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Abstract 

Exploiting synergies atlorded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar 
(InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to 
continental-scale estimates of vegetation canopy height. Supported by data from the 2000 Shuttle Radar Topography Mission (SRTM), the 
National Elevation Dataset (NED), the LANDFIRE project, and the National Land Cover Database (NLCD) 2001, this paper describes a data 
fusion and modeling strategy for developing the first-ever high-resolution map of canopy height for the conterminous U.S. The approach was 
tested as part of a prototype study spanning some 62,000 km2 in central Utah (NLCD mapping zone 16). A mapping strategy based on object- 
oriented image analysis and tree-based regression techniques is employed. Empirical model development is driven by a database of height metrics 
obtained from an extensive field plot network administered by the USDA Forest Service-Forest Inventory and Analysis (FL4) program. Based on 
data fi-om 508 FIA field plots, an average absolute height error of 2.1 m (r=0.88) was achieved for the prototype mapping zone. 
O 2007 Elsevier Inc. All rights reserved. 

Ke,vword.r Vegetation canopy height; Scattering phase center height; InSAR; Radar; Interferometry; Optical; Multi-spectral; SRTM; Landsat ETM% Forest 
invento~y; YlA, UEM, Object-oriented; Segmentation; Regression trees 

1. Introduction 

I .  I .  Motivation 

Spatially extensive and accurate maps of vegetation canopy 
height are of value not only to ecologists and land managers 
working in diverse fields such as biodiversity conservation, 
wildfire risk assessment, and timbcr production, but also to 
clin~ate change scientists focused on rcducing the uncertainty 
associated with thc carbon cycle component of Earth's climate 
system. High-resolution maps of canopy height have the 
potential to significantly improve the accuracy of aboveground 
bion~ass and carbon stock baselines upon which models of 
future climate change necessarily depend. Reliable baseline 
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information is also needed for measuring and monitoring carbon 
fluxes and for verifling en~issions reductions in the context of 
national and international carbon accounting strategies. 

Although the forests of the United States and other mid- to 
high-latitude nations are covered by extensive inventory plot 
networks, these data are largely inadequate for the provision of 
high-resolution estimates of aboveground biomass and carbon 
stocks. Whereas dry biomass, which contains 45 to 50% carbon 
by weight (Linder & Axelsson, 1982; Reichle et al., 1973), may 
be well quantified for the localized areas where measurements 
exist, extrapolation across larger unsampled regions can 
contribute to considerable estiilate uncertainty (Houghton & 
Goodale, 2004). Consequently, at regional to continental scales, 
estimates of multi-dimensional forest structural metrics are 
necessarily acquired through the use of remote sensing 
technologies in concert with ground-based measurements 
derived from national forest inventories. The practice of 
leveraging the combined strengths of forest inventory and 
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satellite image data dates back to the early 1990s in Finland 
('I'onlppo, 1991). More recent examples include applications in 
northern Europe and the United Statcs (Huang et a]., 2002; 
McRoberts & Liknes, 2005; Reese et al., 2002, 2003; Toinppo 
et al., 2002). 

Numerous approaches have been put forth for the provision 
of aboveground biomass estimates using the range of availablc 
remote sensing technologies including passive optical (e.g., 
Dong ct al., 2003; Myneni ct al., 2001), radar (e.g., Dobson et al., 
1992; Kanson ct al., 1997), and lidar (e.g., Drake et al., 2002; 
Hyde et al., 2005; LeKsky et al., 1999a,b); however, a technique 
has yet to be presented that is consistent, reproducible, and 
applicablc across broad geographic extents (Rosenqvist et al., 
2003). This is largely duc to the fact that biomass is a three- 
dimcnsional metric - the accuratc estimation of which requires 
biophysical measures, and thcrcfore remote sensors, that capture 
both the horizontal (e.g., canopy densitylcover) and vertical 
(c.g., canopy height) structural character ofthe vegetation (Mctte 
& Hajnsek, 2003; Mette el al., 2004; Treuhaft et al., 2004). 
While the science of acquiring remotely sensed estimates of 
horizontal vegetation structure has matured considerably over 
thc past 25 years, only in the last decadc have significant 
advances in instrument development made it possible to obtain 
consistcnt and accurate measurements of canopy height and 
related mctrics of vertical vegetation structure (e.g., Lefsky et al., 
2002; Treuhaft & Siqueira, 2000). Motivated by these advance- 
ments, this research focuses on the three-dimensional structure 
of forest vegetation in an effort to expand the scientific basis for 
regional- to continental-scale carbon accounting. Specifically, 
this research prcsents an approach to the generation of high- 
resolution, spatially extensive maps of vcgetation canopy height. 
'I'he approach is thc foundation for an ongoing NASA-sponsorcd 
projcct with the ultimatc goal of generating the first-ever circa- 
2000 baseline dataset of vegetation canopy height, aboveground 
biomass, and carbon stocks for the contern~inous U.S. This 
projcct is possible, in part, because of the complimentary nature 
and quasi-synchronous development of sevcral national digital 
geospatial datasets. The following section provides a brief 
introduction to these datasets. 

1.2. Co~tJlzience qf'nutional mapping eforts 

The last several years have been marked by an unprecedent- 
ed confluencc of high-resolution geospatial data sourccs and 
dcrived products for the contenninous U.S. Thc first of these 
datasets was acquircd early in 2000 when the NASA-JPL 
Shuttle Radar Topography Mission (SRTM) used C-band 
(5.6 cm, 5.3 GHz) interferometric synthetic aperture radar 
technology (InSAR) to obtain high-resolution (one arc-second) 
elevation data on a near-global scale for the purpose of 
gcncrating the most complcte digital topographic databasc of 
Earth. Rather than reflecting thc "bald-earth" surface, an 
SRTM-derived digital elevation model (DEM) is unique in 
that it more closely reflects the elevation surface formed by 
vegetation (e.g., tree canopies) and anthropogenic features (e.g., 
buildings, towers, etc.). Assuming the elevation of the bald- 
earth surface is known, an estimate of the interferometric 

"scattering phase center height" (h,,,) can be computed (Brown, 
2003; Brown & Sarabandi, 2003; Kellndorfer et al., 2004; 
Kobayashi et al., 2000; Saich et al., 2001). It follows that the 
value of h,, is correlated with both the amount and height of 
vegetation present. Recent research has contirmed the feasibil- 
ity of using SRTM DEMs together with bald-earth topography 
data to estimate the height of vegetation canopies (Brown, 2003; 
Brown & Sarabandi, 2003; Kellndorfer et al., 2004; Walker 
et al., 2007). 

A second dataset with considerable potential to provide 
information on the horizontal structure of forests is the 2001 
National Land Cover Dataset (NLCD; Homer et al., 2004). This 
multi-layer dataset, currently being developed by the Multi- 
Resolution Land Characteristics (MRLC) Consortium, uses an 
ecoregional mapping approach and consists of 1) normalized 
Tasseled Cap (TC) transfornlations of Landsat 7 ETM+ imagery 
from three time periods (early, peak, and late growing season), 2) 
classified land cover data derived from TC imagery, 3) 
independent image derivatives of imperviousness and tree canopy 
density, and 4) independent ancillary data layers including DEM 
derivativcs of slope, aspect and elevation derived from the 
National Elevation Dataset (NED), which was seamlessly 
conlpiled for the entire United Sates for the first time in 1999. 
All data layers are being released at a grid spacing of 30 m. 

A third and final dataset, also under active development, is 
the multi-partner Landscape Fire and Resource Management 
Planning Tools Project (LANDFIRE). LANDFIRE is an 
ecosystem, wildland fire, and wildland fuels mapping project 
designed to generate a comprehensive suite of spatial data layers 
describing wildland fuel, existing vegetation composition and 
structure, historical vegetation conditions, and historical fire 
regimes. A set of more than 20 national map products is being 
produced by LANDFIRE using the NLCD ecoregional 
mapping approach. Specific deliverables include maps of 
mean fire return interval, percent fire severity, and successional 
class, as well as existing vegetation type, canopy cover, and 
canopy height. The canopy height product is currently in 
development and is slated to be released as a discrete (i.e., five 
forested height classes) data layer. Aboveground biomass and 
carbon stocks are not being mapped as part of the LANDFIRE 
project. Consistent with the NLCD, all LANDFIRE data layers 
are being released at a grid spacing of 30 m. 

The success of a mapping project such as the one proposed 
here depends largely on the availability of a suitable ground 
reference database. Complimenting the aforementioned assem- 
blage of national spatial datasets is a national ground reference 
database available as part of the Forest Inventory and Analysis 
(FIA) program administered by the USDA Forest Service. In 
continuous operation since 1930, the FIA program is the only 
nationwide source of timely, consistent, and reliable forest 
inventory and monitoring information. The FIA Database 
(FIADB) contains plot-level forest biometric information 
collected repeatedly at more than 125,000 locations throughout 
the United States. 

Given the highly complementary nature and quasi-synchro- 
nous development of the SRTM, NLCD, and LANDFIRE data 
sources, an exceptional opportunity exists for exploiting 



484 WS. Wulker el al. / Rernole Sensing of Environment 109 (2007) 482-499 

InSAR/optical synergies. Whereas the SRTM InSAR data tend to be covered by large continuous tracts of coniferous forest 
providc information pertaining to the vertical structure, i.e., that include Engelmann spruce (Picea engelmannii), subalpine 
primarily vegetation height, several optically-derived layers (Abies lasiocarpa) and white fir (Abies concolor), as well as 
provided as part of the NLCD and LANDFIRE projects are bristlecone (Pinus longaeva), limber (Pinus flexillis), and 
suitable for characterizing key aspects of horizontal structure lodgepole pine (Pinus contorta). The highest peaks rise well 
(i.e., vegetation type, canopy covcrldensity, etc.). above tree-line and are characterized by alpine vegetation. . 

1.3. Objectives 3. Model development database 

Uililding on knowledge gained in the context of research 
conducted by Kellndorfer et al. (2004), Pierce et al. (2006), and 
Walker et al. (2007), the general objective of this article is lo 
prcsent the results of a proof-of-conccpt study focused on 
dcvkIopment of a robust empirical approach for generating a high- 
resolution, year-2000 baseline estimate of vegetation canopy 
hcight for the conternlinous U.S. The approach utilizes data 
fusion, knowledge-bascd image segmentation, and regression- 
tree tcchniqucs to synergistically exploit the information content 
of the SRTM interrerometric data together with that of data layers 
obtained from the NED, NLCD and LANDFIRE datasets. 

To facilitate dcvclopmcnt, implementation, and evaluation of 
the proof-of-concept study, as well as enable future nationwide 
implementation of the approach, the ecoregional "mapping- 
zone" concept developcd as part of the NLCD 2001 project was 
adopted for use. The conccpt, which has also been implemented 
by the LANDFIRE project, was developed in order to simplify 
the process of large-scale land cover mapping by stratifying the 
nation into 66 sub-regions that represent relative homogeneity 
in tcrms of biophysical (landform, soil, and vegetation) and 
spcctral characteristics (Homer & Gallant, 2001; Homer et al., 
2004). For the purposes of this proof-of-concept study mapping 
zone 16 (MZIG) was choscn. The zone, which spans over 
62,000 km2 including portions of central Utah, southeastern 
Idaho, and southwestern Wyoming, was selected because it was 
the first zone for which all data layers relevant to this research, 
particularly those currently under production as part of the 
NLCD and LANDFIRE projects, were available. 

2. Mapping zone 16 description 

The bounciary of MZ16 largely follows that of Ecoregion 19 
(Wasatch and Ulnta Mountains) of the United States Environ- 
mental Protection Agency's Level I11 Ecoregions of the 
Conterminous United States (Woods et al., 2001). The zone is 
composed of a corc area of high-elevation, steep, rugged 
mountains wlth narrow crests and valleys. This core is flanked 
in some areas by dissected plateaus and open high mountains 
(Woods ef al., 2001). Elevations within the zone range from 1450 
to 41 00 m. Over half of the zone is forested, with both vegetation 
and underlying soils following a pattern of elevational zonation. 
Low elevations are typically characterized by grasses and a 
variety of shnibs (often hcavily grazed) including sagebrush, 
chaparral, and mahogany. Low to middle elevations (also grazed) 
are covercd by a range of vegetation types, which include oak and 
pinyon-juniper woodlands, as well as areas of chaparral, aspen 
(Poptlltts tremtrlozdes), ponderosa pine (Pinus ponderosa), and 
Douglas-fir (Pseudotsuga menziesii). Middle to high elevations 

A prerequisite to the construction of multivariate tree-based 
regression models relating observed canopy height to SRTM 
and other remote sensing and ancillary data is the compilation of 
a model development database WDDB). The MDDB consists 
of multiple records corresporlding to the number of reference 
observations (i.e., FIA field plots) available within the mapping 
zone. Each record contains multiple fields, which correspond to 
the specific response (derived from the FIADB) and predictor 
(derived from remote sensing and ancillary data sources) 
variables on which modeling is to be based. The following 
section describes the various data acquisition, image processing, 
and computational steps involved in compilation of the MDDB. 
A diagrammatic summary of these steps is presented in Fig. 1. 

3.1. Data acquisition and preprocessing 

3.2.1. SRTM and NED data 
For a conlplete description of both the SRTM and NED 

digital elevation data, the reader is directed to Kellndorfer et al. 
(2004). The SRTM C-band and NED DEMs for MZ16 werc, 
acquired from the United States Geological Survey (USGS) 
EROS Data Center (Dean Gesch,pers, comm.) in the form of 17 
individual raster image tiles each covering an area of one degree 
by one degree. Tiles from each dataset were mosaiced and an 
SRTM minus NED difference (SRTMDIFF) image was 
calculated based on the rationale put forth by Kellndorfer el al. 
(2004). A topographic slope (SLP) layer was also generated 
fioin the NED DEM. 

3.1.2. NLCD 2001 data 
A detailed summary of the NLCD 2001 data-layer production 

methods is presented by Huang ct al. (2001) and Homer et al. 
(2004). NLCD 2001 data were acquired froin the USGS EROS 
Data Center (Dean Gesch, pers. comm.) and included layers of 
land cover (LC) and canopy density (CD). The LC layer, 
acquired primarily for reference purposes, consists of 17 classes 
that generally approximate the thematic detail represented in the 
Level I1 classification of Anderson et al. (1976). Developed 
independently of the LC layer, the CD layer depicts the spatial 
distribution of tree canopy density (trees 2 5  m tall) as a 
continuous variable with values ranging from 1 to 100% (Huang 
et al., 2001). 

3.1.3.  LANDFIRE data 
A single data layer, existing vegetation type (EVT), was 

acquired from the LANDFIRE project website (www.landfire.- 
gov), which is the primary source for additional information on 
the LANDFIRE project and individual data-layer production 
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methods. The EVT classification scheme is based on the 
terrestrial ecological systems classification developed by 
Natureserve for the Western Hemisphere (Coiner et al., 
2003). The scheme was developed to provide a practical, mid- 
scale classification unit that could be readily mapped from 
rcmotely sensed imagery and readily identified by managers in 
the field. Of the 599 ccological systems (hereafter referred to as 
classes) identified within the U.S., 60 were observed to occur 
within MZ16. Of these, 53 were characterized by some form of 
woody or herbaceous vegetation while the remaining seven 

Predictor Variables 

were non-vegetated, e.g., water, permanent snowlice, barren, 
developed, etc. Of the vegetated classes, 23 were forested. 

3.1.4. FIA data 
The monitoring component of the FIA program consists of a 

systematic sample across all public and private lands in the U.S. In 
the late 1990s, the FIA program adopted a common field plot 
dcsign consisting of four 1124th acre fixed-radius (24.0 W7.3 m) 
subplots (FIA, 2004). Field plots are distributed across the 
landscape with approximately one sample (FIA plot) every 
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Fig. I .  Proccss flow diagram depicting the principal steps in the height mapping approach. 
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6000 acres ( ~ 2 4 2 8  ha). Each plot (i.e., an assemblage of four 
subplots) is required to have a tree stocking of at least 10% within 
a one-acrc (0.4 ha) ncighborhood. Field crews collect plot-level 
data on forest type, site attributes, tree species, and tree size 
including stem diameter and height, and overall tree condition. 
For ftlrther information on the FIA program, thc reader is directed 
to the national FIA website (www.fia.fs.fed.us). 

FIA data for MZ16 were downloaded from Version 1.7 of the 
FIA database (FIADB) (www.ncrs2.fs.fcd.us/480 I/FIADIJ). 
Duc to issues involving the timing of data availability, only 
MZ16 data occurring within the State of Utah (95% of the 
mapping zone by area) could be accessed. Data from the Utah 
acquisition were collected during Subcycles 1-4 (i.e., 2000- 
2003) of Utah's second state-wide inventory. Although the 
latter Subcycles were surveycd post-2000, i.e., more recently 
than the year on which this baseline mapping project is focused, 
inclusion of data from this broader tcmporal range was deemed 
acceptable given 1) the relative slow growth of trces in the dry 
basins and montane landscapes of MZ16 and 2) the need for a 
sufficient sample size on which to base model development. No 
attempt was made to adjust (is., back cast) the heights of trees 
mcasured in the latter Subcycles (post-2000). As a whole, these 
data represent the most consistent, complcte, and accurate 
source of forest biometric information for the region during the 
timc pcriod of interest. 

The FIADB is a relational database consisting of twelve 
hierarchical tables. Prior to computing plot-level canopy height 
melrics from the UTAH FIADB, the initial database, containing 
3665 plots, was filtered to extract all forested plots, i.e., plots 
containing trces (stems 2 5.0 in112.7 cm in diameter) based on 
entries in the FIADB 'I'ree Table. The filtering procedure 
produced 1395 plots. Using data contained in the ACTUALHT 
(i.e., actual height) field of the FIADB TREE Table, three plot- 
level canopy height metrics were computed including basal-area 
weighted average height (BAWHT), average height (AVGHT), 
and maxiini~~n height (MAXHT). The BAWHTof each plot was 
citlculatcd according to: 

1 
BAwHT = - 2 (BA,*AcTuAm+,) 

BA~lut ,=, 

where BA, is the basal area (m2) of the ith tree in the plot and is 
calculated according to: 

(DBH is the diameter at breast height (cm) from the TREE 
Table) and BAPlot is the total basal area (m2) for the plot and is 
calculated according to: 

The AVGHT of each plot was calculated according to: 

1 " 
AVGHT = - AC'FUALM'T, 

, = I  

A total of seven FIA-based reference variables were added to 
the MDDB for use in subsequent model development activities. 

These variables included FLDTPYCD (forest type code), 
CONDID (condition class number, e.g., stand density, size, 
origin, etc.), BAWHT, AVGHT, and MAXHT, as well as the 
aspect (ASP) of the central subplot and a unique plot identi- 
fication code (PLOTID). 

3.2. Extraction of segment-based image attributes 

As documented in Kellndorfer et al. (2004) and Walker et al. 
(2007), the SRTM DEM data contain residual phase noise errors, 
which leR unmitigated, result in erroneous estimates of the h,, 
and render the data largely unusable as a legitimate source of 
canopy height information. In Walker et al. (2007), a knowledge- 
based strategy to phase noise error mitigation, and ultimately 
h,,,, calculation, was proposed. The method, developed further 
in the context of this research, was implemented across MZ16. 
Thc following sections provide a description of the approach as 
implemented (see also Fig. 1). 

3.2.1. Segment-based noise mitigation 
A segmentation-based approach to sample (i.e., pixel) 

aggregation and averaging was brought to bear on the problem 
of SRTM phase noise reduction. Here the term "segmentation" 
refers to the subdivision of an image or image stack into a number 
of regions, i.e., polygons or image objects, based on some pre- 
defined criteria (Baatz et al., 2004). The software package 
ecognition provided the computational framework in which 
image segmentation was accomplished. Unlike block-filtering* 
techniques which impose rectangular averaging schemes, eCog- 
nition provides for the automatic and optimal delineation of local 
homogenous regions, e.g., irregularly-shaped forest tracts, within 
which sample averaging and consequent noise reduction can be 
more smartly constrained. 

A segmentation strategy was formulated with the general 
goal of producing image objects that were 1) of sufficient size 
to provide for adequate sample averaging and noise reduction 
in forested regions, 2) homogenous in terms of topographic 
slope, 3) hon~ogenous in terms of vetical forest structure (i.e., 
canopy height), and 4) homogenous in terms of horizontal 
forest structure (i.e., canopy density). The realization of this 
goal was a challenge given the inherent antagonism of object 
size and object homogeneity. That is to say, all else being 
equal, as the average size of image objects increases, so does 
the amount of topographic and structural heterogeneity 
observcd. An average object size of 15-20 pixels was targeted 
following an evaluation of previous research by Kellndorfer 
et al. (2004) and Walker et al. (2007). Objects of this size are 
deemed large enough to provide for adequate noise reduction 
under most SRTM datatake regimes while at the same time 
remaining small enough to allow for sufficient within-object 
homogeneity. Balancing noise reduction with object homoge-. 
neity is essential as both are critical to the generation of robust 
object-based mean estimates of the h,,,. 

As far as possible, balance was achieved using a hierar- 
chical (i.e., nested) segmentation approach. Three image 
layers, including the NED-derived slope (SLP), the SRTM 
minus NED difference (SRTMDIFF), and the NLCD canopy 
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density (cD)', served as inputs to the segmentation process. 
Thc rationale behind this strategy can be summarized as 
follows. First, a relatively coarse segmentation was generatcd 
using slope (SLP) as the primary input. This initial 
segmentation represented an attempt to incorporate slope 
~nfor~nation as a way to control for slope-related effects that 
may have influenced the InSAR response ffom the terrain. 
Second, while holding the boundaries of this initial segmen- 
tatton constant, a meso-scale segmentation was generated in 
which the SRTMDIFF image was used to further regionalize 
the existing segments. At this level, the resulting segmentation 
defined regions in terms of relative homogeneity of both slope 
and canopy height (i.c., h,,,). Third, while holding the 
boundaries of this second segmentation consvant, a relatively 
finc-scale segmcntation was generated in which the CD imagc 
was used as the final driver of the regionalization. The decision 
to progress hierarchically from canopy height to canopy density 
in thc sequence of inputs rather than vice-versa was made in 
order to ensure that verlical structure was considered at a broader 
segmentation scale than horizontal structure and, therefore, was 
the principal driver of segmcntation size and subsequently the 
amount of averaging imposed. Prior to initiating the segmcnta- 
tion procedure, the CD image was selected to provide an analysis 
mask. In doing so, the segmentation process was constrained to 
proceed in only those regions where canopy cover was present, 
i.e., CD values greater than zero. 

The segmentation process resulted in a vector layer 
compr~sed of over 4.5 million image-object polygons. This 
vcctor layer was used to compute a suite of object-based 
statistical metrics. The first, and perhaps most significant, of 
these metrics was the inean h,,, (MH,,,) value, calculated within 
each of the 4.5 million polygons using data extracted from thc 
SICI'MDIFF imagc. As a result of the object-based averaging 
procedure, this nietric represents' a noise-reduced value of the 
h,,,, within each polygon. The object-based standard deviation of 
IL,,,, (SDsp,) was calculated as well. In addition to the h,,, 
n~ctrics, objcct-based means for the SLP, CD and NED images 
and standard deviations for the CD and NED images were 
similarly computed. The area (AREA) of each image object was 
also calculatcd. 

3.2.2. Vertical offset evuluation 
As observed by Brown et al. (2005) and Walker et al. (2007), 

as well as discussed by Kcllndorfer et al. (2004) and others, it is 
possiblc for both the NED and SRTM DEM data to contain 
vertical biascs of varying magnitudes (centimeters to several 
meters) (Ilensley et al., 2000; Gesch et al., 2002). These biases, 
typically a result of the DEM production history, are of little 
concern when the observed offset is a constant value across a 
region of interest. However, when a nonlinear offset (i.e., a 
spatial trcnd) is identified, it must be removed or, at the very 
least minimized, in order to avoid propagation of this nonlinear 

Neither NLCD or LANDPIRE land cover layers were included in the 
segmentation process in order to avoid the introduction of errors attributable to 
rnisciasslficdtion. Land cover information was instead incorporated during the 
process of'   nod el development. This topic is addressed further in Section 5 .  

error. Nonlinear offsets are commonly manifested as banding or 
striping in the SRTM-NED difference image. 

Following methods described by both Kellndorfer et al. 
(2004) and Walker et al. (2007), barren and otherwise 
nonvegetated regions were evaluated to deternline if a vertical 
offset existed between the NED and SRTM DEMs. Although a 
inean difference (i.e., constant value) of approximately 2.0 m 
was observed between the DEMs, no significant nonlinear 
offset or trend was identified. 

3.3. Spatial database joining 

Although the FIADB, including all plot measurements, is 
part of the public domain, federal law proliibits the USDA 
Forest Service from releasing the exact coordinates of FIA plot 
locations. in an effort to provide access to FIA plot coordinates 
while maintaining privacy protection and long-term plot 
integrity, the FIA program cstablished the FIA National Spatial 
Data Services (NSDS) unit where FIA plot locations can be 
linked spatially with data acquired from remote sensing/ 
ancillary sources. Because coordinate locatio~ls must not leave 
NSDS computers, all research and development activities 
involving plot coordinates must be carried out on-site and 
under the supervision of NSDS staff. 

Final compilation of the MDDB required that a spatial join 
be established between the 1395 FlA plots (and associated 
reference variables) described in Section 3.1.4 and the eight 
object-based metrics discussed in the previous section (Fig. 1). 
The objective of the joining procedure was to extract image- 
object data from beneath the 1395 FIA plot locations. All data 
processing was performed at the USDA Forest Service Northern 

Table I 
Variables included in the final model developlnent database (MDDB) 

Variable Variable FIA-based Object- Response (R) 
description reference based or predictor (P) 

variables i~nagc variable 
variables 

PLOT1 D 
CONDID 

FLDTYPCD 
BAWHT 

AVGHT 
MAXHT 
ASP 
MHsPc 

SJjHstc 

MSLP 
MCD 

SDCD 

MNED 
SDNED 
AKEA 

Plot Identification Code 
Condition Class 
Number 
Forest Q p e  Code 
Basal-Area Weighted 
Average Height 
Average Height 
Maximum Height 
Aspect of Subplot 1 
Mean Scattering Phase 
Center Height (SRTM) 
S.D. Scattering Phase 
Center Height (SRTM) 
Mean Slope (NED) 
Mean Canopy Density 
(NLCD) 
S.D. Canopy Density 
(NLCD) 
Mean Elevation (NED) 
S.D. Elevation (NED) 
Image Object Area 
(ecognition) 
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Research Station, Durham, New Hampshire. Following data 
extraction, eight object-based image variablcs were added to the 
MDDB, bringing the total number of variables to 15. A 
complete list of variables in the final MDDB is included in 
Table I .  

Following the spatial joining, the MDDB was filtered further 
using several criteria. First, filtering was carried out on the mean 
canopy density (MCD) field to ensure that only cases with a 
mean canopy density greater than zero were retained. Second, 
the database was filtered hierarchically on condition class 
number (CONDID) and forest type code (FLDTYPCD) such 
that only cases identified by a single condition class (across all 
subplots) and a single forest type were retained. This was done 
to ensure the homogeneity of field plots in terms of horizontal 
and vertical forest structure. Finally, filtering was carried out on 
the AREA field using a threshold of 1.5 ha (i.e., 17 pixels). 
Only cases having an area greater than or equal to 1.5 ha were 
retained. This final filter was applied to ensure that each FIA 
plot was associated with an image-object polygon large enough 
to provide for adequate noise reduction. The filtering procedure 
rcsulted in a final MDDB containing a total of 393 FIA plots 
(LC., cases; Fig. 2). 

4. Model development 

4.1 .  Choice of modeling framework 

The availability of regional- to continental-scale datasets 
dcrived from remotely sensed and other ancillary sources has 
mot~vatcd recent research into the suitability of available 
empirical statistical modeling techniques for broad-scale 
prediction and mapping of forest structural attributes (Frescino 
et al., 2001; Moisen & Frcscino, 2002; Moisen et al., 2003). 
Working throughout the Interior Western United States, Moisen 
and Fresclno (2002) compared five approaches for modeling six 

different FIA-derived biophysical response variables and a suite 
of satellite-derived predictor variables. The approaches includ-. 
ed linear models, generalized additive models (GAMS; Gdsan 
et al., 2002), classification and regression trees (CART; 
Breiman et al., 1984), multivariate adaptive regression splines 
(MARS; Friedman, 1991), and artificial neural networks. 
Although the MARS and GAMS models performed marginally 
better than the others, little appreciable difference among the 
techniques was observed when applied to real data. 

In response to advances in tree-based (i.e., CART) tech- 
niques, including boosting (Freund & Shapire, 1996), bagging 
(Breiman, 1996), and hybrid approaches, Moisen et al. (2003) 
conducted another comparison as part of prototype mapping 
activities conductcd under the LANDFIRE project. The 
research has particular relevance in the context of the current 
mapping project because 1) MZ16 served as the prototype 
mapping zone for the study and 2) FIA-derived BAWHT served 
as onc of two continuous response variables tested. The 
BAWHT investigation involved a comparison of three separate 
modeling techniques including 1) a simple CART model, 2) a 
MARS model, and 3) a hybrid model combining tree-based 
(i.e., CART) methods with recursive linear regression imple- 
mented as part of the Cubist (www.rulequest.com) package. 
Based on an evaluation of global performance measures and 
residual plots, the MARS and Cubist models were judged to 
have performed similarly (i.e., average errors equal to 2.95 and' 
2.81 m, respectively) while both outperformed the CART 
model. 

The overall performance and user-friendly characteristics of 
tree-based modeling strategies have led to the formal adoption 
of the Cubist approach by both the NLCD and LANDFIRE 
mapping projects (Homer ct al., 2004). Based on insights 
provided by Moisen ct al. (2003) as well as the widespread 
acceptance of tree-based methods by the mapping applications 
community, it was determined that regression trees would also 

Fig. 2. Approx~mate locations of 393 FIA field plots within MZ16 (central Utah). Data from these plots were retained as part of the final model development database 
(MDDB). Figure provided courtesy of FTA National Spatial Data Services. 
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provide an appropriate modeling framework for the current 
study. Two tree-based approaches, Cubist and randomForcst 
(Brciman, 2001), wcre subsequently selectcd for conlparative 
testing. 

4.2. Tree-based regression 

4.2.1. General background 
Popularized by Breiman et al. (1984), regression trees have 

evolved considerably in recent years as algorithli development 
has focused on overcoming known deficiencies and enhancing 
predictive power (Moisen et al., 2003). Important advancements 
include thc development of bagging and boosting techniques as 
wcll as the maturation of hybrid tree-based methods. Bagging 
(Rrciman, 1996) and boosting (Freund & Shapire, 1996) fall into 
the category of cnscinble learning methods where the goal is to 
construct a "forest" (is., cnsemble) of cxpert trees and combine 
them through a voting scheme (i.e., simple averaging) for the 
purpose of improving predictive accuracy (Bauer & Kol~avi, 
1999; Dieiterich, 2000). Bagging, a term derived from bootstrap 
aggregation, produces replicate training sets, and hence trces, 
by sampling with replacement from the training cases. Boosting 
uses all training cases to construct cach tree, but snccessive trees 
place extra weight on cases that proved difficult to predict in 
earlier trecs. In bagging, all members of the ensemblc have an 
equal vote and a simple average is used to compute final predic- 
tions (Chan el al., 2001 ; Quinlan, 1996). Conversely, in boosting, 
dill'erent voting strengths are assigned to ensemble members 
bascd on their accuracy. The Cubist and randomForest packages 
are perhaps the most well known cxanlplcs of regression-tree 
approaches with ensemble learning enhancements. 

Hybrid tree;based  neth hods attempt to exploit the strengths of 
both standard regression-tree algorithn~s and local modeling 
techniques to enhance the predictive abilities of final models 
(Moisen et a]., 2003). A number of hybridization strategies have 
been proposcd in the literature, and thc rcadcr is referred to 
Torgo (1 999) for a detailed summary. 

4 2.2 Cubist 
The Cubist package (www.rulequest.com) implements a 

hybrid trce-based approach that combines a regression-tree 
algorithm with local modeling using a proprietary variant of 
linear least squares regression (R. Quinlan, pers. comnz.). 
Options available in Cubist includc composite and corninittee 
inodcls. Whereas coinposite models combine regression trces 
with instance-based or nearest-neighbor models (Quinlan, 
1993), committee models provide ensemble learning capabil- 
ities similar to that of boosting. Additionally, Cubist provides 
for f ; f~lcl  cross validation, which is a common method for 
obtaining more reliable estimates of predictive accuracy, 
particularly when working with datasets that are not large 
enough to support separatc training and testing populations. 

4.2.3. randomForest 
First proposed by Brciman (2001), the concept of random 

forests (RF) adds an additional layer of randomness to the bagging 
strategy described above (Breiman, 1996; Liaw & Wierner, 

MNED 

M "w 

MCD 

SDCD 

FLDTYPCD 

SDNED 

SDH, 

SLP 

AREA 

- + 

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 M M 8 0 0 0  
Increasing Node Purlty 

Fig. 3. Variable importance plot generated in randomForest indicating the 
relative irnpoitatice of the first four-predictor variables over that of the last six in 
the prediction of basal-area weighted average height (BAWHT). 

2002). 111 addition to constructing each standard regression tree in 
the ensemble with a different bootstrapped sample of the data, the 
RF algorithm incorporates a unique approach to node splitting. 
Wllcreas node splitting is typically accomplished using the best 
(i.e., optimal) split among all predictors, RF node splitting is 
achieved using the best split among a random subset of predictors 
chosen at each node (Breiman, 200 1; Liaw & Wierner, 2002). The 
RF bootstrap samples used to construct each tree omit 
approximately 113rd of the cases. These hold-out cases are 
referred to as out-of-bag (OOB) (Breiman, 200 1,2006). 

The randomForest package provides an R interface to the 
original Fortran programs written by Breiman and Cutler 
(available at www.stat.berkeley.edu/ userslbreiman) (Liaw & 
Wicrner, 2002). R is a programming environment for statistical 
con~puting and graphics (R Core Developn~ent Team, 2005; 
www.r-project.org), and is available as Free Software under the 
terms of the Free Software Foundation's GNU General Public 
License. The R implenlentation offers several options for fine 
tuning and analyzing the RF model as well as a number of 
instructive text and graphical outputs. Among these, perhaps the 
most usefil is the variable importance plot (VIP). To produce a 
VIP plot, the RF algorithm estimates the importance of each 
predictor by computing how much the error increases for a 
given tree when OOB data for each predictor are randomly 
permuted while all other predictors are left unchanged (Liaw & 
Wiemer, 2002). 

5. Implementation 

One of the principal goals of the regression-tree analysis was 
to test and evaluate the Cubist and randomForest packages as 
part of an operational framework for broad-scale map 
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gcncration. This meant not only an assessment based on 
prcdlctive accuracy, but also one that considercd practical issues 
such as accessibility, flexibility, and interoperability. Although 
Cubist and randomForest share much of the same regression- 
tree functionality, they differ somewhat in terms of the specific 
paralnctcr options offcred and the terminology uscd to describe 
them. Nevcrthcless, a one-to-one parametcriztation of the 
modcls was effectively achieved. 

The first step in model parameterization focused on 
predictor-variable selection. Toward this end, three randomFor- 
est VIP plots were generated, i.e., one for each response 
variable, to determine which of the ten predictor variables 
warranted inclusion in the modeling comparison. The plots 
wcrc produced using all cases in the MDDR (i.e., 393) and the 
dchult randomForcst settings which consist of a 500-tree 
ensemble, a random sample of three predictors per node, and a 
minimum node size of five cases. Fig. 3 includes the VIP plot 
produced for BAWHT, which is highly rcprcsentative of the 
other height melrics (i.e., AVGHT and MAXHT). Inspection of 
the plol indicated that forest type code (FLDTYPCD), mean 
elevation (MNED), mean scattering phase center height 
(MH,,,,), and mcan canopy density (MCD) possessed consid- 
erablc explanatory value in the regression-tree model. The 

Table 2 
Perfbnnance measures for each of 45 Cubist and randomForest tree-based 
regrcsslon modcls uscd to predict basal area weighted height (RAWHT) 

Cubist randomForcst 

Basal Arca Weighted Basal Area Weighted 
Height Height 
(BAWHT) (BAWHT) 

I.w~,,, ftesl Avcragc r,,, r,, Average 
n=294 n-99 error (m) n=294 n=99 error fm) 

- - 

One variable modeb 

M H,uc 0.55 0.73 3.5 0.88 0.55 3.9 

0- 
0 5 10 15 20 25 

Observed AVGHT 

"0 5 I 0  15 20 25 
Observed AVGHT 

Fig. 4. Plots of observed versus predicted AVGHT (m) derived from Cubist tree- 
based models in which a) a single predictor variable (i.e., FLDTYPCD) and h) 
all four-predictor variables (i.e., MH,, MNED, MCD, and FLDTYPCD) were 
used in model development. 

M N EL) 0.70 0.64 3.2 0.91 o 51 3.9 remaining variables had importance values that were very 
MCD 0.49 0.54 4.1 0.88 0.42 4.4 
FLDTYPCD 0.88 0.87 2 0 

similar to one another and not particularly high when compared 
0.89 0.87 2.2 

to the other four. Taking into consideration both variable 
l i ? z o  vcirruble models 
MH,,,, MNED 0.83 0.75 2.6 095  0 75 2.6 
MH,,, MCII 0 61 0.78 3.0 0.93 0.73 3.1 
MH ,,,, FLDTYPCD 0.91 0.90 1.9 0.95 0.89 2.0 
MNED, MCD 0.78 0.74 2.7 0.95 0 74 2.7 
MNED, FLDTYPCD 0 89 0.87 2.1 0 93 0.86 2.2 
MCD, 1.LDTYPCD 0.88 0.88 2.0 0.94 0.87 2.0 

Three vanable inodeis 
MH ,,,, MNED, MCD 0.83 0.79 2.5 0.96 0 82 2.4 
MH,p,. MNED, 0.91 0.90 1.9 0.96 0.89 1.9 

I'1,I)TYPCD 
MII,,,, MCD, 0.91 0.89 1.9 0.97 0.89 2.0 

FLDTYPCD 
MNED, MCD, 0.88 0.88 2.0 0.95 0.88 2.0 

1. LDTY PCD 

Four variable ncodels 
MH,,,, MNED, MCD, 
FLDTYPCD 0.91 0.90 1.8 0.97 0.89 1.9 

-- 

The pcrfonnence of all possible combinations of the four-predictor variables 
(I.c., MH,,, MNED, MCD, and FLDTYPCD) is reported. 

economy as well as an intuitive sense of agreement with the VIP 
plot, the decision was made to proceed with the Cubist- 
randomForest con~parison using only the first four predictors in 
Fig. 3. It is important to note that FLDTYPCD was retained as a 
predictor variable in spite of being derived from the FIADB and 
not a continuous raster data layer. This decision was made 
because FLDTYPCD is a ground-observed variable and, 
therefore, represents the most accurate source of forest cover 
type information available from the perspective of model 
development. The replacement of FLDTYPCD with a spatially- 
continuous surrogate layer in the context of model prediction 
and map generation is addressed in Section 6.2. 

For the purposes of the primary Cubist-randomForest 
comparison, all possible combinations (15 total) of the four- 
predictor variables were used to construct 45 different ensemble 
regression trees predicting each of the three height response 
variables (i.e., BAWHT, AVGHT, MAXHT). The specific 
objectives of this comparison were to 1) determine which suite 
of predictor variables possesses the greatest explanatory value 
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Table 3 and re~resents the average of the absolute differences between " 
Pcrformsnce measures for SIX cross-validated randomForest tree-bascd obse4ed and predicted values. T~ the bootstrapping 
reglession models used to predict each of three height response var~ables (i.e , 
BAWHT, AVGHT, MAXHT) procedure implemented in randomForest, all Cubist regression- 

tree models were constructed using a 3-fold cross validation. 
Cross- Basal Area Average Height Maximum Height 
val~dat~on Weighted Height (AVGHT) (MAXHT) A secondary Cubist-randomForest conlparison was con- 

results (RAWHT? ducted wherein all (i.e., 393) cases and all (i.e., 4) prcdictor 

r,,, Average r,, Average r,,, Average 
v i i ~ ~ d s t i ~ n  error val~d~lam error val~dottcm eml' 
(n=393) (m) (n-393) (m) (n-393) (m) 

Cuhrst 
MI-I,,,, M N E D . 0 8 9  1 9  0.90 1.5 0.87 3.0 

MCD. 
bLDTY I'CI) 

random Forest 
MH,,,MNED,0.89 2.0 0.90 1.5 0.87 3.1 

MCD, 
F:I-IYrY I'CD 

variables were used to construct three different ensemble 
regression trees - one for each response variable. The primary 
objective of this analysis was to compare the accuracy of 
selected Cubist-randomForest inodels developed under a cross- 
validation strategy to that of models developed under the 
independent validation strategy described above. 

6 .  Results and discussion 

6.1. Model development and validation 

-- -- 

Models werc constructed using all four-predictor variables (i.e., MH,,, MNED, 
MCD, and FLDTYPCD). 

in tenns of canopy height prediction, 2) determine which of the 
threc response variablcs is predictcd most accurately, and 3) 
detcrinine how accurately canopy height can be estimated, i.c., 
what level of crror can be expected. The comparison was 
conducted using randomly selected independent training and 
testing datasets of 294 and 99 cases, respectively (Fig. 1). In 
both Cubist and randomForest, 500-tree ensembles (called 
corninittees in Cubist and forests in randomForest) were grown 
using thc training dataset, and models constructed from the 
training dataset were then validated against (i.e., used to predict) 
the unseen cases in the testing dataset. 

The performance of both the Cubist and randoinForest 
models was evaluated using the correlation coefficient (r) and 
the average error (AB). The correlation coefficient was reported 
for both the training and testing datasets as a measure of linear 
agrcerncnt betwecn the obscrved and predicted values. The 
average error was based on data from the testing dataset only 

The results of the priinary Cubist-randomForest comparison 
are presented in Table 2. The table includes model performance 
measures for 15 different tree ensembles representing all 
possible predictor-variable combinations corresponding to the 
response variable basal area weighted height (BAWHT). The 
results from the average height (AVGHT) and maximum height 
(MAXI-IT) variables were not included as they did not differ 
significantly from those of BAWHT. Based on an evaluation of 
these results, a number of observations can be made. First, 
inspection of the average errors suggests that predictive 
accuracy does not differ significantly between the Cubist and 
randomForest models. This generally holds true regardless of 
the predictor-variable combination. 

Second, predictive accuracy generally improves with the 
number of predictor variables in the model. Although the presence 
of such a trend is not surprising from a statistical point of view, it is 
consistent with what is expected given the variable importance 
infonnation presented in Fig. 3. The existence of this trend 
appears to be packdge-independent; however, it is noticeably 
stronger in the randomForest case, i.e., the average error is allnost 

Fig. S. Map of basal-area weighted average height (RAWHT) (MZ16 - central Utah). Legend rctlects BAWHT in meters. 
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Table 4 
Tabula1 cross-walk for convclllng bctween FIA foteat type and LANDFTRE 
existing vegetation type classes 

No of FIA Forest Cover Type LANDFIRB Ex~s t~ng  
plots (FLDTY PCD) Vegetation Type (EVT) 

125 Pinyon-Junrper - 180 - Colorado Platcau 
P~nyon-Jun~per - 2016 

e Great Basin Pinyon-Junlper - 2019 
c Rocky Mountain Foothdl Limber 

ptne-Juntper - 2049 
c ,  1nk1-Mountam Basins Jun~per - 21 15 

22 Douglas-fit - 201 e Rocky Mountam Montane Dry-Meslc 
Mzxed Conifer --- 2051 

e Rocky Mountatn Montane 
Mestc M~xed Conifer - 2052 

15 Ponderosa Pmc - 221 e Soutbern Rocky Mounta~n 
Ponderosa Pine -2054 

o Rocky Mounta~n Ponderosa 
P ~ n e  - 2117 

46 Engelmann Spruce1 h Rocky Mounta~n Subalptne Dry-Mestc 
Subalpine Fir - 260 Spmcc-Fir - 2055 

e Rocky Mounta~n Subalpine Mesic 
Spruce-Fir - 2056 

I X  Wh~tc Fn 261 e 1 Wute Ftr - 2208 
28 Lodgepole P ~ n e  -- 281 e Rocky Mountain Lodgepole 

P ~ n e  - 2050 
4 FoxtdrVL~mber/ c )  Inter-Mountain f3as1ns Subalpine 

Bt~stleconc 1'1nc - 360 L~rnbel-Bristlecone Pine - 2020 - Rocky Mountatn Subalpine Montane 
Lnnber-BI ~atlecone P ~ n e  -- 2057 

61 Aspen-901 o Rocky Mountatn Aspen - 201 1 
c) Inter-Mountain Bas~ns Aspen-Mixed 

Conrfer - 2061 
55 Decrduous Oak - 925 e Shtub L~ve  Oak - 2215 

e Gambel Oak - 2217 
13 Mountam Q Inter-Mountam Basins Mountain 

Mahoga~any - 953 Mdhogany - 2062 
6 Intc~mounta~n e Rocky Mountain Btgtooth 

Maplc - 954 Maple - 201 2 
393 

always minimized when all four-predictor variables are included. 
Nevertheless, it is important to note that the difference in error 
rcduction observed following the inclusion of additional, i.e., 
third or fourth, variables is not always significant. For example, 

Table 5 
Su~ntnary of BAWHT map accuracy based on pertbnnance measures cotnputed. 
liom three different sets of FIA field plots and associated map values 

Polygon size range No. of Percent of Correlation Average 
plots total plots coefficient (r) error (m) 

c1.5 ha (17 pixels) 133 25 0.8 1 2.6 
2 1.5 ha (17 pixels) 375 75 0.90 1.9 
All Polygons 508 100 0.88 2.1 

BAWHT can be estimated by randomForest using either three 
(e.g., MH ,,,, MNED, and FLDTYPCD) or four predictors (e.g., 
MH,,, MNED, MCD, and FLDTYPCD) with an average error of 
1.9 m (rt,,,=0.89) in both cases (Table 2). In this example, the 
addition of MCD appears to have negligible explanatory value for 
the prediction of BAWHT. This particular result is not unexpected 
given that MCD exhibits the lowest importance value of the four- 
predictor variables (Fig. 3). 

The previous example underscores the need to consider not 
only performance measures but also variable importance when 
evaluating tree-based models. At the same time, it is perhaps 
equally important to consider the distributional characteristics 
of the predictions, and the implications these characteristics 
might have for the final map product. For example, AVGHT can 
be estimated by randomForest with an average error of 1.6 m 
(r,,,, = 0.89) using all four predictors. Alternatively, the same. 
estimation can be made with nearly the same level of 
performance (i.e., 1.6 m average error; rteSt=0.88) using only 
a single variable, forest cover type (i.e., FLDTYPCD), as a 
predictor. Statistically speaking, a model based on FLDTYPCD 
alone would seem to afford both model simplicity and 
predictive power. However, as a categorical predictor, 
FLDTYPCD lacks the necessary variance to produce map 
products with acceptable local accuracy. This lack of variance is 
manifested clearly in Fig. 4a, wherein a plot of actual versus 
predicted AVGHT is observed to have a pronounced horizontal 
banding pattern. In contrast, Fig. 4b illustrates the relatively 
even distribution that results when all four predictors are 
included in the modcl. The consequence of basing model 
development on a single categorical predictor is that the hybrid 
randomForest (or Cubist) algorithm is effectively reduced to a 

0- 
0 5 10 15 20 25 30 35 

Obsewed BAWHT (m) 

FIA Forest Type 

o Pinyon-Juniper 
x DoUQbS-fit 

Ponderosa Pine 
a Engelmann SprucelSubalpine Fir 
v White Fir 
e: Lodgepole Pine 
s Foxtail PinelBristlecone Pine 

Aspen 
0 Deciduous Oak 
a Mountain Mohagony 
, Intermountain Maple 

Fig. 6. Plot of observed versus predicted BAWHT based on map extractions from beneath 508 FIA sample locations. 
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Table 6 
Sumnmy of HAWHT map accuracy based on petformance measures colnputed for each of the 1 1  VIA forest types observed within MZl6 

No. of FIA Forest Cover Type (FLDTYPCD) Observed Obseived Predicted Predicted Average Error as a 
plots average S.D. average S.D. error (m) percentage of 
(n = 508) B A W W  (m) BAWHT (m) BAWHT (m) BAWHT (m) BAWHT (%) 

67 Deciduous Oak - 925 4.0 2.8 6.9 2.73 2.4 48.8 
18 Mountain Mahogany - 953 5.0 1.4 9.2 3.62 4.2 83.1 

170 Pinyon-Juniper - 180 5.1 1.3 6.0 1.90 1.3 26.1 
9 Intermountain Maple - 954 7 .O 2.0 7.9 2.95 2.2 31.2 
2 FoxtaillLimberfBris~econe Pine - 360 8.1 1.8 9.5 1.22 2.2 26.8 ------------.--------.------------------------------------------------------------------------------------------------------------ 

18 Ponderosa Pine -22 1 14.0 4.2 12.8 3.9 2.3 16.7 
80 Aspen -901 14.5 3.4 14.4 2.1 2.1 14.7 
21 White Fir - 261 14.6 2.5 14.2 2.2 1.8 12.4 
32 Lodgepole Pine - 28 1 14.8 3.3 14.9 1.7 1.7 11.6 . 
29 ~ouglas-fir - 201 15.7 3.8 14.8 3.4 2.8 17.5 
62 Enrrdmann S~ruce/SubaIwineFir- 260 17.0 4.8 16.1 2.4 2.8 16.2 - - . . 

Forest types arc: presented in order of ~ncreasing observed average BAWHT (see third column). Dashed line separates short-statured types (above) from all others (below). 

standard regression tree. 'That is to say, AVGHT is predicted not 
with a serles of local regression models, but rather with a series 
of local constants, i.e., mean values (Fig. 4a). As a result, 
although thc statistical performance of FLDTYPCD is notc- 
worthy (Tablc 2), this variable does not demonstrate sufficient 
prcdictive ability in a mapping context. 

6.2. Map gerzeration and accuracy assessment 

An effort was undertaken to detennine how the tree-based 
inodeling framework might be most efficiently incorporated into 
a strcamlincd workflow for model-based prediction and map 
generation (Fig. 1). As part of this effort, a second Cubist- 
randomForest comparison was conducted wherein all cases (i.e., 
393) and all predictor variables (is., 4) were uscd to construct 
three differcnt ensemble regression trees, one for each response 
variable (Table 3). The priinary objective of this analysis was to 
compare the accuracy of selected Cubist-randomForest models 
devclopcd under a cross-validation strategy to that of models 
developed under the indcpendent validation strategy summa- 
rized in the previous section. The analysis was constrained to 
include only illodcls constructed from all four predictors 
becausc, among the 15 diffcrent predictor-variable combinations 
cvaluatcd, the four-predictor models are consistently among the 
inost accurate (Table 3). 

Generally speaking, model performance is very consistent 
with that reported under the independent training and testing 
scenario (Tablc 2). For example, Cubist produces average 
esrors of 1.9, 1.5, and 3.0 n~ for BAWHT, AVGHT, and 
MAXI-11; respectively, under the cross-validation strategy. 
Conversely, average errors of 1.8, 1.5, and 3.0 m are achieved 
for BAWHT, AVGHT, and MAXHT, respectively, under 
the independent validation strategy (Table 2). In addition, 
the observed correlation coefficients are very consistent 
among the models. Overall, these results suggest that reliable 
estimates of predictive accuracy are indecd obtainable through 
cross-validation as implemented in both Cubist and randomFor- 
est. Th~s  is particularly advantageous when the number of 
available cases is insufficient to fonn suitable training and testing 
populations. 

The ultimate goal of this proof-of-concept study was to 
produce a high-resolution map of vegetation canopy height for 
MZ16. The model results presented in Tables 2 and 3 suggest 
that a number of different height maps could legitimately be 
produced, each having different strengths and weaknesses 
depending on the application. For example, a map of average 
height (AVGHT) might be produced as a general purpose layer 
to infonn analyses related to fire modeling, habitat manage- 
ment, or biodiversity conservation. Alternatively, a map of 
maximum height (MAXHT) might be usehl for identifying 
tracts of old growth forest or forested areas prone to windthrow. 
In the context of the current research, which is motivated by the 
need for accurate baseline estimates of aboveground biomass 
and carbon stocks, it is hypothesized that a map of basal-area 
weighted average height (BAWHT) will be most useful. That is 
to say, BAWHT is likely to be a more robust predictor of 
aboveground biomass and carbon stocks than other height 
metrics because it takes into consideration not only stem height, 
but stem diameter as well. 

A series of computer programs was implcmented in R to 
generate a raster map of BAWHT for MZl6 at a resolution of 
30 nl (Fig. 5). The map was produced using thc four-predictor, 

Observed BAWHT (m) 

Fig. 7. Histogram of observed BAWHT within MZ16 illusbating the bimodal 
distribution of height values. 
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Fig. X. Map illustrating the location and extent of difrercnt SRTM datatake regimes within MZI 6 (central Utah). Legend reflects the number of SRTM datatakes, which 
generally incxeases with distance north. 

cross-validated randomForest model reportcd in Table 3. 
Although the Cubist model was observed to have a slight 
edge in terms of overall predictive pcrformance (Table 3), the 
randomForest framework was ultimately selected as the source 
of tree-based models for map generation. This decision was 
motivated in large measure by the greater accessibility and 
flexibility offered by randomForest within d ~ e  open-source R 
environment, including the ability to implement parallel 
processing on Linux-based computing clusters. The map was 
constructed from pixel-by-pixel predictions based on inputs 
from the segment-based mean values associated with the MH,,, 
predictor variable together with data from the original NED, 
CD, and FLDTYPCD raster layers. The segment-based mean 
values associated with the MNED and MCD variables were not 
used in map generation becausc noise reduction was not an 
issue where these layers were concerned and given that the 
pixel-to-pixel variation present in the original rastcr layers 
rcpresentcd a potentially important source of explanatory 
information. As a surrogate for the FIADB-derived FLDTYPCD 
variable, the LANDFIRE EVT layer (see Section 3.1.3) was 
used as a spatially explicit predictor variable. This was 
accomplished by developing a cross-walk between FIA forest 
type and LANDFIRE cxisting vegetation type (Table 4). 

A plot of observed versus predicted BAWHT is shown in 
Fig. 6. This plot illustrates the predictive performance of the 
map itself and was constructed using predicted BAWHT values 
extracted from the map following generation of the raster layer 
(Fig. 5). Map extractions were perfonned by FIA NSDS; 
predicted values were extracted from individual 30-m pixels 
associated with thc centers of 508 FIA field plots. Of these 
plots, 375 were part of the final MDDB~.  The remaining 133 

The final MDDB lncluded a total or393 plots. Of these, 18 plots (i.e., 393- 
375) wcle not associated w ~ t h  map predictions due to misclassification enrols 
(e.g., non-forest classes assigned to forcsted pixels) in the LANDRKE EVT 
Iaycr. As a result, these plots (LC., 5% of the MDDB) are not represented in Rg. 6. 

plots were originally excluded from model development 
because they occurred within image-object polygons that 
were deemed too small (i.e.,< 1.5 hd17 pixels) to provide for 
adcquate noise reduction (see Section 3.3). Performance 
measures for each of the aforementioned plot subsets (133- 
and 375), as well as for the total set (508), are reported in 
Table 5. The 133-plot subset produced an average error of 2.6 In 
(r=O.81; Table 5). This subset holds perhaps the greatest value 
for the evaluation of map accuracy because it provides not only 
for an independent validation of the BAWHT map (i.e., due to 
exclusion from the MDDB), but also for a worst-case estimate 
of average map error (i.e., due to insufficient averaging). As 
expected, the average error of 1.9 m (r=0.90) attributed to the 
375-plot subset is 1) markedly lower (by approximately 0.7 m) 
than that of the subset based on 133 plots and 2) generally 
consistcnt with that reported in Table 3 for the 293-plot, cross- 
validated model result (average error=2.0 m). It should be 
noted that this result is likely biased to a small degree by the fact 
that 18 of the original 393 MDDB plots were not included in the 
375-plot subset (for further details, see Footnote 2). In 
summary, when the accuracy of the map is evaluated as a 
whole, i.e., when the two plot subsets are combined, an average 
error of 2.1 m (r=0.88) is observed (Table 5). 

It is also possible to evaluate the accuracy of the BAWHT 
map in terms of how well individual FIA forest type classes and 
groups of classes are predicted (Table 6). A cursory inspection 
of Fig. 6 reveals an obvious clustering of data values, which is 
an artifact of the strongly bimodal height distribution observed 
within MZ16 (Fig. 7). Over half of the 508 FIA field plots (i.e., 
266; 52%) are associated with forested types (e.g., woodlands) 
of inherently short stature (i.e., average BAWHT I 8 . 5  m), 
including Deciduous Oak, Mountain Mahogany, Pinyon- 
Juniper, Intermountain Maple, and Foxtail/Limber/Bristlecone 
Pine (Table 6). The remaining plots (i.e., 242; 48%) comprise 
the typical mid- to high-elevation forest types of the 
Intermountain West including Ponderosa Pine, Lodgepole 



KS. Fblker et al. /Remote Seusing of E~rvironment 109 (2007) 482-499 

Pig. 9. Averaging index (Al) map (MZ16 - central Utah). Legend reflects the number of SRTM C-band datatakes multiplied by image-object polygon size (in pixels). 
Whereas the number of acquired datatakes ranges from 1 to 4 (Fig. 8), polygon size ranges from 1 to 551 pixels. Thus, the map assumes values between 1 (i.e., one 
datatake multiplied by a polygon consisting of one pixel) and 2204, with the observed and theoretical maximums being equal. 

Pine, Douglas-fir, and Trembling Aspen among others. Within 
this group, thc average BAWHT is greater than 13.5 m 
(Table 6). 

Also included in Table 6 are accuracy statistics associated 
wrth each of the 11 FIA forest type classes for which BAWHT 
values were predicted and mapped. In general, a reasonably 
close correspondence is revealed between the observed and 
predicted values reported for both the average and standard 
deviation of BAWHT. Error statistics are reported both as an 
average and as a percentagc of average BAWIIT. Not 
surprisingly, error constitutes the greatest percentagc of 
average BAWHT among the five short-statured types 
(Table 6). Although the average error among these classes is 
less than 3.0 m with the exception of the Mountain Mahogany 
class (kc., 4.2 m), the error pcrcentage of average BAWHT 
remains above 25%. Conversely, among the remaining classes, 
where average crror is also less than 3.0 m, the error percentage 

of average BAWHT is consistently below 20%. It is important 
to point out that this trend is exacerbated to some degree by the 
variance attenuation associated with the BAWHT predictions 
(Fig. 6; see Cohen et al., 2003). In particular, observed 
BAWHT values less than the mean (i.e., short-statured trees) 
tend to be somewhat overpredicted, resulting in markedly 
highcr error percentages. 

6.3. Map confidence estimation 

The presence of random phase noise in the SRTM DEMs has 
been shown to be a potentially significant source of error in 
SRTM-derived estimates of canopy height (Kellndorfer et al., 
2004; Walker et a]., 2007). It has also been shown that sample 
averaging, accomplished using multiple SRTM datatakes andlor 
aggregations of SRTM pixels, represents a viable strategy for 
reducing phase noise error. In the context of the current 

Averaging Index 

FIA Forest Type 

o Pinyon-Juniper 
x Douglas-fir 

Ponderosa Pine 
A Engeimann SpruceJSubalpine 
v WhjfeFir 
a Lodgepole Pine 
P Foxtail PineiBristlecone Pine 

Aspen 
Q Deciduous Oak 
a Mountain Mohagony 

Intermountain Maple 

Fir 

Fig. 10. Plot illustrating the relationship between the averaging index (A[) and BAWI-TT residual error. The range of the residuals, reflected in the vcrtical spread of 
pomts, 1s observed to decrease with increasing values of AI. 
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Averaging Index (binned) 

A 

Fig. 1 I .  Curves illustrating thc level of error expected for 68% (one standard 
dcvlat~on) and 95% (two standard deviations) of the RAWHT map. 

I I I I I I I 

research, a segmentation-based approach to phase noise re- 
duction was implemented and subsequent model developlnent 
was carried out using only data associated with polygons greater 
than or equal to 1.5 ha ( z  17 pixcls) in size. In addition to 
rcducing phase noise error in the SRTMDIFF layer, it is 
reasonable to assume that this averaging strategy contributed to 
error reduction in both the CD and NED layers as well. 

Given the prominent rolc played by sample averaging in the 
generation of the BAWHT map, and in the interest of exploring 
further the results reported in Table 6, an effort was undertaken 
to investigate in detail the relationship between sample 
averaging and map accuracy. It was hypothesized that this 
relationship should manifest itself as a functional trend in which 
the magnitude of residual errors decreases as the level of 
averaging increases. Support for this hypothesis would suggest 
that more confidence be placed in BAWHT height predictions, 
i.e., individual map pixels, associated with larger polygons and 
vice-versa. 

To test thc hypothesis, it was necessary to quantify the 
amount of sample averaging applied to cach 30-m pixel in the 
BAWHT map. A simple averaging index (AI) was developed in 
which the index value computed for each pixel reflected the 
nuinbcr of SKI'M C-band datatakes associated with the pixel 
(big. 8) nlultipl~cd by the size (measured in pixels) of thc 
particular image-object polygon lo which the pixel belonged. 
An A1 map of MZ16 is shown in Fig. 0. From this map, 
individtrai pixel values were cxtracted from beneath thc center 
of each of the 508 FIA field plots used in the previous accuracy 
assessment. Whereas the A1 map values range from 1 to 2204, 
values in the cxtracted subset ranged from 2 to 1296. 

A plot of A1 versus residual error is presented in Fig. 10. 
Inspection of the plot reveals a reasonably clear relationship 
between the two variables. As hypothesized, the magnitude of the 
rcsidual values, as cvidcnced by their vertical spread, is observed 
to decrease as the values of the A1 decrease. Based on the 
information contained in Fig. 10, it was possible to generate apair 
of confidence curves relating predictive accuracy, as manifested 
in the rcsidual values, to the dcgree of averaging applied, as 
reflected in the A1 (Fig. 11). The curves were generated from the 
standard deviations of residual values occurring within seven 

separate A1 bins. The primary curve (closed circles) represents 
one standard deviation from the mean residual value in each bin. 
Assuming the sample size in each bin is large enough to be 
representative of the map as a whole, then this curve defines the 
maximunl error in each bin that can be expected for 68% of map' 
pixels. Similarly, the secondary curve (open circles), representing 
two standard deviations from the mean, defines the maximum 
level of error in each bin that can be expected for 95% of map 
pixels. Overall, the curves reveal that 68% of pixels are expected 
to have errors less than *3.7 m (Fig. 11). 

A more complete picture of error dynamics within the 
BAWHT map is provided by Table 7, which illustrates the 
distribution of AT values among the seven bins used to create the 
confidence curves referenced in Fig. 11. For example, the table 
rcveals that roughly 87% of pixels in the BAWHT map have A1 
values of 15 or greater. Thus, it can be said with nearly 70% 
confidence that 87% of the map area will have errors less than k 
3.0 m. 

9.0 

7. General discussion 

E 8.0 
V 

5 7.0 

Thc proof-of-concept study presented here is similar, in 
many respects, to work recently conducted by Moiscn et al. 
(2003) in the context of LANDFIKE prototype mapping 
activities. In general, both efforts focus on the mapping of 
BAWHT in MZ16 using hybrid tree-based regression teclmi- 
ques. However, the specifics of the two approaches differ to a 
large degree. The principal difference involves the use by- 
Moisen ct al. (2003) of multiple predictor variables derived 
from passive optical data sources including multi-date, multi- 
band Landsat data and Landsat-derived tasseled cap indices. 
Additionally, Moisen et al. (2003) based model development 
activities on a larger complement of FIA field plots (2052) 
acquired over a broader time frame (1993-2001). Given these 
and other methodological differences between the two efforts, it 
is not possible to make any firm judgments about the merits of 
either approach based on the information available. Neverthe- 
less, a number of inferences can be made in the context of a 
pcrformance-bascd comparison. In terms of overall accuracy, 
the InSAR-optical fusion approach reported on here compares 
quitc favorably with that of Moiscn ct al. (2003). Whereas, the 
Cubist-based committee model3 implemented by Moisen et al. 
(2003) produced an average error of 2.81 m (9.23 ft) and a 
correlation coefficient of 0.75, virtually the same model 
implemented here resulted in an average error of 2.06 m 
(6.76 R) and a correlation coefficient of 0.88. Moisen et al. 
(2003) modeled BAWHT as a f~~nction of 40 predictor variables; 
only four were considered in the context of the current modeling 
effort. In general, it is impossible to ascribe the observed 
improvement in predictive accuracy (0.75 m) afforded by the 
currcnt approach to any particular element of either approach.. 
Nevertheless, the strategy presented here possesses 

- * One Std. Dev. - 
- \ 9 Two Std. Devs. 

The randomForest package was not included in the comparative analysis of 
modcling approaches conducted by Moiscn et al. (2003; see Section 4.2.1 for 
further details). As a result, it was not possible to present here the results of a 
randomForest comparison. 
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Tablc 7 
D~stnbution of averagulg index (AI) values within thc mapped region of MZ16 

A1 values Distribution (%) 

1 0.2 
2-9 7.2 
10-14 6.0 
15 99 47.1 
100 I99 23.0 
200-299 8.9 
300-399 3.8 
400-499 1.8 
500t 2.0 

100.0 

characteristics that make it uniquely appealing. Principal ainong 
these is the inclusion of a continuous predictor variablc with 
dcmonstratcd sensitivity to forest structure in the vertical 
dimension. Rcgardless of ecoregional-spccific influences (e.g., 
topography), the SRTM-bascd predictor is expected to rcmain a 
significant explanatory contributor. Perhaps equally appealing 
is the level of variable economy afforded by the approach. 
Because lnodcl development was predicated on a physical 
~mdcrstanding of the predictors and their role in explaining 
vegetation canopy height, fcw variables were needed to achieve 
a rclativcly high level of accuracy. Given the overall 
pcrforrnancc and intuitive appeal of the approach, the potential 
exists to colltribute in a meaningful way to the improvement of 
the LANDFIRE canopy height product. 

While the overall accuracy of the BAWHT map is quite 
encouraging, important caveats associated with various aspects of 
thc mapping approach warrant acknowledgement. First, although 
thc FIA program is currcntly the only nationwide source of 
consistent and reliablc forest inventory data, the FIADB was 
never intcnded for use as a reference database for remote sensing 
applications. Generally speaking, the design, size, and spatial 
frequency ofFIA field plots is not well suited to broad-scale, high- 
resolution mapping of forest struct.cua1 attributes. Neverthcless, 
this proof-of-concept study provides yet further evidence to 
support the use of the FIADB in regional- to continental-scale 
mapping efforts. Simply put, projects ofthis sort would be wholly 
~~npossible without thc long-standing commitnlent of the U.S. 
Congress and USDA Forest Scrvice to support and maintain the 
FIA network. Given the certainty of advancements in high- 
resolution, stand-level remote sensing technologies such as lidar, 
the FIA network will likely nced to evolvc and kcep pace with 
such advancements if it is going to remain relevant to the needs of 
an ever-expanding and technically-inclined user community. 

A second caveat involves the use of derivative map products 
such as the CD and LANDFlRE EVT layers as predictor 
variables in model development. Because errors in derivative 
products are not uncommon, and because they can be difficult to 
track given thc general lack of reliable andlor published accuracy 
asscssincnts, derivatives are best avoided in projects where 
unwantcd crror is likely to accumulate in a final map product. 
Both the derivative CD and LANDFIRE EVT are well removed 
from the raw Landsat ETM-t- data used in thetr product~on. 
Although the value of both products, and particularly the 
LANDFIRE EVT, has been demonstrated clearly in the current 

context, their replacement by either Landsat ETM+ at-satellite 
reflectance data or tasseled-cap indices is worthy of future 
testing. 

Finally, it is important to acknowledge that the value of the 
SRTM MH,,, variable for canopy height prediction is certain to 
vary considerably among the 66 mapping zones that comprise thc 
conterminous U.S. For example, in MZ16 and throughout much 
of the western US., pronounced elevational gradients govern 
precipitation and solar radiation to pattern the distribution and 
associated vertical structure of vegetation (Barnes eta]., 1998). As 
a result, the relative explanatory power of the SRTM MH,,, 
predictor is less than that of either the FLDTYPCD or MNED 
variables (Fig. 3). Additionally, it is well known that InSAR DEM 
errors tend to increase in regions of diverse topography where 
layover, shadow, and concomitant decorrelation can greatly 
complicate the process of phase unwrapping (I-lanssen, 200 1). For 
these reasons, MZ16 may not provide the most appropriate test for 
an InSAR-optical fusion approach to canopy height mapping. At 
the same time, success of the approach in the western U.S. might 
be viewed as an encouraging indicator of performance throughout 
inuch of the East wherc predictors like FLDTYPCD and MNED 
corrclate much less with canopy height. 

8. Cunclusions 

The proof-of-concept study presented here reveals that 
production of the first InSARIoptical fusion-based continu- 
ous-surface map of vegetation canopy height for the contenni- 
nous U.S. is an ambitious goal, but one that is certainly 
achievable. The innovative segmentation-based approach brings 
advanced processing and analysis techniques to bear on some of 
the best available spatial data for the purpose of filling a sig- 
nificant void in our capacity to quantify trends in vertical forest 
structure across broad spatial scales. The approach provides both 
the theoretical and operational framework for fiture work, 
focused not only on completion of the national map of canopy 
height, but also on subsequent generation of the first-ever circa- 
2000 baseline dataset of aboveground biomass and carbon stocks 
for the conterminous U.S. These layers are being generated aspart 
of thc National Biomass and Carbon Dataset 2000 (NBCD 2000), 
which is scheduled for completion in early 2009. Maps 'of 
vegetation canopy height, aboveground dry biomass, and carbon, 
together with spatial accuracy metrics, will be accessible at 30 m 
postings via the U.S. Geological Survey Seamless Data 
Distribution System. 
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