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Abstract Hardwood forests and plantations are an impor-
tant economic resource for the forest products industry
worldwide and to the international trade of lumber and logs.
Hardwood trees are also planted for ecological reasons, for
example, wildlife habitat, native woodland restoration, and
riparian buffers. The demand for quality hardwood from
tree plantations will continue to rise as the worldwide
consumption of forest products increases. Tree improve-
ment of temperate hardwoods has lagged behind that of
coniferous species and hardwoods of the genera Populus
and Eucalyptus. The development of marker systems has
become an almost necessary complement to the classical
breeding and improvement of hardwood tree populations
for superior growth, form, and timber characteristics.
Molecular markers are especially valuable for determining
the reproductive biology and population structure of natural
forests and plantations, and the identity of genes affecting
quantitative traits. Clonal reproduction of commercially
important hardwood tree species provides improved plant-
ing stock for use in progeny testing and production forestry.
Development of in vitro and conventional vegetative
propagation methods allows mass production of clones of
mature, elite genotypes or genetically improved genotypes.

Genetic modification of hardwood tree species could
potentially produce trees with herbicide tolerance, disease
and pest resistance, improved wood quality, and reproduc-
tive manipulations for commercial plantations. This review
concentrates on recent advances in conventional breeding
and selection, molecular marker application, in vitro
culture, and genetic transformation, and discusses the
future challenges and opportunities for valuable temperate
(or “fine”) hardwood tree improvement.
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Introduction

Hardwood forests and plantations in North America,
Europe, and other parts of the world contain a wide range
of temperate tree species that are an important resource for
the forest products industry and to the foreign trade of
lumber and logs. In addition to timber, sawlog, and veneer
log production, hardwood trees are also planted for
wildlife habitat, native woodland restoration, riparian
buffers, erosion control, windbreaks, conservation, and
watershed protection. Some of the more valuable hard-
woods include alder (Alnus spp.), ash (Fraxinus spp.),
basswood (Tilia spp.), beech (Fagus spp.), birch (Betula
spp.), black locust (Robinia pseudoacacia), black cherry
(Prunus serotina), chestnut (Castanea spp.), elm (Ulmus
spp.), gum (Liquidambar styraciflua), hackberry (Celtis
occidentalis), hard (and soft) maples (Acer spp.), hickory
and pecan (Carya spp.), oak (Quercus spp.), sassafras
(Sassafras albidum), sycamore (Platanus spp.), walnut
(Juglans spp.), black willow (Salix nigra), and yellow
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poplar (Liriodendron tulipifera). The market for these
species can be very high because of the special appearance
(e.g., grain, figure, texture, and color) or technical proper-
ties (e.g., strength, durability, and good machining proper-
ties) compared to lesser quality hardwoods used for fuel or
pulp. These species are utilized in the manufacture of
residential and commercial structures and furnishings
(architectural millwork, cabinets, doors, flooring, furniture,
moldings, paneling, shutters, siding, and windows) and
other specialty products (barrel staves, baseball bats,
billiard cues, boat interiors, butcher blocks, carvings,
caskets, crates, gun stocks, hockey sticks, kitchen utensils,
ladders, musical instruments, oars, skis, tool handles, toys,
Venetian blinds, and woodenware).

Tree improvement of temperate hardwoods has been
more limited compared to that of coniferous species and
hardwoods of the genera Populus and Eucalyptus (Merkle
and Nairn 2005). The demand for hardwood from tree
plantations will continue to rise as the worldwide consump-
tion of forest products increases, and the environmental,
commercial, and political pressures of restricting logging of
high-quality trees from natural forests also increases (for
example, see references and working papers on forest
plantations cited in FAO 2001). Considerable effort has
been exerted over the last 40 yr in conventional tree
improvement programs through breeding and selection, and
strategies for breeding and tree improvement of temperate
hardwoods have been developed (Burley and Kanowski
2005; Michler et al. 2005). The long generation and
reproductive cycle, difficulty in conducting controlled polli-
nations, intermittent or scarce seed crops, and seed recalci-
trance of hardwood trees are some of the limitations imposed
on conventional tree breeding programs (Lantz 2007). Forest
geneticists are interested in developing populations with
disease resistance, superior growth, form, and timber
characteristics, including straighter boles and reduced
branching. Molecular marker development would be
useful in determining the genetic quality and population
structure of natural forests and plantations, and the
quantitative genes of superior trees. Clonal reproduction
of commercially important hardwood tree species is also
necessary in a tree improvement program to provide
improved planting stock for use in progeny testing and
for production forestry. In vitro and conventional vegeta-
tive propagation methods will be required to produce
clones of mature, elite genotypes or genetically improved
genotypes. Many economically important hardwood tree
species have a low genetic or physiological capacity for
adventitious root formation, and are considered recalci-
trant to routine, commercial-scale vegetative propagation.
Genetic modification of hardwood tree species to produce
trees with herbicide tolerance, disease and pest resistance,
improved wood quality, and reproductive manipulations

for commercial plantations is also a major aspect of a tree
improvement program. Development of an effective gene
transfer and efficient in vitro regeneration system for each
hardwood species, that can be easily adapted for many
genotypes, will facilitate the production of genetically
improved temperate hardwood trees.

Plantation forests and the role biotechnology can play
has been reviewed (Fenning and Gershenzon 2002). Other
recent reviews have focused on innovative technologies
that provide the basis for acceleration in forest tree
improvement (Nehra et al. 2005) and in vitro propagation,
gene transfer, and genomics for a sample of hardwood
timber and pulp species (Merkle and Nairn 2005). Because
Populus and Eucalyptus biotechnology has been recently
reviewed, we will limit our review to the hardwoods
previously mentioned. This review concentrates on con-
ventional breeding and selection, molecular marker appli-
cation, in vitro culture, genetic transformation, and future
challenges and opportunities in valuable temperate hard-
wood tree improvement. A comprehensive review of the
literature is impossible, but hopefully we have captured or
highlighted many important species and research.

Conventional Tree Improvement

The conventional improvement of hardwoods has always
lagged behind that of conifers. Deciduous hardwood
species that are used for fiber or horticulture, and those
with congeners used by those industries, have benefited
from a research crossover effect that mostly informs
biotechnological methods. Conventional breeding still
relies on a mainstay of provenance trials to evaluate local
adaptation, phenotypic selection to identify potentially
superior parents, progeny trials to evaluate those parents,
and seed orchards for the production of adapted, improved
seed. A web resource that links to many of the tree
improvement programs (including conifers) world-wide
(http://www.genfys.slu.se/staff/dagl/Documentations/
OrganisationLinks.htm) is maintained by Dag Lindgren at
SLU, Umeå, Sweden. In Europe, recent activities of the
British and Irish Hardwood Improvement Programme are
summarized in Burley (2004), including research in ash,
silver birch, wild cherry, two species of oak, sweet chestnut,
sycamore (Acer), and walnut (two species). Recent research
in Europe and elsewhere has focused at least as much on
conservation of genetic resources as on the development
(breeding) of resources (Eriksson 2001; Xie et al. 2002;
Karagöz 2003; Hosius et al. 2006), but these two activities
are closely related and interdependent. Reviews focused
specifically on tree improvement in particular regions or in
particular species are also available (Koski and Rousi
2005). In the US, summaries of hardwood breeding
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research (Byram et al. 2000; Fralish 2002; Michler et al.
2004) reflect an intermittent pattern of State, Federal, and
private investment in fine hardwood improvement that has
hampered the diligent, sustained effort necessary for
progress in conventional forest tree breeding.

DNA-based and Other Marker Systems

Genetic markers have become indispensable tools for
understanding, managing, and improving natural and
planted forest tree populations. The many marker systems
and their uses, as well as the choice of optimal system for
various research goals, are well reviewed (Gillet 1999;
Mohler and Schwarz 2004; Ziegenhagen and Fladung
2004). For some researchers, the choice of marker system
is more determined by the opportunities and constraints in
their laboratory and their technical staff than by any other
factors. The research infrastructure needed for different
marker systems has also been reviewed (see overview link
and associated content at: http://www.cgn.wur.nl/UK/CGN
+Plant+Genetic+Resources/Research/Molecular+markers).
Fortunately, most research questions can be investigated
with any of several types of markers. An excellent decision
scheme for marker choice is published by the International
Plant Genetic Resources Institute (Karp et al. 1997).

Molecular Marker Applications

The discriminatory power provided by molecular markers
can be used to resolve and understand hybridization and
species differentiation. Examples include the infamous (to
taxonomists) hybrid complexes in Quercus (Muir et al.
2000; Scotti-Saintagne et al. 2004b; Tovar-Sanchez and
Oyama 2004; Whittemore and Schaal 1991), Acer (Hasebe
et al. 1998; Skepner and Krane 1998; Joung et al. 2001),
Betula (Anamthawat-Jonsson and Thorsson 2003; Palme et
al. 2004), Fraxinus (Raquin et al. 2002), Liriodendron (Li
and Wang 2002), Platanus (Vigouroux et al. 1997), Fagus
(Ohyama et al. 1999; Gailing and von Wuelisch 2004),
Juglans (Manos and Stone 2001; Orel et al. 2003), Tilia
(Fineschi et al. 2003), and Salix (Hardig et al. 2000).
Understanding the nature and origins of hybrids is
important to breeders, ecologists, and taxonomists. DNA
markers are the most commonly used molecular tools for
identifying species and interspecific hybrids, and marker
systems describing hybridization relevant to hardwood
improvement have been described for Alnus (Prat 1988),
Betula (Clausen 1979), Juglans (Potter et al. 2002),
Liriodendron (Wang 2003), Platanus (Santini 2001), Salix
(Krstinic and Kajba 1997) Ulmus (Pinon et al. 1999), and
probably other genera as well.

The capacity of molecular markers to permit the
assignment of a sample to a particular individual, prove-
nance, stand or species within an allowable likelihood of
error (Douhovnikoff and Dodd 2003) has led to a wide
variety of practical applications. Conservation biologists
use markers to monitor and validate the identity of
accessions in ex situ collections (Goodall-Copestake et al.
2005); breeders and nurseries make use of the large number
of alleles and high heterozygosity in most forest tree
species to genotype or “fingerprint” breeding materials
and to reconstruct pedigrees (Dangl et al. 2005). This
technique is used more among horticultural breeders than
forest tree breeders (Tobolski and Kemery 1992; Conner
and Wood 2001; Boccacci et al. 2004; Pooler and
Townsend 2005). Breeders have also used markers to
monitor and understand levels of genetic diversity and
genetic differentiation in breeding populations compared to
wild relatives (Panda et al. 2003; Aradhya et al. 2004).
When marker resolution and population genetic structure
permit the identification of specific stands or provenances
(e.g., Ferris et al. 1997; Hamann et al. 1998; Kelleher et al.
2004), then breeders can potentially make use of the
untapped genetic variability located there (Ruter et al.
1999). An important use of markers related to forest
management concerns the certification and characterization
of seed sources (Heinze and Lexer 2000; Gregorius and von
Werder 2002; Ziehe and Hattemer 2004). Novel applica-
tions of marker technology in forest genetics include
forensic applications to prosecute log theft (Woeste,
unpublished data) and possibly in the certification of wood
products, archaeology, and paleobotany (Dumolin-Lapegue
et al. 1999; Deguilloux et al. 2003, 2004).

Insight into evolutionary processes and the spatial,
temporal, and demographic changes that affect them has
been significantly advanced by the development of
molecular markers. The conservation biology of woody
plants can hardly be addressed without consideration of the
types of molecular variation found in them (see Linhart
2000 and citations therein). With specific reference to
conservation of forest genetic resources and intraspecific
variation, research describing and monitoring genetic
diversity has been pursued for many of the most important
temperate hardwoods (reviewed in Newton et al. 1999;
Eriksson 2001; see also Fjellstrom and Parfitt 1994;
Machon et al. 1997; Huh 1999; Heuertz et al. 2001;
Bellarosa et al. 2003; Fineschi et al. 2003; Rusanen et al.
2003; Cros 2004; Rowden et al. 2004; Tsumura et al. 2004;
Goodall-Copestake et al. 2005).

Pollen, in many important hardwood species, is wind-
dispersed. The lacuna in our understanding of male
parentage has been colored in by studies in a variety of
genera (Merzeau et al. 1989; Streiff et al. 1999; Heuertz et
al. 2003). Until the development of genetic marker
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systems, it was not possible to characterize the flow of
pollen in disturbed sites (Sork et al. 2002; Goto et al.
2004), natural stands (Dow and Ashley 1996; Garcia et al.
2005), or breeding populations (Arbeloa et al. 2006;
Grauke et al. 2006).

Genetic Maps

Genetic maps are useful or even necessary tools for whole
genome selection (marker-assisted backcross breeding),
quantitative trait loci (QTL) analysis, and other trait
mapping procedures, gene discovery, studies related to
genomics and genome evolution, and studies of species
differentiation. The quality of a genetic map is determined
by the number and types of markers used, and the size and
types of population(s) used to analyze segregation. The
existing genetic maps for most hardwoods are not as useful
as those for agronomic crops because in most hardwood
species large full-sib populations are difficult to generate,
the number of markers is relatively small, and most maps
are based on markers that are not tied to physical or
transcriptional landmarks such as expressed sequence tags
(ESTs), which would increase their usefulness for genomic
and other types of research. There are, nevertheless,
published genetic maps for a number of hardwood tree
species and genera:

Species or genus Markers used in the map Reference
Betula pendula SSR, AFLP Pekkinen et al. 2005
Carya
illinoinensis

RAPD, AFLP Beedanagari et al.
2005

Castanea sativa RAPD, ISSR, isozymes Casasoli et al. 2001
Fagus sylvatica RAPD, AFLP, SSR Scalfi et al. 2004
Juglans RAPD, RFLP Woeste et al. 1996a
Prunus SSR Howad et al. 2005
Quercus robur RAPD, SCAR,

Minisatellite
Barreneche et al.
1998

Isozyme, SSR, 5S rDNA
Salix AFLP, RFLP Tsarouhas et al. 2002

AFLP, SSR Hanley et al. 2002

Gene discovery, genomics, and other “-omics” methods
were first developed for animal research, but later applied to
model plants. These methods are now being applied in
forest trees grown for fiber (Brinker et al. 2004; Kirst et al.
2004; reviewed in Plomion et al. 2005). Genomic research
in fine hardwoods can be divided into gene characteriza-
tion and genome-wide approaches, including microarrays.
Gene characterization studies may be based on the
analysis of genes shown in model systems to affect
important physiological processes such as photosynthesis
and senescence (Valjakka et al. 1999; Sillanpää et al.

2005). A second approach is to identify differentially
expressed genes in a hardwood species of interest (Label
et al. 2001; Beritognolo et al. 2002). Often, sequences for
these genes are derived from EST databases generated by
sequencing cDNA libraries from tissues of interest
(Connors et al. 2001). Techniques such as differential
display (Schafleitner and Wilhelm 2002; Gil et al. 2003)
and representational difference analysis can be used to
find regions of genomic differentiation between samples
or species (Zoldos et al. 2001). Whole genome analysis
via microarray (Yang et al. 2003; Yang et al. 2004; Quere
et al. 2005) or proteome analysis using 2-D gel electro-
phoresis (Jorge et al. 2005) holds out promise for
hardwoods that is being realized in crop plants (Dunwell
et al. 2001).

DNA Markers and In Vitro Technologies

DNA-based molecular markers have been used to identify
and verify the origins and stability of in vitro cultures and
plants regenerated from culture. RAPD and AFLP have
been used for this purpose when specific sequence data are
not available (Vendrame et al. 2000; Sanchez et al. 2003;
Martins et al. 2004). Microsatellites, which are hyper-
variable, are especially sensitive and effective markers for
this type of research (Wilhelm et al. 2005; Lopes et al.
2006) and for monitoring somatic mutation in long-term
storage (Ryynanen and Aronen 2005) because they are
relatively easy to use once primer sequences have been
identified. Markers can be used in conjunction with in
vitro propagation to increase the efficiency of breeding by
assigning paternity to zygotic embryos in culture, making
possible subsequent selection on genotype (Hormaza
1999).

The efficiency of plant transformation and regeneration
may be improved by a better understanding of the molecular
biology of critical steps in the process. Genomics and
research in non-hardwood species (Brinker et al. 2004;
Lippert et al. 2005; Zamboni et al. 2005) make possible
smaller-scale, candidate gene approaches to understand
embryogenesis and development in vitro. Proteins such as
the heat shock proteins (Puigderrajols et al. 2002), legumins,
and dehydrins (Sunderlikova and Wilhelm 2002) are
expressed by large gene families with members that may
be useful as markers of the physiological condition of
somatic embryos. Later stages of plant development in vitro
may also be monitored using RNA or protein-based markers.
Antisense chalcone synthase was found to enhance adven-
titious rooting of walnut, probably by altering the flavonoid
metabolism of microshoots and, thereby, auxin flow (El
Euch et al. 1998).
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Marker-assisted selection (MAS) includes a class of
breeding decisions based at least partly on genotypic data.
One common type of genomic data used in making breeding
decisions is the mapping of QTL. Quantitative trait loci are
loci affecting quantitative phenotypic traits that are mapped
to a specific region of the genome. Typically, QTL are
identified in the progeny of crosses between two phenotyp-
ically distinct parents. Most often, QTL mapping is
performed in self-fertilizing species, but methods have been
developed for outcrossing species as well (Cervantez-
Martinez and Brown 2004). QTL are not genes but blocks
of genes in linkage disequilibrium; that is, they cosegregate
because they are physically linked to one another. Genes
responsible for quantitative variation have been found
within QTL (Fridman et al. 2000; Paran and Zamir 2003),
but the genetic structure of QTL is often complex (Ross-
Ibarra 2005) and QTL usually contain large numbers of
genes (almost always >10), some of which are coordinately
regulated (Thomson et al. 2006). QTL mapping requires a
large number of mapped, DNA-based markers evenly
spaced in the genome, an accurate pedigree, and accurate
phenotypes for each of the members of the pedigree.
Results from QTL analysis increase in reliability as more
phenotypes are scored. Some QTL in hardwoods have
been shown to be stable over time (Casasoli et al. 2004)
and space (Scotti-Saintagne et al. 2004a), but other QTL
have proven less stable (Tsarouhas et al. 2002). QTL can
be stable across environments (Shepherd and Jones 2004)
or show strong genotype × environment effects (Slate
2005). The case for practical molecular mapping in forest
trees has been made (Wu et al. 2000), but maps and pedi-
grees are scarce commodities for many hardwood species. It
is possible to map QTL in unmanipulated, natural popula-
tions (Slate 2005), but the interpretation of the results is not
straightforward. Once QTL are located in one member of a
family, they may sometimes collocate to orthologous map
loci in related species or genera (Shepherd and Jones 2004;
Gailing et al. 2005; Casasoli et al. 2006), but the stability of
QTL across populations, especially populations under
greatly different selective pressures, cannot be assumed
(Slate 2005). Whereas QTL have been used in the
improvement of a large number of crops, the practical
and theoretical limitations of QTL in breeding are many
(Xie and Xu 1997; Bernardo and Charcosset 2006). Other
types of MAS include gene tagging (Bernatzky and
Mulcahy 1992; Woeste et al. 1996b; Wang et al. 2004),
identification of parents or progenitors of phenotypically
valuable offspring (Akerman et al. 1995; Grattapaglia
et al. 2004; Blenda et al. 2006), and whole genome
selection backcross breeding (Kubisiak et al. 1997).

Forest tree breeders and conservation geneticists would
like to be able to use the large amount of population genetic
data now available to understand, conserve, and utilize the

enormous phenotypic and adaptive variation of wild
populations. Unfortunately, variability at neutral genetic
markers and QTL cannot be simply translated into a measure
of adaptive variation (Geburek 1997; Karhu et al. 1996;
McKay and Latta 2002; Gonzalez-Martinez et al. 2006).
Spitze (1993) defined a parameter Qst, that is analogous to
Wright’s (1951) Fst, to describe the partitioning of
quantitative genetic variation (not phenotypic variation)
within and among subdivided populations. The “magnitude
of the difference between Qst and Fst can be used to infer
the degree of local adaptation” of a population (McKay and
Latta 2002; Storz 2002). In a meta-analysis, McKay and
Latta (2002) found that populations can maintain substan-
tial adaptive differences in spite of high levels of gene flow
(a feature common in many hardwood forest species).
Consequently, populations can be markedly different for
adaptive traits, but have small differences in allele
frequencies at QTL. The comparison of Qst and Fst has
been used to identify clonal variation in a population of fish
and mammals (Storz 2002; Rogers and Bernatchez 2005),
but the method requires careful application to avoid pitfalls
(Waldmann et al. 2005). In addition to traditional common
garden experiments and QTL, a number of new approaches
for understanding the nature of quantitative phenotypic
variation in natural populations have emerged, including
the application of spatial analysis to patterns of genetic
diversity (Escudero et al. 2003), an approach now called
landscape genetics (Manel et al. 2003), association genetics
(Neale and Savolainen 2004), and linkage disequilibrium
mapping (see Ehrenreich and Purugganan 2006 and
citations therein).

Association genetics (AG) is similar to QTL approaches
and is more amenable to hardwoods because it does not rely
on a structured pedigree, but instead analyzes the variation
within an entire population (Neale and Savolainen 2004).
Landscape genetics attempts to identify spatial patterns
such as clines, isolation by distance, and discontinuities,
and associate them with landscape or environmental
features. In effect, the tools of molecular genetics are
combined with biogeography and landscape ecology.
Landscape genetics maps variation in allele frequency and
correlates them with current or previous ecological vari-
ability or landscape features (Manel et al. 2003). Linkage
disequilibrium (LD) mapping is an alternative to QTL for
mapping adaptive genes. Originally developed for human
genetics (Pritchard and Przeworski 2001), LD mapping is
based on the LD of polymorphisms within a population
with other polymorphisms that have functional effects. LD
mapping can be applied to wild, unstructured, and
unpedigreed populations, but its effectiveness is primarily
determined by the rate of LD decay, which varies across
species and, potentially, populations (Gonzalez-Martinez
et al. 2006). Expression mapping is another technique for
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identifying loci responsible for adaptive variation. Expres-
sion mapping produces eQTL based on whole genome
arrays. The eQTL is a marker interval associated with tran-
scriptional differences (Gibson and Weir 2005). The trend
in genetic analysis is toward sequence-based markers such
as ESTs or markers derived from ESTs, and single nucle-
otide polymorphisms (SNPs; Rafalski 2002), markers for
which sequence variation can potentially be directly linked
to phenotypic variance. The capacity of modern sequencing
technology to generate genotypic data using SNPs and ESTs
has led to what has been called a phenotype gap (Miflin
2000) that can only be filled by the expansion of phenomics.
Whether LD mapping, QTL or SNP-based haplotyping
approaches to MAS and molecular breeding are as success-
ful as simple recurrent phenotypic selection may depend on
what is learned about the genetic structure of quantitative
variation (Morgante and Salamini 2003). A strictly quanti-
tative approach to the conservation of forest tree genetic
resources has also been described (Yanchuk 2001).

In Vitro Culture

Research on in vitro culture of hardwood species in a tree
improvement program is usually conducted with the
ultimate goal of clonally propagating mature, elite geno-
types and producing plants on their own roots. Micro-
propagation of these genotypes may provide genetically
uniform material for breeding and seed orchards, planta-
tions, production of improved transgenic trees, and trees
on their own roots may be more productive than grafted
trees. However, rooting and acclimatization of microshoots
of different genotypes on a commercial scale are limi-
tations in the micropropagation of some temperate hard-
wood tree species (e.g., Juglans nigra, Quercus rubra, and
Castanea dentata). In vitro culture can also be utilized for
the development of regeneration systems (adventitious or
embryogenic) for genetic modification, in vitro selection
for disease and pest resistance, conservation of germ plasm
(cryopreservation) of endangered or threatened tree species,
and understanding the basic physiological and biochemical
mechanisms involved in tree growth and development. In
vitro culture may also provide a model system to study wood
formation (Leitch and Bossinger 2004).

Micropropagation. Micropropagation can be defined as
the in vitro clonal propagation of plants from shoot tips or
nodal explants, usually with an accelerated proliferation of
shoots during subcultures (Schaeffer 1990). Micropropa-
gation of valuable temperate hardwood tree species has
been successful using explants originating from seeds,
seedlings, and young trees. These protocols, developed
with juvenile explants, can then be useful in the develop-

ment of in vitro propagation systems for mature, selected
trees. Several species of valuable hardwoods have been
successfully propagated using explants from grafted
(mature scions) plants or mature trees. Most commercial-
scale micropropagation of hardwood tree species has been
successful with species or cultivars selected for nut
production, rootstock quality, or ornamental characteristics
(e.g., fall foliage, shape, hardiness) and not specifically for
timber quality. Sycamore maple (Acer pseudoplatanus)
can be micropropagated via a photoautotrophic system
(Hennerty et al. 2001) and from stump sprouts (Rohr and
Hanus 1987). Alnus glutinosa (European black alder) was
micropropagated using shoot tips taken from fruit-bearing
branches of a sexually mature tree (Lall et al. 2005). Alnus
cordata (Italian alder) can be propagated using axillary bud
explants from rooted stem cuttings originating from mature
mother trees (Barghchi 1988). Cultivars of silver birch
(Betula pendula) are commercially micropropagated, and
protocols using mature tissue have been reported (Sarkilahti
1988; Chalupa 1989; Jones et al. 1996). Castanea dentata
(American chestnut) was propagated from stump sprouts of a
mature tree (Xing et al. 1997). European chestnut (Castanea
sativa) is more responsive to micropropagation and rooting
when basal shoot explants are taken from mature trees
(Sanchez and Vieitez 1991; Sanchez et al. 1997; Fernandez-
Lorenzo et al. 2005) or when serial grafting is used to
reinvigorate a mature chestnut (Giovannelli and Giannini
2000). Mature American beech (Fagus grandifolia) can be
propagated using shoot tips from root sprouts and dormant
buds (Barker et al. 1997). Several researchers have reported
on the factors influencing micropropagation of mature Fagus
sylvatica (Nadel et al. 1991a, b; Meier and Reuther 1994;
Meena and Ahuja 1996). Propagation of several selected
clones of Fraxinus excelsior (European ash) was successful
when buds were taken from grafted (mature scion) plants
(Douglas 2001; Hennerty et al. 2001). Microshoots were also
achieved from a mature ash tree (F. excelsior), and shoot
buds developed when compound leaves from these micro-
shoots were cultured (Hammatt 1994). Fraxinus angustifolia
(narrow-leaved ash) has been micropropagated from mature
shoot tips and nodal explants (Perez-Parron et al. 1994).
Micropropagation of mature Persian walnuts has been
pursued since 1984, with recent propagation reports for
Juglans regia selected for nut production, rootstock, or
timber production (Dolcet-Sanjuan et al. 2004; Vahdati et al.
2004). Progress with this species should be applicable to
improving the in vitro propagation of mature black walnut
(J. nigra; Stefan 1989; van Sambeek et al. 1997). A
genotype effect was reported with sweetgum (Liquidambar
styraciflua) micropropagation from mature selections (Sutter
and Barker 1985). Wild cherry (Prunus avium) can be
propagated from buds, shoot tips, and root suckers of mature
trees (Hammatt and Grant 1993; Harrington et al. 1994;
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Pevalek et al. 1994; Hammatt and Grant 1997; Hammatt et
al. 1998; Hammatt 1999; Durkovic 2006). Mature clones
(grafted plants) of P. serotina (black cherry) have been
micropropagated and field tested (Tricoli et al. 1985;
Maynard 1994). Several Quercus species (Q. petraea, Q.
robur, Q. rubra, and Q. suber) have been micropropagated
from mature explants (San-Jose et al. 1990; Romano et al.
1992; Juncker and Favre 1994; Sanchez et al. 1996; Chalupa
2000; Vidal et al. 2003). Black locust (R. pseudoacacia) can
be propagated using dormant vegetative buds, shoot tips, and
nodal segment explants of mature trees (Davis and Keathley
1987a, b; Kamlesh et al. 1995; Han et al. 1997; Nakatsubo et
al. 2003). Plantlet regeneration has been achieved with Tilia
cordata (small-leaved linden) using buds from mature trees
(Youn et al. 1988; Mala et al. 2001). Tilia platyphyllos
(large-leaved linden) has been propagated from mature trees
by axillary shoot proliferation from nodal segments and
shoot tips (Chalupa 2003). American elm (Ulmus ameri-
cana) was micropropagated from nodal segments taken
from shoot sprouts of root cuttings of a 36-yr-old
American elm selection (Chanon et al. 1997). The use of
micropropagated plants as rejuvenated stock for cutting
propagation is becoming a standard for the economical
cloning of hardwood trees. Although progress continues to
be made in the micropropagation of mature temperate
hardwood tree species, further research is needed to
clonally multiply, root, and acclimatize these species
efficiently on a commercial scale.

Somatic embryogenesis. In plant culture, somatic embryo-
genesis is the process of embryo initiation and development
from vegetative or nongametic cells (Schaeffer 1990). Most
somatic embryos (SE) are initiated using juvenile tissue
(immature and mature zygotic embryos). There have been
numerous journal reports, book chapters, and proceedings
published on the successful initiation of SE from temperate
hardwood tree species (too numerous to do the subject
justice in this review). Table 1 highlights recent advances
(the last 10 yr) in somatic embryogenesis of some important
temperate hardwood species (see also reviews by Wilhelm
2000; Merkle and Nairn 2005; Nehra et al. 2005). Induction
frequency of SE can be low or high, but maintenance of
embryogenic cell lines, maturation, conversion, and accli-
matization of plants at high frequency from these SE can be
problematic for several species. It is also well known that
genotype influences the induction of SE. Long-term
maintenance of repetitive embryogenic cultures, progress
in plantlet regeneration, and initiation of SE from mature
tissue could provide a means for mass propagation and
genetic modification of superior timber species.

Adventitious shoot regeneration. Adventitious has been
defined as the development from unusual points of origin,

such as shoots or root tissues from callus, or embryos from
sources other than zygotes (Schaeffer 1990). Adventitious
shoot production is undesirable for clonal propagation
because of the possibility of somaclonal variation. However,
advances in the development of protocols for adventitious
shoot regeneration, rooting, and acclimatization of plants will
be applicable for the genetic modification and improvement of
selected timber tree species. Adventitious shoots of sycamore
maple (A. pseudoplatanus) can be regenerated from zygotic
embryo explants and plants acclimatized under high humidity
(Wilhelm 1999). European birch (B. pendula) has been re-
generated from leaf explants from a mature tree (Leege and
Tripepi 1993). Immature and mature seeds were used for
adventitious regeneration of plants of Fraxinus americana
and F. excelsior (Bates et al. 1992; Tabrett and Hammatt,
1992). Regeneration of plants through bud or shoot organo-
genesis frommature embryonic explants was achieved with F.
angustifolia (Tonon et al. 2001). Plants have been regen-
erated from leaves and internodal sections of cultivars of P.
avium (Bhagwat and Lane 2004; Matt and Jehle 2005).
Plants regenerated from leaves of in vitro shoot cultures of
P. serotina survived acclimatization and overwintering in
cold storage (Espinosa et al. 2006). Barghchi and Chi
(1998) reported the regeneration of plants from various
explant types from seedlings of R. pseudoacacia grown in
vitro. Lyyra et al. (2006) regenerated black willow (S.
nigra) plants from unexpanded inflorescence explants
excised from dormant buds of mature trees.

Cryopreservation. Cryopreservation is the ultralow temper-
ature (−196°C) storage of cells, tissues, embryos, or seeds
(Schaeffer 1990), where biochemical and most physical
processes are completely arrested. Cryopreservation involves
multiple steps to be successful (choice of material, pretreat-
ment, freezing, storage, thawing, and post-treatment han-
dling) for each species. Cryopreservation has several
advantages in a tree improvement program, such as the
long-term storage of valuable germ plasm, pollen, genetical-
ly transformed lines, and recalcitrant seeds, and it also allows
propagation of elite genotypes throughout the year. A recent
report describes the procedures most commonly used in the
cryopreservation of crops and forest trees (Panis and
Lambardi 2005). Ryynanen and Aronen (2005) reported no
genetic or phenotypic changes in the short- and long-term
culture and cryopreservation of birch (B. pendula). Pecan
(Carya illinoinensis) pollen stored for 1–13 yr in liquid
nitrogen showed no diminished viability, and the morphol-
ogy of pollen grains and the germ tube was normal
compared to freshly collected pollen (Sparks and Yates
2002). Plants of C. sativa can be recovered after cryopres-
ervation of in vitro grown shoot apices using vitrification
(Vidal et al. 2005). Shoot tips of ash (F. excelsior) grown in
vitro were successfully cryopreserved and a mean regrowth
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of 67% was achieved for selected mature trees (Schoenweiss
et al. 2005). Somatic seedlings were regenerated from L.
tulipifera cultures stored in liquid nitrogen for 48 h
(Vendrame et al. 2001). Verleysen et al. (2005) reported the
successful cryopreservation of R. pseudoacacia via vitrifica-
tion and encapsulation-dehydration. Seeds of T. cordata
show 65–75% seedling emergence after freezing
in liquid nitrogen, if seeds are dried to 11–20% moisture
content and scarified before freezing (Chmielarz 2002).
Dormant buds of three elm species (U. glabra, U. laevis,
and U. minor) were collected in nine European countries and
successfully cryopreserved (Harvengt et al. 2004). The
cryopreservation of these 444 elm clones had no negative
effect on the viability and regrowth potential of frozen buds.

Genetic Transformation

Genetic engineering provides an opportunity to modify tree
species to enhance productivity and increase resistance to

diseases (Powell et al. 2006), insects, and environmental
stress, thereby complementing conventional breeding and
selection programs. The tree improvement strategy involves
both short- and long-term measures for ensuring an
immediate and sustained supply of quality planting stock.
The potential also exists to allow precision improvement of
individual traits in forest trees without losing the unique
combination of traits in the parental line. Several major goals
for the genetic improvement of temperate hardwood tree
species are the development of genotypes having traits such
as time to maturity, resistance to biotic and abiotic stress, and
desirable tree growth and wood quality. Gene transfer in
several hardwood species has been recently and thoroughly
reviewed and will not be duplicated here (Merkle and Nairn
2005; Nehra et al. 2005). Only recent advances or species
not covered in these reviews will be discussed.

Species of Alnus, mainly A. incana and A. glutinosa, were
reported to be amenable to transformation via electroporation
of protoplasts. An in-depth study of the transformation
parameters suggested that higher voltages applied during
electroporation in the presence of higher DNA concentra-

Table 1. Recent advances (1996–2006) in somatic embryogenesis of some important temperate hardwood species

Species Explant tissue Results or Information References

Betula
pendula

SE Bioreactor development Hvoslef-Eide et al. 2005

Carya
illinoinensis

Immature ZE Field and Molecular evaluation Vendrame et al. 2000

Castanea
dentata

Ovules; immature ZE Somatic seedling production Andrade and Merkle 2005

Fagus
sylvatica

Immature ZE,
embryogenic callus

SE; plants Naujoks 2003; Vieitez et al. 2003

Fraxinus
angustifolia

Immature ZE Plants; synchronous SE Tonon et al. 2001a, b

Juglans
nigra

Cotyledons of
immature seeds

SE Bosela et al. 2004; Steger and Preece 2003

Juglans regia Immature ZE;
mature embryos

SE; plants; flowering; desiccation Breton et al. 2004; Dumanoglu 2000; Kaur et al. 2006;
Sanchez-Zamora et al. 2006; Tang et al. 2000

Quercus
petraea

SE Inhibition of phenolic biosynthesis Cvikrova et al. 2003

Quercus
robur

Leaves (mature
tree); ZE

Plants; encapsulation; physiology;
histology, RAPD analysis

Chalupa 2000; Prewein and Wilhelm 2003; Prewein et al.
2006; Valladares et al. 2006; Zegzouti et al. 2001

Quercus
rubra

Cotyledons of
immature seeds

SE Bosela et al. 2004

Quercus
suber

Leaves (mature
tree); SE

SE; plants; ploidy stability; SE;
histology; heat shock proteins

Garcia-Martin et al. 2005; Loureiro et al. 2005;
Puigderrajols et al. 2000, 2002.

Robinia
pseudoacacia

Mature seeds SE; embryogenic callus Barghchi and Chi 1998

Tilia cordata Immature
cotyledonary embryos

Anatomical SE development Karkonen 2000

Tilia
platyphyllos

Zygotic embryos SE; plants Chalupa 2003

See also Merkle and Nairn 2005; Nehra et al. 2005; and Wilhelm 2000. References cited within these papers and citations in previous reviews are
not reported here.
SE=somatic embryos; ZE=zygotic embryos
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tions of the plasmid produced more β-glucuronidase (GUS)
activity from fewer surviving cells (Seguin and Lalonde
1988). Use of the Agrobacterium tumefaciens strain Ach5 for
the transformation of nine clones of Alnus was demonstrated
by Mackay et al. (1988). Valjakka et al. (2000) developed a
protocol for transferring the nptII and RbcS genes into B.
pendula using particle bombardment. Genotypic variation
played a significant role in influencing DNA delivery. Only
a single clone could be transformed and regenerated with the
RbcS gene with a transformation frequency of 6 % as
confirmed by Southern analysis; whereas only transgenic
callus developed from the rest of the clones. Critical
parameters for optimal gene delivery using the Helios™
gene gun for B. pendula were studied by Helenius et al.
(2000). Genetic constructs contained the luciferase (LUC) and
GUS genes. Helium pressure and the size of the gold particles
played a crucial role in transferring DNA into the cells of the
leaf explants. Significant transient gene expression was
observed using 0.04 μg DNA per shot. An insecticidal
peptide gene was transferred into birch using leaf, stem, and
leaf stalk segments with GUS as the reporter gene (Zhan et al.
2001). GUS analysis revealed that 34 % of kanamycin-
resistant plants had GUS activity. A co-inoculation method-
ology was used for the transformation of silver birch
(Aronen et al. 2002). Two strains, 82.139 and C58C1, both
with the pGUSINT, were used to co-inoculate seedlings and
in vitro shoot cultures. It was observed that the higher the
concentrations of the 82.139 strain in the inoculation
mixture, the greater the gall and shoot formation frequencies
under greenhouse and in vitro conditions. Although no
transgenic plant recovery could be obtained, shoots that
regenerated from the infected explants showed the integra-
tion of the T-DNA as verified by polymerase chain reaction
(PCR). Lemmetyinen et al. (2004) showed that flowering
could be prevented in B. pendula through the use of the
BARNASE gene under the control of the BpMADS1 pro-
moter. Inflorescences did not form or aborted early in the
transformed plants. Inflorescences that did develop were
without stamens or pistils. However, the construct caused
unwanted changes in vegetative development such as,
bonsai-like growth, increased branching, absence of axillary
buds, and darkening of leaves. Pecan genotypes were
evaluated for the production of transformed plants using A.
tumefaciens strain EHA101 containing the APH3’II and
GUS genes (McGranahan et al. 1993). Variations in GUS
activity were observed between two induction media and
kanamycin concentrations did not affect the recovery
percentage of transformed embryos. The study also con-
firmed that a variation exists among pecan genotypes toward
transformation and production of transgenic embryos, and
somatic embryos of pecan can serve as potential target tissue
for transformation. Further contributions toward improve-
ment of pecan breeding and development will be associated

with the identification of genes for insect and disease
resistance, increased yield, and nut quality (Vendrame and
Wetzstein 2005).

Advancement in chestnut transformation was mainly
observed by choosing marker, reporter genes, and alternate
explants such as pollen. Polin et al. (2006) used a construct
with three genes (gfp, bar, and oxalate oxidase) for
transformation of American chestnut somatic embryos. This
was the first report on the successful regeneration of
transgenic American chestnut somatic embryos with normal
plant development. The expression of the oxalate oxidase
gene was detected in one transgenic line. Later, transgenic
plantlets were successfully acclimatized and two were
transferred into the field (Maynard, personal communica-
tion). When pollen was used as the target explant for gene
transfer (Fernando et al. 2006) the main objective was to
use viable transgenic pollen for artificial pollination and
fertilization of receptive female flowers. A pBIN 35S-
mgfp5-ER plasmid construct was used and the DNA was
transferred via particle bombardment. Because transgenic
pollen was the goal, parameters that influenced transforma-
tion mainly target distance and helium pressure, and the
developmental stage of pollen was optimized utilizing GFP
expression. Conventional chestnut breeding requires supe-
rior cultivars, and genetic engineering offers a potential
means to overcome factors that limit its breeding. Because
the demand for the crop has surpassed the supply, there is
an immediate need to develop insect- and disease-resistant
genotypes, and high-yielding Castanea clones (Vieitez and
Merkle 2005). One other temperate hardwood species that
required transfer of fungal resistance genes, other than
chestnut, was elm. Successful transformation of Chinese
elm (Ulmus parvifolia) was reported by Aziz et al. (2003)
using hypocotyl-derived callus as explants and phosphino-
thricin as the selection agent. Production of buds and shoots
differed from one callus explant to another. However, eight
out of ten putatively transformed tissues displayed ampli-
fication of the bar gene as confirmed by PCR analysis.
Newhouse et al. (2006) developed a leaf piece-based
transformation system for American elm. Transgenic elm
plantlets containing an antimicrobial peptide gene (Powell
et al. 1995, 2000) were regenerated (Powell, personal com-
munication). Because walnuts are difficult to root using
conventional methodologies, Agrobacterium rhizogenes
was used to infect microcuttings of J. regia (Falasca et al.
2000). Infected cuttings showed a high degree of rhizo-
genesis. Bacteria were present in the roots and the roots
were chimeric. Similarly, rolABC genes were transferred
into a hybrid walnut (J. hindsii × J. regia) rootstock to
improve the rooting potential (Vahdati et al. 2002).
Transgenic subclones budded onto J. regia seedling root-
stocks resulted in growth of trees with reduced internode
length and increased lateral branching with wrinkled leaves.
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After grafting scions of J. regia onto transformed and
nontransformed cuttings, the rooting potential was studied
and compared to the controls. The transformed cuttings
showed poor rooting potential both in vitro and in the
greenhouse, despite the fact that the rolABC genes altered
the growth characteristics and produced a fibrous root
system. Influence of the selection agent kanamycin at low
and stringent frequencies on somatic embryo production in
black walnut (J. nigra) was studied by Bosela et al. (2004).
The presence of kanamycin in the selection medium reduced
the proliferation of embryos and a large number of chimeric
secondary embryos were obtained. Fewer than 10 % of the
initial secondary embryos were wholly transgenic and they
were essential for the initiation of stable transgenic lines.
Emphasis is being placed on J. regia transformation for
nutritional enhancement, altering oil and fat composition,
and improvement of shelf life (Dandekar et al. 2002).
Although J. regia transformation has become routine
through a somatic embryogenesis regeneration system, the
industry’s acceptance of transgenic scion production has
decreased (Mehlenbacher 2003). Genetic engineering of J.
regia has resulted in the production of walnuts resistant to
codling moth, crown gall disease, and commercially
important rootstock problems (Dandekar et al. 2005). An
understanding of walnut physiology and metabolism has
presented additional opportunities for improving timber and
kernel traits.

Susceptibility of P. avium to six different wild-type
Agrobacterium strains was analyzed by Brasileiro et al.
(1991). Micropropagated shoots infected with the nopaline
strains C58, 84.5, and 82.139 developed tumors, which
subsequently produced shoots. These shoots were of two
different types and those with a normal morphology rooted,
whereas the abnormal shoots did not root. Meristem-tips
propagated in vitro from microshoots of P. avium (sweet
cherry) cv. Summit were transformed via particle bombard-
ment using the plasmid pUC 18 basta-gus (Druart et al.
1998). Most of the bombarded meristems produced trans-
formed shoots, which were cloned by axillary branching.
Transformation status of the shoots was observed through
GUS reaction on leaves or shoots. Buds and rosettes
developing from the meristems and stems from the clones
also showed transient GUS activity. Another target gene for
transformation was the ipt gene that was transferred into
callus lines of P. avium (Grant et al. 1998). Among the
several transformed callus lines obtained, only one line
developed shoots with an abnormal morphology, but was
observed to produce nopaline. Pratesi et al. (2004) studied
the competence of various tissues to Agrobacterium
infection for two genotypes of P. avium. Stem tissues were
more amenable to transformation than were petioles and
leaves, and post-inoculation culture conditions influenced
GUS expression notably in the leaf explants. The use of

wild cherry for silviculture and timber production has been
reduced considerably because of the breeding of available
stock for fruit production and ease of collection (Burley
2004). Trees selected for timber will need to exhibit
different growth features such as minimal branching,
vigorous apical growth, and less susceptibility toward
bacterial canker. In addition, the genetic improvement of
Prunus genotypes that can tolerate adverse biotic and
abiotic conditions would help growers and at the same
time deliver products much appreciated by consumers. An
encouraging feature throughout the transformation studies
in Q. suber was the advantage of somatic embryogenesis
for the routine production of transgenic plants (Sánchez
et al. 2005). As evaluated by PCR, 5.8 % of surviving
pro-embryos were GUS-positive after infection with A.
tumefaciens. A salt-tolerant gene, betaine aldehyde dehy-
drogenase (badh), from Atriplex hortensis, was transferred
into black locust via A. tumefaciens using callus as
explants. PCR and Southern analysis revealed the integra-
tion of the transgene into the genome of regenerated plants
and the surviving plants exhibited an increase in NaCl
resistance (Xia et al. 2004).

Transgenic Hardwoods in the Field

The number of field trials of transgenes expressed in
hardwoods is dwarfed by the number for transgenic crops
such as maize and canola. Despite considerable regulatory
hurdles for transgenic trees, reports from trials of transgenic
hardwoods have appeared over the past two decades or so.
Aside from poplar, the most transgenic research in field
trials has been with silver birch. Silver birch clones
expressing rol and aux genes under the regulation of
endogenous promoters showed alterations in anatomy,
morphology, and physiology when grown in a greenhouse
(Piispanen et al. 2003). In the field, silver birch expressing
chitinase IV (from sugar beet) were no more resistant to
leaf spot disease than control plants, but did have improved
resistance to birch rust (Pasonen et al. 2004). The same
gene (chitinase), when expressed in birch, affected the
numbers of some soil-dwelling, leaf-decomposing organ-
isms, but not others (Kotilainen et al. 2004). Silver birch
has also been used to show that barnase constructs can be
used to ablate flowering, reducing the risk of transgene
spread and altering carbon allocation to vegetative growth
(Lannenpaa et al. 2005). Insect resistance and disease
resistance are common goals for transgenic technology,
and both have been achieved in Juglans (Leslie et al. 2001;
Escobar et al. 2002). American chestnut transgenic plantlets
containing the Oxo gene (Polin et al. 2006) have also been
planted in the field (Maynard, personal communication).
Research into the control of Dutch elm disease in English
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elm (Ulmus procera) has led to some of the most advanced
applications of transgenic technologies to forest trees
(Gartland et al. 2005). Field trials of transgenic American
elm (U. americana) are also underway (Powell, personal
communication). The potential for using transgenic hard-
woods in phytoremediation has also been demonstrated
(Rugh et al. 1998).

Current Challenges and Future Opportunities

New knowledge of genes for important economic traits.
With the completion of the first tree genome sequencing
project with Populus spp. in 2004 and the potential for
comparative genetics with other hardwood species, new
knowledge of tree genes and their function will enable
researchers to gain a better understanding of the genes for
economic traits in fine hardwoods. In particular, genes
associated with heartwood formation, insect and disease
resistance, precocity, branching, straightness, and specialty
traits such as phytoremediation will hasten both classical
and molecular breeding efforts. For example, with heart-
wood formation, on average, 12 to 13 yr of sapwood is
produced before heartwood production. For both lumber
and veneer production, additional steps are needed to treat
sapwood to induce colorization that closely resembles that
found in heartwood. The potential exists to reduce energy
inputs and processing steps if trees could be produced with
significantly greater heartwood-to-sapwood than found in
native trees.

The case for increased insect resistance exists with the
Emerald ash borer (EAB), an exotic insect introduced
through shipping channels to Detroit, MI ports, that is
currently devastating native U.S. ash populations. It appears
that no native populations have genetic resistance. Chem-
ical controls are being tested and deployed, but will only be
a means of protecting urban trees, not forest trees. To date,
parasitic fungi and insects have not been identified in the
US. Thus, this may be the first case where the use of
transgenic insect-resistant ash may be publicly accepted. It
has been reported that the potential economic impact is over
$80 M, partly as a result of the wide use of ash as an urban
street tree, in many cases, one of every three urban trees
planted. The use of Bt toxins is undergoing laboratory
testing (Meilan, personal communication) and two toxins
have shown promise after preliminary testing. Pijut (un-
published results) is developing tissue culture and trans-
genic technologies that will allow the insertion of genes for
insect resistance and the multiplication of these trees for
testing the efficacy and stability of the transgenes. Although
it has never caused increased resistance to Bt in insect
populations (Christou et al. 2006) except in laboratory
conditions (Tabashnik et al. 2003), it has been theorized by

some (Christou et al. 2006; Ferry et al. 2006) that single Bt
transgenes could quickly lead to Bt resistance in insect
populations. To minimize this possibility, it has been
proposed that inserting multiple Bt genes would limit
enhanced insect resistance because selection would need
to occur at multiple loci instead of one locus. By adding a
second Bt transgene the chance of producing resistant insect
populations is significantly reduced (Jackson et al. 2004).
To reduce the chance of inducing resistance to Bt, novel
insecticidal proteins are being tested. These biological
compounds can cause increased binding of insecticidal
proteins, function with novel transmembrane carrier pro-
teins, or produce novel toxins from other insect pathogens,
e.g., Photorhabdus and Xenohabdus spp.

Exotic diseases, including butternut canker, also threaten
extinction of important hardwood species. In the case of
butternut, the existence of native resistant trees is very
limited, and a few dark-bark phenotypes with apparent
resistance have been identified. Although some vigorous
butternut-type trees have been identified, in most cases
these are hybrid trees with Japanese walnut, a species
introduced in the U.S. in the 19th century. It is suspected
that these hybrids are harboring resistance genes to the
canker while displaying vigorous growth typical of F1
hybrids of Juglans spp. Collection and screening of
putatively resistant trees, breeding, clonal multiplication,
and forest restoration holds promise to prevent butternut
extinction. Many private landowners desire multiple uses of
their hardwood forests. Many times, timber production
ranks far below that of wildlife viewing and wildlife
habitat. These landowners would achieve desired ecological
characteristics of newly planted forests decades earlier if
forest geneticists had greater control over precocity. Efforts
are underway (Woeste, personal communication) to select
early flowering genotypes that could speed mast production
in young plantations. If achieved, landowners could benefit
from increased wildlife habitat while not sacrificing timber
production and quality.

Rapid breeding. It has long been recognized that classical
breeding of fine hardwoods is limited by long reproductive
cycles. Except in cases where physiological manipulations
are used, many of the fine hardwoods do not consistently
flower for several decades when grown from seed, thus
severely limiting the number of generations of genetic
improvement that can be achieved in a breeder’s career.
Thus, any molecular or physiological tools that can quicken
this cycle would offer significant benefit. Woeste, Struve,
and Coggeshall (personal communication) are testing root
restriction and trellising as tools to induce early flowering
on seedlings and grafted trees of black walnut. These
methods have the potential to reduce the time for breeding
generations to a decade or less, thus doubling the amount of
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genetic improvement that can be achieved in the traditional
timeframe. Molecular methods such as determining QTL
have the potential to track genes for economic traits in
breeding populations, thus increasing the efficiency of
breeding and selection. Although not widely practiced,
technologies are available to link molecular markers to
genes for both economic and adaptive traits in hardwoods.
In theory, this could reduce the time required and size of
progeny tests that are associated with tree breeding both for
production of sustainable families and clones. In addition,
association mapping can give us clues to genes associated
with adaptive traits, such as those that will be important for
adaptation of species to climate change.

Genomics. For those in research and development of gene
sequencing technologies, engineers in the field are working
toward the goal of sequencing genomes for $1,000. It is
envisioned that one day, single genomes can be quickly
sequenced to uncover underlying genetic makeup that
predisposes that individual to genotypic differences within
a species. Although this will be a few years away, important
advances have recently been made to significantly reduce
labor needed to sequence a genome and the associated cost.
One such technology uses emulsion-based PCR with solid-
phase sequencing (Marusina 2006). With these recent
advances, costs have been decreased by a hundredfold. In
the next decade, it could become possible to economically
sequence any species of interest in short order. Methods are
available to pyramid transgenes that allow for insertion and
expression of multiple genes for both similar and dissimilar
traits. If those transgenes prove to have stable expression
over time, the value to transgenic technology will increase
from the ability to improve single traits to improvement of
multiple traits at one time.

Obstacles to clonal multiplication and transformation. For
the most part, it is still difficult to transform elite genetic lines
and adult plant material. For transformation of clonal
materials, this presents some unique obstacles. By the time
that genetic tests have been completed and selections are
made, clonal lines will have entered their adult phase of
growth. Some tools are available, such as tissue culture,
grafting, and tree decapitation that partially rejuvenate
selected trees, as well as cryopreservation, but success to date
is still limited. For most hardwood species, successful
transformation is still limited to seedling stocks. Molecular
tools are available that will allow the elucidation of the
regulation of genes that control the phase change from
juvenile to mature growth and at the same time help us to
understand how maturity restricts somatic cell duplication.

Regulation of transgenic trees. As of this date, no transgenic
tree, except for virus-resistant papaya, has been given

regulatory approval that would allow commercial deploy-
ment. In this case, without virus resistance, commercial
papaya production in Hawaii was going to eventually cease.
Risks of transgenic papaya were going to be minimal because
of natural barriers to gene flow external to the Hawaiian
Islands. Another important factor was that owners of
intellectual property that needed to be considered with this
crop were willing to cooperate with all parties and waive their
rights to financial gain from deployment. In the future, the
ability to deploy new transgenic forest trees that are minor
crops could benefit from this precedent. Otherwise, the cost of
intellectual property or the ability to use it may be too high a
hurdle that will prevent deployment.

The Animal Plant Health and Inspection Service is
working with other government regulators (Food and Drug
Administration and Environmental Protection Agency) and
the interested public to craft rules that will guide data
collection and analysis, disclosure, and potential regulatory
approval. Meanwhile, scientists are performing studies to
assess risks and benefits associated with release of various
classes of transgenics that will help guide the regulatory
community. One generally accepted means to reduce the
risks of transgenic deployment is flowering control. It is ex-
pected that most deployed transgenic trees will need flower-
ing control to receive regulatory approval. It is interesting to
note that one case where it may not be required is with
transgenic resistance to EAB. If it continues to be the case
that resistance is not found in the native ash population and
effective biological controls are not identified, the public
might accept the flow of resistance genes into the native
population to regenerate ash in forests with resistance to
EAB. Despite control of gene flow or sound reasons for
transgene flow to occur, the public may still resist acceptance
of transgenic trees in the near future despite regulatory
framework and sound scientific data on efficacy.

The use of flowering control in transgenic trees will
require the use of clonal production methods. With some
species, this does not appear to be an insurmountable
hurdle. With other hardwood species, maturation is a severe
limitation that leads to recalcitrance. This hurdle could be
overcome by identifying the genetic basis of maturation,
which might lead to rejuvenation of explants that would be
more amenable to tissue culture manipulations.

Individual tree identity and bioinformation. One challenge,
although not biological, but equally important to hardwood
breeders, is the inventory and categorical classification of
breeding stock. Taking advantage of new engineering
breakthroughs, Woeste (personal communication) is devel-
oping radio frequency identification tags for use in both
identifying individual trees and for storage of important
genetic data for efficient recall. When developed and
refined, the breeder will be able to attach microscopic tags
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to parent trees that will retain important historical growth
records for instant recall. Another associated benefit will be
the ability of the landowner to track inventory data and
individual tree identity, the latter which becomes important
in cases of timber theft. Further, these tags could also be
utilized in commercial log inventory, allowing the tracking
of inventory from the forest stand, to the log yard, and to
the sawmill.

Conclusions

The improvement of temperate hardwoods for reforestation
and plantations has advanced considerably in the past decade,
but progress still lags behind that of agronomic crops. Trees
are valuable resources and provide environmental services
that must be managed and enhanced for productivity in a
sustainable fashion. Breeding, genetic modification, propaga-
tion, and deployment of trees with traits such as disease and
pest resistance, improved wood quality, reproductive changes,
superior growth, form, and timber characteristics will help in
the establishment, management, preservation, and production
of valuable hardwood species for future generations. Over the
next few decades, these new technologies promise to enhance
and expand the toolkit available to the tree improvement
specialist.
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