simu
lation study for various components of volume change. In comparison with sampling error, the error due to measurement
variation was relatively small. When biases in measurements had contradictory effects on the calculation of individual tree
volume, there was little additional error, however, systematic biases produced substantial error increases. The proportion
of measurement variation error attributable.to diameter at breast height and tree species classification was small relative to
that attributable to bole (merchantable) height and percent cull attributes, which composed the preponderance of uncer
tainty due to measurement variation. The greatest impacts were associated with the accretion component, which was sub
ject to measurement variation and bias at both the initial and subsequent measurements.

Resume: Des donnees d'assurance de qualite ont ete utilisees pour developper les distributions d'erreurs de mesure des
variables servant apredire le volume des arbres. Des valeurs d'erreur extraites aleatoirement de ces distributions ont ete
appliquees a 19 381 arbres faisant l'objet de mesurages repetes dans l'etat du Maine. L'erreur additionnelle causee par
l'effet combine de l'erreur et du biais des mesures a ete estimee en simulant les diverses composantes de la variation du
volume. Par rapport a l'erreur d'echantillonnage, I'erreur de mesure est relativement faible. L'erreur additionnelle est fai
ble lorsque le biais des mesures a des effets opposes sur le calcul du volume d'un arbre. Cependant, l'erreur augmente de
facon importante lorsque Ie biais est systematique. La proportion de la variation de I'erreur de mesure attribuee ala classi
fication du diametre ahauteur de poitrine et de I'espece d'arbre est faible relativement aux mesures de la hauteur march
ande de la tige et du pourcentage de defauts qui constituent la principale source d'incertitude acause des erreurs de
mesure. Les erreurs les plus grandes sont associees ala composante d'accroissement qui est sujette al'effet combine de
l' erreur et du biais des mesures lors du mesurage initial et des mesurages subsequents.

[Traduit par la Redaction]

Introduction

The primary purpose of a forest inventory is to evaluate
the current status of forest resources, though there is increas
ing emphasis on analyzing resource trends over time. Identi
fying trends allows .the effects of current practices on
attaining a desired goal (e.g., sustainability) to be evaluated.
Owing to the sample-based nature of most forest inventories,
determining a significant trend in resource conditions de
pends on the uncertainty associated with the estimated val
ues and the desired level of confidence in the inference.

In most analyses that include sample-based estimates, the
only measure of uncertainty accounted for is the sampling
error that arises from lack of complete enumeration. Other
sources of error have been recognized, such as measurement
error, regression error, and classification error (Cunia 1965).
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Table 1. Summary of differences between two independent measurements for
diameter at breast height (dbh), bole height, and percent cull from 1838 trees in
Maine, New Hampshire, Pennsylvania, and Ohio.

n Min. Mean Max. SD Median IQR

dbh (ern) 1838 -5.3 -0.02 8.6 0.4 0.0 0.0
Bole height (m) 1220 -7.3 0.29 9.1 1.9 0.3 2.4
Percent cull (%) 1226 -99 -0.09 99 13 0 3

Note: SD, standard deviation; IQR, interquartile range.

Dbh
The initial step is to determine whether the distributions

differ by tree size; the data were grouped into 2.54 em dbh
classes (Dj ) for trees :::;;38.1 em dbh; 5.08 em D, for trees
38.2-50.8 em dbh; and a single D, for trees >50.8 em. Each
class had at least 18 observations. The data were tested to
see if the distributions for the dbh classes could be modeled
using normal distributions. Results of the Shapiro-Wilk test.

© 2007 NRC Canada

Measurement variation distributions
Most analyses of this type make the assumption that

measurement errors follow a normal distribution with a zero
mean for unbiased errors and a nonzero mean when a bias is
present (Kangas 1996, 1998; Haara 2003). Canavan and
Hann (2004) outlined the problems encountered when as
suming a normal distribution. They proposed a method for
deriving two-stage error distributions that more closely rep
resent the observed data. A cumulative distribution function
(CDF) is constructed for the measurement variability using a
point mass at zero and separately fitting functions to nega
tive and positive portions of the empirical CDF of the me.as
urement variation. We illustrate the process by developing
the CDF for the measurement variability of dbh. The CDFs
for the measurement variability of bole height and percent
cull are simply stated.

chosen because both measurements were taken on the four
point cluster plot configuration (Bechtold and Scott 2005) in
a spatially distributed sampling design (Reams et al. 2005).
The plots were initially measured in 1999 and remeasured in
2004. Each of the 682 plots encompasses a land area of ap
proximately 1/6 acre (1 acre = 0.4046856 ha). To simplify
estimation, only the 611 plots that were fully forested at the
time of both measurements were retained. Trees with dbh
~12.7 em (5.0 in.) at either measurement were used for anal
ysis (19 381 trees). Trees were assigned to growth compo
nents based on observed history. The volume of live trees
with dbh <12.7 em at initial inventory (T1) but with dbh
~12.7 em at remeasurement (T2) were described as I. A was
determined for trees that were measured, alive, and had a
dbh of at least 12.7 em at the time of both measurements.
Removal (R) volumes were trees with dbh of at least
12.7 cm at Tl but harvested prior to T2. Volume loss due to
M was determined from trees with dbh of at least 12.7 em
that were alive at TI and dead at T2. Rand M volumes
were based on tree characteristics at Tl. Net change (N) was
defined as N = I + A - R - M. Individual tree volumes were
calculated from dbh and bole height using the equations
from Scott (1981). These estimates of gross volume were
converted to net volume using the observed percent cull val
ues. The attributes of these data are given in Table 2.

Data
The two data sets analyzed are from sample plots meas

ured by the northeastern unit of the USDA Forest Service's
Forest inventory and analysis program (NE-FIA) under the
annual inventory system (McRoberts 2005). One data set
was used to estimate the distribution of the measurement
variation. The other data set was taken from the usual cyclic
remeasurement of inventory sample plots. Since annual data
have only been collected for a short time, the area where re
measurement data are available is much smaller than the re
gion where data are available for estimating the distribution
of the measurement variation.

The data used to develop the distributions of measurement
variation originate from Maine, New Hampshire, Pennsylva
nia, and Ohio. In these states, blind check data were available
as part of a comprehensive quality assurance (QA) program
implemented by NE-FIA (USDA Forest Service 2004). A
blind check is an independent remeasurement of a sample plot
that occurs within 2 weeks after the normal inventory meas
urement. The data available provided measurement variability
information for 1838 trees. These QA data are not measure
ment error data, as no assumptions are made regarding a
"true" value for a given measurement. The differences between
the two independent measurements can be attributed to meas
urement error, disparity in perception, inconsistent instrument
calibration, mistakes reading an instrument, faulty data record
ing, and (or) other factors. For this study, the variables of inter
est are diameter at breast height (dbh), bole height (a
merchantable height associated with 10.2 em (4 in.) top diam
eter), percent cull (a measure of the percentage of cull be
low bole height; USDA Forest Service 2004), and species
identification. The following techniques were used to meas
ure the attributes: (i) dbh, diameter tape; (ii) bole height,
ocular estimate, clinometer, or laser device; (iii) percent
cull, ocular estimate; and (iv) species, visual inspection.
The measurement variation was calculated by subtracting
the value recorded by the field crew from that recorded
by the QA crew. These data are summarized in Table 1.

To evaluate the effects of measurement variation, sample
plots that had been remeasured as part of the regular NE
FIA inventory cycle in Maine were used. These plots were

the effects of measurement variation on estimates of error for
components of growth: ingrowth (1), accretion (A), removals
(R), and mortality (M). If the distribution of measurement
variation is the same at two points in time, no bias is incurred,
as both samples are affected similarly (Zschokke and Ltidin
2001). Bias would be present if the distribution means differed
between the two points in time. The effects of both unbiased
and biased measurement variation are considered.
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Table 2. Summary of data from 19381 trees in Maine at initial measurement (T1) and subse
quent remeasurement (T2).

Min. Mean. Max. SD

TI T2 Tl T2 TI T2 TI T2

dbh (em) 7.6 12.7 20.9 21.1 85.6 85.9 8.1 8.2
Bole height (m) 1.2 1.2 8.8 9.2 29.9 29.9 4.0 3.9
Percent cull (%) 0 0 8 6 99 99 17 15
Remeasurement period (years) 3 3 4.4 4.4 5 5 0.5 0.5

8;; :::; -0.254
8;; > -0.254

[4]
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forming size classes and inspecting both the probabilities of
negative, positive, and zero measurement variations and the
COPs for the negative and positive measurement variations
by size class. Regardless of whether there is a dependency
on size class, the next step is to fit a distribution to the
data. At this stage, the goodness-of-fit of the normal distri
bution is usually tested. Owing to the usual propensity of

variations is constructed by fitting a continuous function to
the data in the domain (-00, -0.254). A modeled COF for
8;; is given by

where !3o and /3\ are estimated from the data and given in
Table 4. Other equations could have been used here and
for subsequent analyses; the forms chosen were based on a
good fit to the data (R2 ~ 0.95-0.99).

For the positive measurement variations, 8-:;, a modeled
CDP is given by

[5] Is; (8-:;)

{
0 8; < 0.254

= Pr(~-:;::; 8;) = [1 - exp(!308;)]/JI 8-:; ~ 0.254

where !3o and !3\ are given in Table 4. One might expect
that the COP would also be a function of tree size. For sev
eral different model formulations, D, were nonsignificant
predictors. We surmise the large proportion of measurement
variations having values of 0.254 across all D, resulted in no
statistically significant variation due to tree size.

This approach differs from that of Canavan and Hann
(2004) in that they first fitted an exponential function to the
positive measurement variations and then adjusted the mod
eled COF by Pr(8; = 0.254). In our approach, a function
was fitted to the positive data with f/::;.:;(8;) = 0.254 as an
estimate of Pr(8; = 0.254). The limitation is that f /::;.J (00 )
may not be equal to 1.

The next step is to construct a CDF for the measurement
variability, Dc!> using the probabilities of the three types of
measurement variability, that is, Pr(8;;), Pr(8~), and Pr(8;).

8d ::; -0.254
-0.254 < 8el < 0
o< 8d < 0.254
s, ~ 0.254

[6]

where D, is lower left-hand endpoint of the diameter class.
The estimated parameters !3j and goodness-of-fit statistics
are given in Table 3. After the model was fitted, D, was re
placed with the continuous variable D, dbh.

The second stage is to model the CDFs for negative and
positive measurement variations. Since dbh is reported to
the nearest 0.254 em, the COP for the negative measurement

[3]

[2]

[1 ]

(Shapiro and Wilk 1965) by D, rejected (ex = 0.20) the nor
mality hypothesis for all classes.

Using the notation of Canavan and Hann (2004), the
negative-, zero-, and positive-valued measurement variations
for dbh are denoted by 8;;, 8~, and 8-:;, respectively. The
first stage is to estimate the probability density functions,
Pr(8;;), Pr(8~), and Pr(8-:;), with the first step being to de
termine whether Pr(8;;), Pr(8J), and Pr(8-:;) are functions
of dbh. Canavan and Hann (2004) found that measurement
error increased with dbh. Our data indicated that measure
ment variation distributions for dbh were also dependent on
tree size; for example, a larger proportion of smaller trees
had zero measurement difference. The Pr(8;;), Pr(~), and
Pr(8-:;) were estimated using multinomial logistic regression:

We remind the reader that the above distribution is a
function of dbh, that is, the probability point masses are
functions of D, while the COFs are constants with respect
to dbh.

There are two main steps of the process. The first step is
to determine whether the distribution of measurement varia
tion is a function of the size class variable. This is done by
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1<8+<00- c -

-00 < 8- <-1- c -

Pr(~; ::; 8;)

= [I -exp (I:'~I)r'
[10]

[9]

Note that eqs. 5, 8, and 10 are of identical form, as this
specification worked well to describe the Pr(8+). However,
no form was found to work consistently well for Pr(8-), in
dicating a single model form is inadequate for describing 8
across all measured variables. It is assumed that measure
ment variation is not correlated among the attributes of in
terest.

The modeled two-stage CDFs for each attribute are shown
in Fig. 1.

Estimated parameters and goodness-of-fit statistics for
eqs. 7 and 8 are presented in Table 4.

Classification variation
Classification variation occurs when items are labeled or

grouped. The form of classification variation of interest
here is tree species identification. NE-FIA uses 18 species
groups for volume calculation, whereby each species group
is associated with a specific set of volume equation coeffi
cients (Scott 1981). If a difference in species identification
results in the same coefficients, that is, different species are
in the same species group, the individual-tree volume esti-

[8]
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and the cumulative probability for the measurement varia
bility of the positive measurement variations, 8:, is charac
terized by

Percent cull
Initial analyses, based on the diameter classes used for

dbh, indicated that the distributions of measurement variation
for percent cull were dependent on dbh. The probabilities for
percent cull, Pr(8;), Pr(~\ and Pr(o:) were modeled using
eqs. 1-3, with the parameter estimates and goodness-of-fit
statistics given in Table 3. The measurement variation ob
served for percent cull had a higher percentage of zero values
than might be expected, given that it is a continuous variable.
The reason for this is some trees have no cull (0%) or are
entirely cull (100%). When the QA and production crews
agree on either condition, percent cull values are identical.
The cumulative probability for measurement variability of
the negative measurement variations, 8;, is described by

SD

0.0051
0.0058
0.0471
0.0555
0.0599
0.1101

-00 < s; ::; -0.3

Absolute residual

Mean

0.0089
0.0079
0.0591
0.0742
0.0708
0.1237

0.99
0.99
0.98
0.98
0.97
0.95

(31

-2.6154
0.2505

36.9429
0.0824
0.0508
0.0695

Parameter (30 SE (30 (31 SE e. (32 SE ,82 s, SE/h

bd 2.0862 0.1480 -0.0389 0.0055 0.9752 0.1480 -0.0361 0.0067

Db -0.4722 0.3403 -0.1069 0.0247 0.4488 0.1818 -0.0493 0.0118

oe 2.7616 0.2208 -0.1224 0.0111 -0.7811 0.1950 0.0205 0.0074

Table 3. Estimated parameters for multinomial regression models (eqs. 1-3) used to predict probabil
ities for the measurement variations of dbh (Dd), bole height (Db), and percent cull (ISc).

(30

0.0277
-2.9319
-1.9211
-0.6993
-5.5679
-0.2334

4
5
7
8
9
10

Equation

[7]

and the positive measurement variations, 01+, were described
by )

Table 4. Estimated parameters for models describing cumulative
distribution of negative (8-) and positive (b+) measurement varia
tions for dbh, bole height, and percent cull.

Bole height
The measurement variations for bole height were divided

into size classes based on height. The data were assigned to
1.5 m height classes (Hi) for trees 7.6-24.4 m tall. Trees
with heights <7.6 m and >24.4 m composed the remaining
two classes, respectively. Each class had a minimum of 40
observations. Shapiro-Wilk (1965) tests for normality by
height class showed that 9 of the 13 classes rejected the nor
mality hypothesis (o = 0.20).

The measurement variation distributions for bole height
were observed to be dependent on tree height (R). Pr(od)'
Pr(~), and Pr(o~) were modeled using eqs. 1-3, with the
tree height classes Hi substituted for D; The parameter es
timates and the goodness-of-fit statistics presented in Ta
ble 3 were used.

The CDFs modeled for negative and positive measure
ment variations were also a function of H. The negative
measurement variations, 0b' were described by

zero measurement difference, the two-stage construction
proposed in Canavan and Hann (2004) is a logical choice
for modeling the distIibution. The two-stage CDF depends
on three attributes: (i) the probability distribution of the neg
ative, zero, and positive measurement variations (this distri
bution may be a function of the size class variable), (ii) the
model CDFs for the negative and positive measurement var
iations (these CDFs may be functions of the size class varia
ble), and (iii) the degree of accuracy to which measurements
are recorded; this determines the domains of the CDFs for
the negative and positive measurement variations. For bole
height and percent cull, the three components are described.

2204
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Fig. 1. Modeled measurement variation cumulative distribution
function (CDF) for diameter at breast height (dbh) (a), bole height
(b), and percent cull (c).
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mate would not change. However, differences that result in
classification in a different species group would produce a
different estimate of volume for that tree. We considered
only disagreements that produced nonequivalent volume pre
dictions.

Table 5 shows the species identification disagreements
from these data. Approximately 1.3% of the sample data
showed differences in species determination that would af
fect volume prediction. For softwoods, the differences were
attributed mostly to confusion between fir (Abies spp.) and
spruce tPicea spp.). The greatest difference for hardwoods
was ambiguity between maples (Acer spp.) and other spe
cres,

Simulated measurement variation
Simulated measurement variations were applied independ

ently to observed sample plot data at both TI and T2. For
each tree in the Maine inventory data, measurement varia
tion was applied for species identification, dbh, bole height,
and (or) percent cull, depending on the source(s) of interest.

For dbh, bole height, and (or) percent cull, a value was
chosen from the appropriate estimated measurement varia
tion distribution and added to the observed value. This was
accomplished using the standard technique of generating a
random value from a uniform D(O, I) distribution and using
the inverted form of the CDF to determine the estimated
measurement variation. These estimated values were then
rounded to the degree of accuracy of measurement, that is,
0.254 em, 0.305 m, and I% for dbh, bole height, and per
cent cull, respectively. Because extreme values of the ran
dom variable can produce untenable measurement
deviations, limits of ±10.2 em for dbh and ±12.2 m for bole
height were enforced to maintain measurement variation in
the approximate range of the observed data (Table I).
When this occurred, a new random value was generated un
til the measurement variation was within the specified lim
its. The limits chosen were slightly higher than those in the
sample data, to account for potentially more extreme values
in the parent distribution. The altered values for each attrib
ute were also maintained within the limits prescribed for
NE-FIA data collection, as field crews are permitted to enter
data only within certain numerical ranges. The lower limits
for dbh, bole height, and percent cull were 2.54 em, 1.2 m,
and 0%, respectively. There was no upper limit for dbh, but
limits on bole height and percent cull were 30.2 m and
100%, respectively.

Variability due to tree species identification was applied
randomly (via D(O,I) using the species confusion matrix
and the associated proportions of occurrence as determined
from the QA data (Table 5). For example, if the QA crew
species classification was red spruce and the random number
was between 0 and 0.0058, the species classification was
switched to balsam fir; otherwise, the species classification
remained the same.

The application of measurement variation distributions to
the observed data was replicated 1000 times. For each repli
cation, the modified data were used to calculate net volume
for I, A, M, and R over the remeasurement period. Changes
in volume (.6.Vi) were calculated for each tree, i, on plotj (i =
I, 2, ..., nj), (j = 1, 2, ..., n). These volumes were assigned
to the appropriate change component k (k = 1 (I), k = 2

<D 2007 NRC Canada
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c
s
tl
\
f.

0.58
5.26
3.85
7.41
2.26
0.28
0.28

25.00
25.00

5.56
1.67
5.88
6.25

Percent
disagreement

No. of
trees"

346
]9
78
27

354
354
354

4
4

18
60]

17
16

Frequency"

2
1
3
2
8
1
]

1
1
1
I
1
1

4

[16] MSE(Yk)T = Var(Yk)o + LVar(Ykl)'Pkl
1=1

sources (dbh, bole height, percent cull, and species) of addi
tional variability simultaneously as well as for each individ
ual source. Thus, the variance due to combined sampling
and measurement variation for any desired combination can
be calculated as:

where T is the total error (sampling and measurement varia-

where 'Pkl = 1 if measurement variation from source I is in
cluded for component k and 'Pkl = 0 if measurement varia
tion from source I is not included for component k.

[15]
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Bias
If it is assumed that the measurement variation distribu

tions represent unbiased measurements, bias can be intro
duced into the simulations by shifting the central tendency
from zero. Two types of bias are considered. The first is
bias that occurs when the measurement biases of several
variables have offsetting effects. For this analysis, a situa
tion in which dbh, bole height, and percent cull values had
the same bias trend may produce little bias in the result,
that is, an increase in percent cull measurement offsets the
increase in gross volume due to larger values for dbh and
bole height. The other type of bias occurs when the meas
urement biases have a similar directional effect on net vol
ume. For example, a positive bias for dbh and bole height
combined with negative bias in percent cull would result in
higher estimates of volume. The additional error due to bias
is evaluated using mean squared error (MSE), which is a
measure of overall accuracy: .,

Red spruce
Tamarack
Balsam fir
Pitch pine
Sugar maple
Quaking aspen
Black cherry
American elm
Rock elm
Black cherry
Sweet birch
Black oak
Northern red oak

Species identified
by PC crew

999

n-I

Species identified
by QA crew

"Number of times the species mismatch occurred.
"Number of trees identified as particular species by QA crew.

Balsam fir
Black spruce
Red spruce
White pine
Red maple
Red maple
Red maple
Silver maple
Silver maple
Pin cherry
Black cherry
White oak
Chestnut oak

Table 5. Frequency and percent disagreement for species identification differences be
tween the quality assurance (QA) and regular production (PC) crews that would affect
prediction of individual-tree volumes.

1000 "
L:: (Ykhl - Ykl)2

Var(Y kl) = _'_I-- _

II "

" ~ Yjkh
- J
Ykh=--

n

Il "L:: (Yj ko - Yko)2

Var(Y k)O = -j-----
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[11]

[12]

where A is plot size (acres). A simple random sample of the
plot locations was assumed when using Yjkh to estimate the
population means (Ykh) for each change component at each
iteration

Simulations were completed for application of all four

The generation of random numbers afforded vanation
among replications, thus providing an array of mean values
for each component of change. The variance of these esti
mates represents the additional error attributable to measure
ment variation for each source I (l = I (dbh), I = 2 (bole
height), I =3 (percent cull), I = 4 (species)):

(A), k = 3 (R) , k = 4 (M)). Plot-level totals (Yjkh) for each
component of change were calculated and expanded on a
per-acre basis at each iteration, h, (h = 1, 2, ..., 1000)

~ 6.v.
" i I
Yjkh =--

A

[13]

Simulations were completed for the entire data set as well
as subsets of the data to evaluate the effects of sample size.
Estimates of error due to sampling were obtained by calcu
lating the variance of the estimate from the unaltered meas
urements.

[14]
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Table 6. Elements of variance for estimates of change components at various sample sizes.

Error source

Change
11 component Sampling dbh Bole height Percent cull Species Total No. of trees
50 I 0.12002 0.00005 0.00238 0.00002 0.00000 0.12247 162

A 4.28487 0.00961 0.59054 0.10599 0.00715 4.99816 1183
R 4.63963 0.00025 0.01557 0.00222 0.00024 4.65790 151
M 1.48955 0.00028 0.01397 0.00369 0.00003 1.50751 82
N 10.53408 0.01019 0.62246 0.11191 0.00741 11.28605 1578

100 I 0.06951 0.00003 0.00121 0.00001 0.00000 0.07076 287
A 2.02289 0.00454 0.24323 0.04735 0.00299 2.32099 2235
R 3.49459 0.00012 0.00583 0.00100 0.00013 3.50167 181
M 0.91189 0.00013 0.00629 0.00290 0.00003 0.92124 184
N 6.49887 0.00482 0.25655 0.05127 0.00315 6.81467 2887

200 I 0.03223 0.00001 0.00053 0.00000 0.00000 0.03278 600
A 1.05532 0.00191 0.12028 0.02305 0.00126 1.20182 4784
R 2.29736 0.00008 0.00559 0.00103 0.00003 2.30410 496
M 0.32507 0.00006 0.00323 0.00117 0.00001 0.32953 412
N 3.70998 0.00206 0.12962 0.02525 0.00131 3.86822 6292

300 I 0.06338 0.00001 0.00042 0.00001 0.00000 0.06382 866
A 0.71955 0.00140 0.08591 0.01390 0.00075 0.82151 6973

ji- R 2.43515 0.00007 0.00409 0.00079 0.00002 2.44012 803
d- M 0.31021 0.00005 0.00261 0.00103 0.00001 0.31391 656
19 N 3.52828 0.00153 0.09303 0.01573 0.00078 3.63935 9298
in 400 I 0.03925 0.00001 0.00036 0.00001 0.00000 0.03963 1202

A 0.56759 0.00094 0.05849 0.01080 0.00053 0.63835 9555
R 2.08731 0.00006 0.00298 0.00073 0.00002 2.09110 1019
M 0.22742 0.00004 0.00187 0.00083 0.00002 0.23017 876
N 2.92157 0.00104 0.06370 0.01237 0.00057 2.99924 12652

500 I 0.02744 0.00001 0.00024 0.00000 0.00000 0.02769 14701-
A 0.46461 0.00082 0.04352 0.00858 0.00039 0.51792 120021-
R 1.64319 0.00004 0.00242 0.00055 0.00001 1.64621 1211
M 0.17166 0.00003 0.00140 0.00057 0.00001 0.17367 1103
N 2.30690 0.00090 0.04758 0.00970 0.00041 2.36549 15786

611 I 0.02030 0.00001 0.00020 0.00000 0.00000 0.02051 1797
1- A 0.36834 0.00066 0.03546 0.00693 0.00032 0.41170 14839
1- R 1.40284 0.00004 0.00206 0.00049 0.00001 1.40545 1407
Y M 0.14171 0.00002 0.00125 0.00046 0.00001 0.14344 1338
s N 1.93318 0.00072 0.03897 0.00788 0.00034 1.98110 19381
.1

Note: I, ingrowth; A, accretion; R, removals; M, mortality; N, netchange.

tion error), B(Ykl) is the bias in the estimate of component k the estimate for A increased by 10%-14%. This result is of
from source l, 'ljJkl :::;:; I if measurement bias from source l is particular interest as A is the only component with measure-
included for component k, and 'l/Jkl :::;:; 0 if measurement var- ment variation applied at both measurements (M and R only
iation from source l is not included for component k. at Tl and I only at T2). The variance for N (l + A - R - M)

increased by an average of about 4%.
Bole height was the largest measurement variation error

source for each component. This result is caused primarily
The results of the simulations show that sampling error by the fairly wide distribution of measurement variation and

composes a relatively large portion of the variance for each the sensitivity of the volume prediction equations to changes
component of change (Table 6) when the same measurement in bole height. For all change components except I, percent
variation distributions are applied at both Tl and T2. This is cull was the second largest contributor to measurement var-
consistent with other studies on magnitude of various sour- iation error. Variation in percent cull values could result in
ces of nonsampling error (Gertner 1990; Gertner and Kohl large differences in the net volumes of individual trees and
1992) for estimates of current values. The additional error Yjkh• The low level of variation in dbh measurements re-
due to measurement variation decreased proportionally with suIted in little additional error (roughly 1.7%, on average,
sampling error as the number of plots increased, such that of the total measurement variation error). Variation in dbh
the percent contribution remained essentially unchanged. did produce slightly more error than variation in percent
Variance above sampling error alone increased by 1%-2% cull for I. The contribution of additional error from variabil-
for I, 0.2%-0.4% for R, and about 1% for M. Variance of ity.in tree species identification also was negligible as vol-
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Table 7. Elements of mean squared error (MSE) for offsetting and compounding bias situations at the

T 1 measurement for each component of growth.

© 2007 NRC Canada

val width of ±0.282 using sampling error alone. Including
the additional error due to measurement variation produces
an interval of ±0.302, which is an increase in interval width
of 7.1 %. When the additional error is ignored, the attained
confidence interval coverage is about 93.3%.

The difference in the relative importance of variation in
bole height and percent cull measurements by change com
ponent was an interesting outcome of this study. These re
sults reflect the common characteristics of individual trees
in each change component and the lower limits of the attrib
utes being measured. For I, variation in bole height adds a
much larger component than does variation in percent cull.
Percent cull on I trees tends to be small and the lower limit
is zero. Thus, variation in percent cull has little opportunity
to be smaller and most variation is positive. In contrast, var
iation in bole height for these trees has a much wider range
and thus contributes more to the overall measurement varia
bility. For the M component, the additional error contributed
by percent cull variation is nearly twice as much as that for
trees in the A and R components. Trees in the M component
tend to have higher percent cull values, thus allowing more
variation before the lower limit of zero is encountered. The
relative source contributions for the A component represent
a wide range of tree characteristics and also drive the results
for net growth. Error due to measurement variability for dbh
and species classification varies little by component because
there is little inconsistency in measurement for these attrib-
utes.

Including measurement bias in addition to measurement
variation had different effects on overall accuracy (MSE)
for each change component. When biases had an offsetting
effect on the prediction of individual-tree volume, MSE in
creased only slightly (Table 7). The additional error due to
bias was larger than the error due to measurement variation
for each affected component, but was still a relatively small
portion (near II %) of the total MSE. The offsetting bias re
sults in most additional error OCCUlTing in the A component
which contains a large proportion of the trees from which
data were collected. This offsetting type of bias is the most
subtle as it may not be apparent from the estimates that
measurement bias is occurring and will likely become evi
dent only when there is a notable shift in one or more meas
urement variation distributions.

When measurement biases interact to compound the bias
in a systematic fashion, MSE increases substantially. This is
most apparent for the A component, in. which bias results in
an MSE that is roughly 59 times larger than the variance

Offsetting bias Compounding bias

Change Estimate Sampling Measurement
component (m2/ha) error error Bias MSE Bias MSE

fa 2.54 0.02 0.001 0.000 0.02 0.00 0.02

A 15.41 0.37 0.048 0.760 0.99 4.89 24.28

R 9.83 1.40 0.003 0.164 1.43 -0.37 1.54

M 6.15 0.14 0.002 0.097 0.15 -0.27 0.21

N 1.97 1.93 0.054 0.499 2.24 5.52 32.45

Note: For an explanation of abbreviations see Table 6.
"Not affected by bias at Tl measurement.

ume changes induced by different volume equation coeffi
cients were relatively small compared to those induced by
other sources.

As mentioned previously, the application of identical
measurement variation distributions at two points in time af
fects both samples similarly, such that any bias cancels out.
However, we wanted to evaluate the effects of bias that may
occur as a result of changes in field personnel, measurement
instruments, measurement protocols, etc. Comparison be
tween simulations using all sources of measurement varia
tion and those where only a single source was targeted
indicated that the individual sources were additive. As such,
the effects of bias were only evaluated for measurement var
iation from all four sources (dbh, bole height, percent cull,
and species classification). As noted by Gertner (1990), the
contribution of bias remains constant regardless of sample
size, so results are based on all plots in the data. The impact
of measurement bias at Tl was evaluated via the calculation
of MSE as given by eq. 16. Bias occurring at TI affects all
components except I. Table 7 shows the components of
MSE and the effect of measurement bias on overall error
for both offsetting and compounding bias situations. The
offsetting bias was based on bias of 1% dbh, 5% bole
height, and 5% percent cull. Similarly, the compounded
bias was analyzed using 1% dbh, 5% bole height, and -5%
percent cull. Bias was calculated as the difference between
the estimate based on the observed data and the mean esti
mate over 1000 replications in which bias was introduced.

With the possible exception of A, the additional error due
to measurement variation is relatively minor and would
rarely affect the determination of significance of a trend for
a particular component, that is, cause the test statistic to be
come too small to be significant. The A component exhib
ited a larger increase in variance than did other
components, as it was subject to measurement variation at
two points in time. The magnitude of measurement variabil
ity error for A may warrant consideration, especially when A
is of particular interest or when estimating N in situations
where A accounts for a large component of the variance.
Although each component of change will likely be signifi
cantly different from zero, analysts may wish to incorporate
the additional variance into the confidence interval associ
ated with the estimate. For example, using the A component
and a 100 plot sample would yield a 95% confidence inter-
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Westfall and Patterson

due to sampling and measurement variation alone (from Ta
ble 7, 59 = 24.28 / (0.37 + 0.04)). In this case, the Rand M
components contribute more to the total bias. In fact, this
overestimation works in conjunction with the underestima
tion for A to increase the bias for net growth to a level
higher than that exhibited by any other individual compo
nent. This produces a MSE that is over 16 times larger than
would be obtained without bias. In this situation, the meas
urement bias may be detected as the estimates would differ
greatly from expected outcomes (assuming there is some
knowledge of forest resource conditions). Bias also may be
detected by comparing results with data from alternative
studies. For example, the Maine Forest Service (2005) com
piles data on volume of wood harvested in that state each
year. These and other data sources may provide a method
for detecting gross biases.

Depending on the size and direction of biases for individ
ual variables as well as interactions between the biases of
several variables, there mayor may not be a significant ef
fect on MSE. Although bias may contribute little additional
error for a- particular estimate, inventory managers should
remain concerned, as the effects of bias may appear in other
estimated attributes where the offsetting phenomenon does
not occur (e.g., basal area per acre). One method of identify
ing bias is comparing measurements of the same variables at
TI and T2. For instance, average bole height by diameter
class for undisturbed plots can be calculated and compared
at both T I and T2. Any systematic differences may indicate
measurement bias.

Finally, the results presented here were based on the as
sumption of the independence of the measured attributes.
Because the data were not collected in a controlled study,
assessing the validity of this assumption would be difficult.
A number of potential correlations may exist, such as among
measurements from individual trees, among the trees in a
plot, and (or) among field measurement personnel. Further
study is recommended to evaluate the amounts of depend
ence among these various factors.

Conclusions

The results indicate that caution is needed to ensure that
inventory measurements are taken without bias and

minimal dispersion of measurement variation at both
measurements to obtain the most accurate estimates and ap
nr,n.nr·''lt"/3 confidence interval coverages for change compo

This can be accomplished by developing clear and
concise protocols that encourage the repeatability of field
measurements. Primary emphasis should be on variables
that exhibit a relatively large amount of measurement varia
bility (e.g., bole height and percent cull in this study). Addi
tionally, these protocols should be consistent over time such
that variables are measured in the same manner at both T I
and T2. The effects of changing measurement protocols
. hould be considered carefully before implementation. De
eloping a method for updating values measured in the past

reflect current practices is of particular importance; other-
ise, a bias may be introduced owing to the change in pro
col.
Bias may develop unknowingly owing to changes in field

personnel, measurement protocols, and (or) training
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methods. This is of particular importance as the results indi
cate that error increases substantially when systematic biases
are present, particularly for the A component (which often
comprises a large portion of the inventory). At a minimum,
change component variables that have a significant influence
on volume prediction should be compared between the two
measurements. A related factor may be the time interval be
tween measurements. Longer measurement intervals suggest
more changes in procedures and personnel since the pre
vious measurement.
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