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Abstract
Missing values in any data set create problems for researchers. The process by which missing values are replaced, and the data

set is made complete, is generally referred to as imputation. Within the eddy flux community, the term ‘‘gap filling’’ is more

commonly applied. A major challenge is that random errors in measured data result in uncertainty in the gap-filled values. In the

context of eddy covariance flux records, filling long gaps (days to weeks), which are usually the result of instrument malfunction or

system failure, is especially difficult because underlying properties of the ecosystem may change over time, resulting in additional

uncertainties. We used synthetic data sets, derived by assimilating data from a range of FLUXNET sites into a simple ecosystem

model, to evaluate the relationship between gap length and uncertainty in net ecosystem exchange (NEE) of CO2. Uncertainty

always increased with gap length and there were seasonal patterns in this relationship. These patterns varied among ecosystem

types, but were similar within the same ecosystem type (e.g., deciduous forests). In general, gaps of �3 weeks during the winter

dormant season resulted in little additional uncertainty at any of the sites studied. At worst (i.e., during spring green-up in a

deciduous forest) a week-long gap could result in an additional uncertainty of roughly �30 g C m�2 year�1 (at 95% confidence).

This uncertainty adds to the roughly �30 g C m�2 year�1 (at 95% confidence) uncertainty that arises from random measurement

error. Unlike uncertainties due to random error, long gap uncertainties can be minimized through vigilance and a rapid response to

system failure. Some strategies for reducing the occurrence of long gaps are discussed.

# 2007 Elsevier B.V. All rights reserved.

Keywords: Data assimilation; Ecosystem physiology; Eddy covariance; Gap filling; Howland; Monte Carlo; Phenology; Random error;

Uncertainty
1. Introduction

At field sites around the world (FLUXNET and

associated regional networks such as AmeriFlux and

CarboEuroFlux; see Baldocchi et al., 2001), the eddy

covariance method is being used to make continuous

measurements of surface-atmosphere exchanges of

carbon, water, and energy. Missing values, or gaps, in
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these flux records are unavoidable, however, and result

from instrument failure, system maintenance, precipita-

tion, inadequate turbulence, and various other rejection

criteria (e.g., Papale et al., 2006). Data gaps in time series

present challenges for researchers, as imputation of

missing values (i.e., ‘‘gap filling’’) is a prerequisite to

estimating daily and annual sums of net ecosystem

exchange (NEE) of CO2 (Falge et al., 2001), or any other

quantity for which a temporal integral is desired. NEE

sums are of special interest to the global change research

community because scaling site-level carbon balance

information to regions and continents contributes to
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improved models and understanding of the global carbon

cycle (Wofsy and Harriss, 2002).

Uncertainty in annual NEE can be attributed to

systematic errors and biases (Goulden et al., 1996;

Moncrieff et al., 1996; Loescher et al., 2006), which we

will not consider here, as well as random measurement

errors (Hollinger and Richardson, 2005; Richardson

et al., 2006a) and uncertainties due to gap filling. One

study reported that for a selection of eddy flux sites,

data coverage for a given year averaged 65%, with a

range between 90% and 40% (Falge et al., 2001).

Previous efforts to quantify the uncertainty due to gap

filling have used Monte Carlo techniques to determine

the effect of random measurement errors on uncertainty

in the parameterization of the gap-filling model (e.g.,

Richardson and Hollinger, 2005), which leads to

uncertainty in the predicted values used to fill gaps.

However, this approach ignores an additional, and

potentially significant, source of uncertainty; because

gaps are not distributed randomly throughout the year,

long gaps (days to weeks), which are usually attributed

to instrument failure, tend to be more common than

would be expected by chance alone. It is generally

acknowledged that long gaps are more difficult to fill

than short gaps (Falge et al., 2001; Richardson et al.,

2006c; Moffat et al., in review), because key ecosystem

properties may change over time, thus creating a non-

stationary time series. For example, previous studies

have documented seasonal variation in canopy-level

photosynthetic capacity (Hollinger et al., 2004), as well

as the temperature sensitivity of respiration (Reichstein

et al., 2005), and the relative contribution of soil

respiration to ecosystem respiration (Davidson et al.,

2006). Numerous factors can be invoked to explain

changes in ecosystem function, including phenology

(e.g., canopy green-up and senescence), physiological

acclimation, indirect or lagged effects of climate, step

changes in environmental factors (e.g., soil frost or

snow melt) and even pest outbreaks or other

disturbances. From the perspective of filling long gaps,

the real problem is that without any data, it is

impossible to know exactly how the ecosystem

properties might have changed during the gap, a

classic problem of known unknowns. For example, in

temperate systems, a long gap in early spring could be

especially problematic, because the dates at which

photosynthetic uptake commenced, or the system

changed from a carbon source to a carbon sink, would

be unknown. Thus, long gaps may add considerable

uncertainty to gap-filled estimates of annual NEE, but

to date the uncertainty due to long gaps has yet to be

quantified.
Here we describe a method to quantify the

uncertainties in annual NEE that are due both to

random measurement error and to gap filling, including

the additional uncertainty that can be attributed to long

gaps. CO2 flux data from a coniferous, two deciduous,

two mixed species, and two Mediterranean sites, are

combined with a simple model using data assimilation

techniques (Gove and Hollinger, 2006) to generate

synthetic, gap-free, time series. Using these synthetic

data, we first determine the uncertainty in gap-filled

NEE that can be attributed to random measurement

errors, using a standard Monte Carlo approach. We then

use an iterative, systematic procedure to determine

relationships between gap length and starting date on

NEE uncertainty, and use these relationships to estimate

the additional uncertainty due specifically to long gaps.

For each site–year of data, we present estimates of the

total uncertainty in NEE that can be attributed to these

two sources.

2. Data and method

2.1. Data sources

For this analysis, we used half-hourly eddy flux

measurements of the net ecosystem exchange of CO2

from four different ecosystem types (Table 1): (1) a

spruce-dominated forest at the southern ecotone of the

boreal forest (Howland, Maine, USA: 45.258N,

68.738W, Hollinger et al., 2004); (2) two beech-

dominated temperate deciduous forests (Hesse, France:

48.678N, 7.058E, Granier et al., 2000; Hainich,

Germany: 51.078N, 10.458E, Knohl et al., 2003); (3)

a mixed beech/Douglas-fir forest (Vielsalm, Belgium;

50.308N, 5.988E, Aubinet et al., 2001); and (4) two oak-

dominated Mediterranean forests (Roccarespampani,

Italy: 42.408N, 11.928E, Tedeschi et al., 2006;

Puechabon, France: 43.738N, 3.588E, Rambal et al.,

2004). Quality control, flux corrections, and data editing

were performed by the individual site investigators.

Nocturnal data were filtered with site-specific u* values

(see Hollinger et al., 2004; Reichstein et al., 2005;

Papale et al., 2006). Data from the European sites were

assembled as part of a comprehensive evaluation of a

standardized data processing algorithm (Papale et al.,

2006) and a comparison of gap-filling techniques

(Moffat et al., in review).

2.2. Development of synthetic data sets

Flux data were assimilated, on a site-by-site basis,

into a simple ecosystem physiology model using an
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Table 1

Total uncertainty in gap-filled annual flux sums that can be attributed to (1) random measurement errors, as they affect measured fluxes, filled gaps,

and annual sums of NEE (SNEE); and (2) long gaps. Results are shown for a range of forested eddy flux sites. Uncertainties are presented as 95%

confidence intervals (=2s) of the annual sum, in g C m�2 year�1. The total uncertainty represents the sum of the random uncertainty in NEE and the

long gap uncertainty, added in quadrature

Site–year Missing obs. (%) 2s random uncertainty Longest

gap (days)

2s long gap

uncertainty

2s total

uncertainty
Measured Filled SNEE

Howland 1996 58 12 24 31 10 28 42

Howland 1997 58 13 25 34 15 19 39

Howland 1998 46 14 18 27 8 24 36

Howland 1999 38 16 17 28 20 29 40

Howland 2000 42 15 21 31 7 11 32

Howland 2001 39 17 17 30 5 8 31

Howland 2002 44 13 14 23 7 11 25

Howland 2003 49 14 20 28 6 10 30

Howland 2004 40 15 16 26 6 10 28

Hainich 2000 34 20 14 28 8 19 34

Hainich 2001 33 19 11 26 14 35 44

Hesse 2001 21 24 8 29 6 10 31

Hesse 2002 22 22 8 26 10 8 27

Puechabon 2002 36 17 12 23 4 10 25

Roccarespampani 2002 31 18 13 27 5 13 30

Vielsalm 2000 28 14 13 22 8 12 25

Vielsalm 2001 29 18 13 25 8 13 28
unscented Kalman filter, as described in detail by Gove

and Hollinger (2006). The assimilation resulted in

continuous, time-varying estimates of two parameters

each for ecosystem respiration (based on the exponen-

tial model of Lloyd and Taylor, 1994) and gross canopy

photosynthesis (based on the commonly used Michae-

lis–Menten hyperbolic light response, as described

below). Once the seasonal trajectories of parameter

values had been determined, they were used to generate

continuous synthetic time series of net ecosystem

exchange (sNEE) for each site–year.

2.3. Gap-filling protocol

Gap filling of NEE was conducted using the standard

Howland gap-filling method, which is based on two non-

linear regression models (Hollinger et al., 2004). This

method was evaluated by Moffat et al. (in review), and

despite the simplicity of the approach and minimal use of

environmental covariates, performance was found to be

comparable to that of many other gap-filling techniques.

Nocturnal (PPFD � 5 mmol m�2 s�1) gaps were

filled using a second-order Fourier regression model

(Eqs. (1) and (2)), where Dp = DOY � 2p/365 is in

radians (Hollinger et al., 2004; Richardson et al.,

2006c). This approach does not require any ancillary

data (e.g., soil moisture or soil temperature), but it does

assume that changes in ecosystem respiration (Reco) are
predominantly related to seasonal patterns, and that

these seasonal patterns can be adequately captured by a

second-order model.

NEEnight ¼ Reco (1)

Reco ¼ f 0 þ s1 sinðDpÞ þ c1 cosðDpÞ þ s2 sinð2DpÞ
þ c2 cosð2DpÞ (2)

Daytime gaps were filled by using a Michaelis–

Menten light response model, driven by solar PPFD, to

estimate gross photosynthesis (Eq. (3)), with ecosystem

respiration estimated from Eq. (2) added back in to give

the net flux of CO2 (Eq. (4)).

Pgross ¼ Amax

�
PPFD

PPFD þ Km

�
(3)

NEEday ¼ Reco þ Pgross (4)

Parameters for Reco were fit at the annual time step,

whereas for Pgross the year was divided into 12 periods

(months) of equal length, and separate parameters were

fit for each period. A maximum likelihood optimization

approach was adopted, as described elsewhere (e.g.,

Richardson and Hollinger, 2005; Richardson et al.,

2006a).
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Fig. 1. Flowcharts illustrating the procedures followed to estimate random uncertainty (due to the combined effects of random measurement error

and gap-filling uncertainty) and long gap uncertainty. Further details are given in text.
2.4. Monte Carlo simulations

We conducted standard Monte Carlo simulations

(e.g., Press et al., 1992) to evaluate the effects of random

measurement uncertainty and gap-filling uncertainty on

annual NEE. The procedure was as follows (see also

Fig. 1). First, we created gaps, as actually observed in

each real site–year of data, in the corresponding

synthetic data set. Then, artificial noise was added to

the remaining observations. Based on results of

Hollinger and Richardson (2005) and Richardson

et al. (2006a), the noise (di) was drawn from a

double-exponential distribution with a standard devia-

tion s(di) that scaled with the magnitude of the synthetic

flux, sNEEi, as

sðdiÞ ¼ 0:62þ 0:63sNEEi for sNEEi� 0 (5a)

sðdiÞ ¼ 1:42� 0:19sNEEi for sNEEi < 0 (5b)

Next, we applied the gap-filling method described

above, and determined annual sums of the noisy syn-

thetic ‘‘measurements’’, filled gaps, and annual NEE.
This procedure was repeated 100 times, and then stan-

dard deviations of the annual sums were calculated; we

denote the uncertainty due to random measurement

error (both as it affects the measurements and filled

gaps) as sR(NEE). Note that sR(NEE) can be decom-

posed as follows:

sRðNEEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðSmeasuredÞ þ s2ðSfilledÞ
þ 2 covðSmeasured;SfilledÞ

s
(6)

The covariance term reflects the dependence of the

filled values on the measurements, and therefore the

direct coupling between random measurement error and

gap-filling uncertainty.

2.5. Evaluation of long gap uncertainty

To evaluate the effect of long gaps on the total NEE

uncertainty, we made use of the synthetic data time

series for those site–years where the maximum gap

length was 8 days or less: Howland (2001), Hesse

(2001), Hainich (2000), Vielsalm (2000, 2001),
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Fig. 2. Two-dimensional surface plot illustrating how uncertainty

(1s) in annual gap-filled NEE, expressed as sm(DNEEj), varied as

a function of time of year (x axis) and gap length (y axis). Data are

shown for the Howland forest. Units are g C m�2 year�1.
Puechabon (2004), Roccarespampani (2002). As shown

in Fig. 1, we added a combination of randomly inserted

small (half-hourly) gaps and a single, systematically

inserted, large gap (of length j days beginning on day k,

for all j = 1–28 and all k = 1–365) to each synthetic data

set. The small gaps were added such that the total

number of gaps would be �30%. The placement of the

small gaps was different for each of the 28 � 365

different long gap scenarios. In contrast to the

simulations to evaluate the uncertainty due to random

errors, no artificial noise was added to the synthetic data

set. We filled the missing values in the synthetic data set,

first with just the small gaps, and then again with both

the small and large gaps, and then calculated the annual

sum of gap-filled NEE for each. We then took the

difference between these two annual sums, DNEEj,k, as

a direct measure of the effect of a long gap of length j

beginning on day k on the gap-filled annual sum of

NEE. Once this had been done for each of the different

long gap scenarios, we divided the year into 12 periods

(months, m = 1–12) of equal length, and then for each

combination of j and m, calculated the standard

deviation of DNEEj,k across all k in a particular month

to give sm(DNEEj). Finally, for each month we

determined the slope, gm, of the relationship between

gap length (in days) and sm(DNEEj). We then returned

to the actual NEE measurements for each site–year

combination, and tabulated for each the length and

starting date of every gap. The gap length (in days) was

multiplied by the appropriate gm, and the resulting

uncertainties in half-hourly NEE were added in

quadrature to estimate the total additional uncertainty

in annual NEE that could be attributed to long gaps,

sLG(NEE).

2.6. Total NEE uncertainty

We estimated the total uncertainty in gap-filled NEE,

sTOT(NEE), by adding uncertainty due to random

measurement error and gap-filling uncertainty, as given

by sR(NEE), and the uncertainty due to long gaps, as

given by sLG(NEE), in quadrature:

sTOTðNEEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

R þ s2
LG

q
(7)

This calculation assumes that these two sources of

uncertainty are independent of one another.

Below, we present aggregated uncertainty estimates

as 2s uncertainties, representing approximate 95%

confidence intervals (but note that uncertainties for

individual long gaps are reported as 1s estimates).

Uncertainty estimates have units of g C m�2 year�1.
Results are presented for the following site–years of

data: Howland (1996–2004), Hesse (2001, 2002),

Hainich (2000, 2001), Vielsalm (2000, 2001), Puecha-

bon (2002), Roccarespampani (2002).

3. Results

3.1. Monte Carlo analyses

Uncertainty due to random error, 2sR(NEE), varied

among site–years by about 50%, between �23 and

�34 g C m�2 year�1 (Table 1). There was an approxi-

mately linear relationship (r = 0.52, n = 16) between the

proportion of missing observations (w, where

0 � w � 1) and 2sR(NEE), with the uncertainty equal

to 21.3 + 15.9w (standard errors on reported coefficients

are 2.6 and 6.7, respectively, and coefficients are

significantly different from zero by t-test at P � 0.001

and 0.05). Note, however, that the relationship between

w and 2sR should not be extrapolated beyond the range

of data used to fit the model, i.e., 0.2 < w < 0.6.

3.2. Long gap uncertainty

For conifer-dominated Howland, gaps of less than 5

days in length resulted in little or no additional

uncertainty (sm(DNEEj) < �5 g C m�2 year�1 for

i � 5) in annual NEE, regardless of the time of year

the gap occurred (Fig. 2A). During the winter and

autumn months, very long gaps (20 days or more) did

not add appreciably to the uncertainty. Additional

uncertainty increased rapidly with increasing gap length

during the spring and early summer (months 4–6):

during this period sm(DNEEj) � �20 g C m�2 year�1

for gaps of 20 days.

Results from the two deciduous forests, Hesse

(Fig. 3A) and Hainich (Fig. 3B) suggested that within a

given ecosystem type, the seasonal patterns of variation

in sm(DNEEj) are similar. The peak uncertainties (for
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Fig. 3. Two-dimensional surface plots illustrating how uncertainty (1s) in annual gap-filled NEE, expressed as sm(DNEEj), varied as a function of

time of year (x axis) (12 ‘‘months’’ of equal length) and gap length (y axis). Data are shown for two deciduous forests: (A) Hesse and (B) Hainich, and

two Mediterranean forests, (C) Puechabon and (D) Roccarespampani. Units are g C m�2 year�1.
the longest gaps) were slightly smaller for Hainich than

Hesse, and this was probably due to the fact that

measured fluxes at Hainich tended to be smaller. For

both sites, uncertainties increased most rapidly with gap

length during the spring (month 5) and late summer

(month 8): a week-long gap during either of these

months added a modest amount of additional uncer-

tainty (sm(DNEEj) � �10 g C m�2 year�1). As at

Howland, however, long gaps during the dormant

winter season contributed only a small amount of

additional uncertainty.

In Mediterranean systems, the patterns were some-

what different, as capturing the summer dormancy,

rather than spring onset and autumn senescence

(as at the deciduous sites), appeared to be the key

challenge. For both Puechabon (Fig. 3C) and Roccar-
Table 2

Variation across the year (divided into 12 periods of equal length) in estimate

NEE and gap length (in days), expressed as the standard deviation of the an

range of eddy flux sites. Units are (g C m�2 year�1) day�1

Month Howland 2001 Roccarespampani 2002 Puechabon 2002

1 0.11 0.19 0.12

2 0.04 0.20 0.25

3 0.57 0.59 0.35

4 1.18 0.57 0.33

5 0.89 0.68 0.64

6 0.98 1.25 1.08

7 0.68 0.85 0.70

8 0.37 0.23 0.33

9 0.33 0.53 0.16

10 0.32 0.48 0.19

11 0.26 0.59 0.21

12 0.26 0.24 0.12
espampani (Fig. 3D), the largest long gap uncertainties

occurred in month 6. Again, the similarity of the

seasonal patterns between these two Mediterranean

forests suggests that it may be possible to develop

general relationships between gap length and uncer-

tainty which can be applied to particular vegetation

types.

The colored surface plots depicted in Figs. 2 and 3

provide a visual means of qualitatively assessing the

impact of long gaps on NEE uncertainty. The patterns

can be summarized in a quantitative way by calculating

the estimated slope, gm, of the relationship between gap

length and sm(DNEEj) (Table 2). At all sites, the slope

was lower in winter and steeper during the growing

season, again reflecting the fact that uncertainty scales

with flux magnitude. Across all months, the average
s of the slope, gm, of the relationship between uncertainty in gap-filled

nual gap-filled NEE in month m for gap length j, sm(DNEEj), across a

Vielsalm 2000 Vielsalm 2001 Hesse 2001 Hainich 2000

0.20 0.24 0.09 0.02

0.30 0.40 0.07 0.03

0.59 0.34 0.09 0.32

0.30 0.48 1.15 1.00

0.65 0.82 2.11 1.65

0.65 0.71 0.90 0.98

0.41 0.64 0.95 0.65

0.33 0.83 2.09 1.23

0.53 0.33 0.75 1.10

0.36 0.38 0.59 1.15

0.26 0.27 0.35 0.12

0.11 0.23 0.05 0.11
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slope was at least 40% steeper for the deciduous sites

than either of the other forest types.

Values of gm can be used to determine the length (l) of

a gap that would result in a specified level of uncertainty,

su, i.e., l = su / gm. So, for example, a 9.5-day gap in

month 5 at Hesse will result in a similar amount of

additional uncertainty (su = �20 g C m�2 year�1) as a

16.9-day gap in month 4 at Howland, or a 24.0-day gap in

month 8 at Vielsalm.

We used the results presented in Table 1 to estimate

the total uncertainty due to long gaps, expressed at 95%

confidence as 2sLG(NEE). Across 9 years of measure-

ments at Howland, this additional uncertainty ranged

from �8 to 29 g C m�2 year�1 (Table 1). The lowest

uncertainties (��11 g C m�2 year�1) were obtained in

years with both good overall data coverage (<50%

missing observations) and no gaps longer than 7 days in

length.

At the European sites, estimates of 2sLG(NEE)

spanned a similar range, �8 to 39 g C m�2 year�1

(Table 1). The importance of minimizing long gaps

during periods of active change is well illustrated by the

Hainich results for 2000 and 2001: overall data

coverage was similar for the 2 years (�33%), but the

additional uncertainty associated with long gaps was

nearly twice as high in 2001 (�35 g C m�2 year�1) as

in 2000 (�19 g C m�2 year�1), largely because of a 14-

day gap in month 10 that accounted for >90% of the

long gap uncertainty in 2001.

3.3. Total NEE uncertainty

The total uncertainty in gap-filled NEE, 2sTOT(NEE),

which includes both random measurement uncertainty

and long gap uncertainty, varied among sites, and ranged

from �25 (Howland 2002 and Puechabon 2002) to

�44 g C m�2 year�1 (Hainich 2001) at 95% confidence.

Expressed relative to the annual net uptake, the total

uncertainty at Howland ranged between 11% (2004)

and 27% (1998) of annual NEE, with a mean across

all 9 years of 19%. The Roccarespampani site is

an extreme example, where the total uncertainty,

�30 g C m�2 year�1, is comparable in magnitude to

the annual NEE (�40 g C m�2 year�1, D. Papale,

personal communication).

There were only two instances where the

sLG(NEE) > sR(NEE), Howland 1999 (with a 20-day

gap) and Hainich 2001 (with a 14-day gap); on the

whole, the ratio of these two uncertainties (sLG/sR) was

0.58 � 0.30, resulting in a considerably smaller

contribution of sLG(NEE) to sTOT(NEE) because of

the addition in quadrature (Eq. (6)).
The total uncertainty was more strongly correlated

with the length of the longest gap (r = .70, P � 0.01)

than with the proportion of missing observations

(r = 0.45, P = 0.07). This analysis suggests that as the

length of the longest gap increases by 1 day, the total

uncertainty increases by roughly 1.0 g C m�2 year�1.

While this offers a general rule of thumb for a rough

approximation of the uncertainty, it is important to keep

in mind that the timing of the long gaps is important

(Table 2), and should to be taken into account if a more

precise uncertainty estimate is required.

4. Discussion

Using data from six different eddy flux sites, we have

endeavored to quantify the errors in annual NEE that

can be attributed to two sources: (1) random measure-

ment error, which affects not only measured data points

but also gap-filled values, because the uncertainty of the

raw measurements propagates to uncertainty in the gap-

filling model; and (2) long gaps (�1 day), which

become more problematic as the ecosystem properties

become less stationary. Although researchers have long

known in a qualitative sense that long gaps are more

problematic than short gaps, the long gap uncertainty

has not been explicitly quantified. An important result is

that this uncertainty is typically on the order of �10 to

30 g C m�2 year�1 (i.e., not �1 to 3 g C m�2 year�1 or

�100 to 300 g C m�2 year�1), and is thus roughly

comparable (usually smaller, but sometimes larger) in

magnitude to random uncertainties.

Across all site–years, the uncertainty due to random

errors was �27 g C m�2 year�1 at 95% confidence;

long gap uncertainty was about 40% smaller on average

(�16 g C m�2 year�1), but highly variable (standard

deviation of 8 g C m�2 year�1) across site–years,

depending on the length and location of the long gaps

during the year. Taking the long gap uncertainty into

account resulted in a slight increase in estimated total

uncertainty for some site–years (e.g., Howland 2001,

Hesse 2002), but more than a 40% increase for other

site–years (e.g., Howland 1999, Hainich 2001).

Our results indicate that long gaps are relatively

benign during the dormant winter season in temperate

ecosystems, and add little additional uncertainty.

However, these results confirm that long gaps are

especially pernicious during periods of active change in

ecosystem properties, because when the flux data are

missing, it is impossible to know the timing of

magnitude of the change (Falge et al., 2001). For

example, our results suggest that greater effort should

be made to minimize the long gaps during rapid
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transitions into or out of dormancy: i.e., spring and

autumn in temperate deciduous forests, and during

summer in Mediterranean forests (Fig. 3, Table 1).

The results presented here have a number of features

in common with previous findings concerning random

flux measurement error (Richardson et al., 2006a). First,

it appears that uncertainty patterns due to long gaps are

broadly similar across sites with similar vegetation

types (Fig. 3). Thus, it may be possible to apply the

slope estimates, gm, developed here to other eddy flux

sites around the world, provided the seasonal patterns of

carbon uptake and release are similar. Second, the

magnitude of the long gap uncertainty roughly scales

with the magnitude of the fluxes: for a given gap length,

uncertainties are smaller in Mediterranean and ever-

green conifer forests than in temperate deciduous

forests, and uncertainties are smaller in the dormant

winter season than during the growing season.

4.1. Potential effects of gap-filling method

The uncertainties resulting from long gaps may

depend somewhat on the gap-filling method used. The

gap-filling method employed here makes use of very

little additional environmental data; more complex

methods, such as neural network models (Van Wijk and

Bouten, 1999; Hagen et al., 2006; Richardson et al.,

2006c), or models involving additional covariates,

could potentially result in smaller long gap uncertain-

ties. Reducing long gap uncertainties requires that the

gap-filling method be better able to predict the ways in

which ecosystem properties might vary over the course

of a long gap. For example, a model making use of

information about canopy phenology, based on field

observations (Richardson et al., 2006b), radiometric

measurements (Jenkins et al., 2007), or webcam

imagery (Richardson et al., 2007) would, for temperate

deciduous forests, likely reduce spring or autumn long

gap uncertainties relative to a model without this

information. Similarly, in Mediterranean systems,

measured changes in soil water content would probably

help to better predict the onset of water-limited summer

dormancy—however, of the two Mediterranean sites in

the present study, soil water content data were only

available at one site. In both of these examples, ancillary

data could provide important information, in the

absence of fluxes themselves, about the stationarity

of ecosystem properties. Of course, it is essential that

ancillary data (as well as all other environmental

covariates) themselves be gap free.

In a comprehensive comparison of close to 20

different gap-filling methods (including the standard
Howland method employed here), Moffat et al. (in

review) found that across a range of sites, performance

of most methods (excepting two methods with much

higher RMS errors) was generally acceptable, with

RMS error for artificial ‘‘very short gap’’ and ‘‘short

gap’’ scenarios typically varying by less than 30%

across methods. The best methods (three different

neural networks) appeared to be approaching the noise

limits of the data. In the same study, RMS error for

artificial ‘‘long gap’’ scenarios (three gaps, each 12 days

long) was consistently higher than for shorter gap length

scenarios, but along with the neural networks, the gap-

filling method used here was among the least sensitive

to degraded performance in response to long gaps.

Overall long gap performance of the gap-filling method

employed here was similar to the majority of other

methods, which gives us confidence in the generality of

the results presented in Tables 1 and 2. Thus, while it

may be possible to reduce the long gap uncertainties

somewhat by application of a better gap-filling method,

we contend that uncertainties we estimate here are

probably typical, given the range of gap-filling methods

presently in use.

While it has long been known in a qualitative sense

that long gaps are more difficult to fill than short gaps,

these results provide a quantitative means by which an

estimate of this uncertainty can be obtained. We

propose that the results in Table 2 provide the

information necessary to come up with rough estimates

of the additional uncertainty due to long gaps, which

may be adequate in most situations—uncertainty

estimates are, by nature, imprecise. If site investigators

choose to use a new gap-filling method, or one that is

especially (in)sensitive to long gaps, then the step-by-

step method presented in Fig. 1 can be applied to come

up with estimates of both random and long gap

uncertainties.

4.2. Strategies for reducing long gaps

The results presented here indicate that the addi-

tional uncertainty due to long gaps in flux measurement

records can be comparable to that due to accumulated

random errors in the half-hourly flux measurements,

although in most cases it is somewhat smaller than this.

However, whereas random uncertainty due to the

stochastic nature of turbulence cannot be eliminated,

uncertainty due to long gaps can be minimized through

vigilant monitoring of system function, and a rapid

response to system failures.

With a modest investment in cyberinfrastructure,

continuous system oversight can be maintained even at



A.D. Richardson, D.Y. Hollinger / Agricultural and Forest Meteorology 147 (2007) 199–208 207
distant field sites. Many solutions exist, but to use the

Howland AmeriFlux site as an example, we use remote

access software (UltraVNC, freely available at http://

ultravnc.sourceforge.net/) to access field computers and

to verify full system functionality over the Internet. The

four flux systems we run on-site are all connected to

the field server via a wireless local area network.

Dataloggers are connected to the field server either

via serial ports or through the local network, and

environmental data are automatically downloaded every

24 h (good quality, gap-free environmental data are a

prerequisite to accurately gap-filling NEE time series).

While regular site visits are still desirable, daily remote

monitoring of the system is vastly superior to relying on

weekly trips to the site to ensure proper system function.

Near real-time access to all data streams means that

instrument failures, power interruptions, and even gross

IRGA calibration errors can all be identified within 24 h

(rather than within 7 days) and dealt with promptly.

Results presented here suggest that this vigilance is

more important at some times of the year (e.g., spring

and early summer at Howland) than others (e.g.,

winter). Careful attention to system function, especially

at these critical times of the year, will enable site

investigators to reduce the uncertainties in annual NEE.

An alternative, although more costly, approach

would be to introduce redundancy into the measurement

system. Ideally, this would consist of a completely

independent set of instruments, data logging devices, as

well as an independent power supply system. While this

approach would likely be adequate to eliminate long

gaps resulting from catastrophic failure of the primary

system, it would still be necessary to fill short gaps

resulting from periods with inadequate turbulence or

precipitation, which would affect primary and second-

ary systems similarly.

5. Conclusion

Long gaps are an additional source of uncertainty in

gap-filled NEE, and this uncertainty has not previously

been quantified. The additional uncertainty comes from

not knowing how the ecosystem properties that affect

flux exchange are changing during the gap. Historic

flux records can be analyzed to determine the rate at

which ecosystem responses to environmental forcing

change at different times of the year. Gaps that occur at

times when the rate of change is high, such as

springtime for deciduous forests, add more uncertainty

than gaps occurring at other times of the year.

Investigators need to pay careful attention to flux

measurement systems during periods of active change
in ecosystem properties. With vigilance, this uncer-

tainty can be reduced to a level that is acceptably small

(�10 g C m�2 year�1 at 95% confidence) compared to

the other sources of uncertainty in annual NEE, in

particular random measurement error and gap-filling

uncertainty.

Combining long gap uncertainty with other pre-

viously recognized sources of random uncertainty

resulted in a total net annual carbon exchange

uncertainty (at 95% confidence) of between 25 and

45 g m�2 s�1. (Note that these estimates are separate

from any systematic errors, e.g., bias due to advection.)

For this selection of sites, the uncertainties are<10% to

�100% of annual uptake. These estimates of the

uncertainty in annual net carbon exchange permit

quantitative comparisons with model results and

guidance in model inverse analyses. They also provide

information necessary for informed policy decision

making, e.g., with regard to regional and continental

scale carbon accounting.
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