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Can we develop general 
predictive models of 
mycorrhizal fungal 
community–environment 
relationships?

 

Our understanding of the controls on mycorrhizal fungal
species distribution and community organization is in its
early childhood – especially when compared with that of the
more mature fields of plant and animal community ecology
and biogeography – largely because of the historical difficulty
of gathering species distribution information. This challenge,
arising from the paucity of mycorrhizal morphological charac-
teristics, is magnified because of high diversity, particularly in
ectomycorrhizal fungal communities. Although some regional
models of ectomycorrhizal sporocarp–environment relationships
have been developed (e.g. Tyler, 1985; Hansen, 1988, 1989;
Rydin 

 

et al

 

., 1997), sporocarps represent a biased subsample
of the below-ground community (Gardes & Bruns, 1996).
The advent of molecular tools has allowed us to move forward
with many detailed below-ground mycorrhizal community
analyses (Horton & Bruns, 2001). Many of these analyses have
been linked with experiments, gradients and chronosequences,
leading to an increased understanding of environmental
controls on species distribution and abundance. Although
an essential first step, these studies are mostly carried out
at a local scale, leading to a highly fragmented picture of
species distribution and relationship with the environment
that cannot be extrapolated to other sites.

We believe that, in addition to the aforementioned local
approach, there is much to be gained by wedding regional- to
continental-scale mycorrhizal fungal community character-
izations, environmental measurements and the best new
modelling approaches to develop a more general understand-
ing of the relationship between mycorrhizal fungal communities
and their environment. This approach would allow us to begin
to develop species– or community–environment predictive
models sufficiently accurate that for any site we could predict
the potential pool of dominant fungal taxa (recognizing that
stochastic processes will probably determine the actual pool).
While ambitious, this approach is essential in order to predict
species–environment relationships beyond a narrow set of sites.

A major motivation for this effort is the high rate of
human-accelerated environmental change, including elevated

atmospheric ozone (O

 

3

 

), CO

 

2

 

, nitrogen (N) deposition,
climate change and land use/land cover change (Vitousek

 

et al

 

., 1997; Cubasch 

 

et al

 

., 2001; Tilman & Lehman,
2001). It is clear that these changes can affect mycorrhizal
fungal species, but it is also clear that we do not yet have data
sets sufficiently saturated, or models sufficiently powerful, to
determine the exact nature, timing and spatial pattern of
fungal community responses. Given that mycorrhizal fungi
are phylogenetically and functionally diverse, consume a
significant portion of global terrestrial production, play a
critical role in nutrient cycling and food webs, and exhibit
high sensitivity to environmental change, the ability to predict
such community responses is critical for conserving fungal
diversity and maintaining ecosystem processes.

Given these concerns, an efficient way to focus our efforts
in obtaining community information would be to optimize
sampling and experimental designs to address questions on
the effects of human-accelerated environmental change on
mycorrhizal fungal communities at a global scale. This would
achieve several related objectives. First, it would allow us to
develop saturated databases of fungal community com-
position, structure and spatio-temporal dynamics in relation
to variable resources and conditions. Second, it would pro-
vide a baseline against which to measure the effects of future
environmental change. Third, it would permit us to determine
where and how fungal communities are presently responding
to environmental change. Last, it would identify sites with large
components of unidentified fungi that could be foci for much-
needed investigation by fungal taxonomists (Korf, 2005).

In order to accomplish this, we must understand how
communities of fungi change in response to all the key
anthropogenic and natural environmental drivers. This
requires the development of quantitative models of species–
environment relationships built on several key elements:
appropriate study designs, community data, environmental
data, and models. In the following sections we describe some
initial considerations in bringing these elements together.

 

Appropriate study designs

 

Experiments vs gradients

 

Species–environment response functions cannot be derived
from experimental studies involving only two levels of a
perturbation, unless those functions are known 

 

a priori

 

 to
be linear. Multilevel experiments or gradient studies are necessary
for determining the shape of a response curve. However,
once we move beyond the local scale, multilevel experiments
become difficult to fund and manage, making sampling of



 

Letters

 

www.newphytologist.org

 

No claim to original US government works. Journal compilation © 

 

New Phytologist

 

 (2007)

 

Forum2

 

replicate gradients or related stratified sampling techniques
the only viable alternative for generating large-scale species–
environment relationships. Combining multilevel experiments
at a strategic subset of sites with large-scale gradient-
based sampling could provide the greatest information and
insights.

 

Using gradients to tie data collection to environmental 
change

 

Most environmental changes are spatially variable (e.g. Galloway
& Cowling, 2002; Chandra 

 

et al

 

., 2003), and multiple
change agents can be correlated. By identifying where
gradients of environmental change are steepest we can define
areas of greatest interest for investigation. To maximize our
potential to determine the community response to diverse
environmental changes, we should sample across multiple
types of gradients (climate, pollution, land use, disturbance,
etc.), and incorporate sites that break down correlations between
multiple change agents (e.g. between O

 

3

 

 and N deposition).
Some environmental changes – notably, elevated CO

 

2

 

 – are
less amenable to gradient analysis, because they are relatively
uniform at the global scale. Although there is some possibility
of using localized natural or anthropogenic gradients of
CO

 

2

 

 (e.g. Rillig 

 

et al

 

., 2000), experimental approaches will
probably play a larger role in developing response functions
to CO

 

2

 

.

 

Appropriate species distribution data

 

The development of DNA-based molecular tools has led
to an explosion of investigations into mycorrhizal fungal
community ecology (Horton & Bruns, 2001). This
development holds great promise, but in order to maximize
our ability to use these data to build general predictive models,
several requirements must be met.

 

Sequence-based identification

 

Species distribution/abundance data across sites must be
comparable. This requires that mycorrhizal fungal identity
be established using a common metric, with the most useful
being internal transcribed spacer (ITS) ribosomal DNA
sequences (Horton & Bruns, 2001; Kõljalg 

 

et al

 

., 2005).
Sequence data are preferable over other approaches because
they reduce the ambiguity of species identifications, allowing
for comparison among sites and studies. The ITS provides
sufficient variation to discriminate at approximately the species
level and is readily amplified from small amounts of material
using primers of varying specificity. Other ribosomal DNA
regions, such as portions of the large subunit (LSU) and
small subunit (SSU), are useful in the phylogenetic placement
of unknowns when ITS sequences are not informative
because of insufficiently saturated databases (Horton & Bruns,

2001), but these regions lack the taxonomic resolution needed
for species-level modelling.

Processing of samples from a large-scale sampling program
would require high-throughput approaches to sequencing,
such as those used by the Fungal Metagenomics Project
(Senkowsky, 2006). The rice genome required over 7 million
sequences (Goff 

 

et al

 

., 2002) and the human genome required
over 27 million sequences (Venter 

 

et al

 

., 2001), and costs of
sequencing continue to decline, so generating several million
sequences to characterize the global diversity, distribution and
response to environmental change by one of the most important
classes of mutualists seems both achievable and reasonable.

 

Consistent high-throughput methods must be used

 

Consistent sampling methods would improve the quality of
a global data set. Method choice will depend on whether
the study focuses on ectomycorrhizal fungi alone or on all
mycorrhizal fungi. Unlike other mycorrhizal fungi, ectomy-
corrhizal fungi are typically monodominant on root tips,
permitting sorting of tips into morphotypes followed by
DNA analysis. This permits the characterization of frequency,
biomass and number of root tips of different taxa (Horton
& Bruns, 2001). Caution must be used in interpretation of
these data, because each root tip does not represent a separate
individual (Taylor, 2002). In addition, this approach is
susceptible to lumping species of similar morphologies
during the sorting process, and can be labor intensive.

By contrast, all mycorrhizal fungi can be sampled via ran-
dom sampling of individual mycorrhizal root tips followed
by polymerase chain reaction (PCR)-based identification
(e.g. Peter 

 

et al

 

., 2001; Parrent 

 

et al

 

., 2006), although a clon-
ing step is required for most nonectomycorrhizal types. This
approach is compatible with presence–absence or frequency-
based metrics of abundance.

Similarly, bulk DNA extraction of pooled mycorrhizal
root tips is viable for all classes of mycorrhizae. Although
soil or hyphae can also be extracted, these will have a higher
proportion of nonmycorrhizal fungi than roots, so are more
appropriate for total soil fungal community analysis. These
mixtures can then be subjected to PCR, separated and
sequenced. PCR is a very powerful approach, but results
for mixtures are subject to bias, sensitivity limitations for
amplifying rare or divergent sequences, and the potential for
chimera formation, which need to be taken into account
during sampling and analysis.

Current PCR-based approaches used for analyzing DNA
mixtures are semiquantitative. A common approach is the
cloning and sequencing of PCR products. Methods for high-
throughput cloning and sequencing are rapidly evolving
(e.g. Hutchison 

 

et al

 

., 2005; Metzker, 2005) and could be
adapted for large-scale community analysis. The major
drawback of this approach is the redundant sequencing of
dominant taxa required to obtain sequences of rarer taxa,
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but costs of sequencing are dropping quickly enough that
this is less of an issue.

Another commonly used approach is slab gel electrophoresis-
based separation approaches, such as temperature or dena-
turation gradient gel electrophoresis (TGGE and DGGE,
respectively) followed by sequencing of unique fragments
(Anderson & Cairney, 2004). These approaches are generally
labor intensive and therefore are relatively low throughput.
Potential, but as-yet untapped, high-throughput analogs of
the above methods are carried out by either capillary electro-
phoresis (CE) or denaturing high pressure liquid chromato-
graphy (DHPLC) combined with automatic fraction collectors
(e.g. Berka 

 

et al

 

., 2003; Domann 

 

et al

 

., 2003). DHPLC is
presently commercially available (e.g. Domann 

 

et al

 

., 2003),
but it is not widely used. Although CE has the potential for
parallel processing via capillary arrays, which could greatly
accelerate throughput (Berka 

 

et al

 

., 2003), it is not yet
commercially available.

As an alternative to sequencing approaches, community
microarrays are under development (Anderson & Cairney,
2004; DeSantis 

 

et al

 

., 2005; Sessitsch 

 

et al

 

., 2006) that hybrid-
ize target DNA with a high density array of thousands of
probes, providing a rapid evaluation of whole-community
composition and semiquantitative abundance determined
from hybridization intensity. If technical challenges are over-
come and the cost per microarray chip becomes reasonable,
this would permit very rapid characterization of high numbers
of samples, providing the possibility of more replicate samples
per site and a resultant high sampling density that would
improve modelling efforts. The main disadvantage is that
species not included in the array will be missed in the analysis,
making it less valuable in systems where many community
members are unknown. Thus, the microarray approach would
be most useful after intensive high-throughput sequencing-
based approaches have generated sufficiently saturated
sequence databases.

 

Appropriate environmental data

 

Scale affects choice of predictor variables

 

The scale of investigation will affect the environmental variable
selection. In local models, variables such as disturbance or land
use history, host community, soil pH and nutrients, host
nutrition, parent material, slope and aspect are likely to be
important. As the scale of investigation expands, additional
variables, such as temperature, precipitation and biogeographic
constraints (e.g. endemism), will probably emerge as significant
variables. Some of these data will be readily available in
geographic information system (GIS)-based data sets, but
other data must be collected on site.

 

Distal vs proximal variables

 

Variable choice affects both model quality and data collection
costs. An important choice to make is between distal and
proximal variables. Distal variables are farther removed
from, and hence do not act directly on, the dependent
variable. By contrast, proximal variables are closer to, and
hence may directly act on, the dependent variable. In Fig. 1
we present an example of selected distal and proximal variables
that could be used in characterizing the community response
to components of changing atmospheric chemistry.

There may be advantages and disadvantages of using
distal vs proximal variables in modelling species distribution
and abundance. The main advantage of distal variables is that
they are usually easier to measure or estimate, and are often
available as GIS layers. For example, latitude and longitude,
topography, geology, climate, N deposition, atmospheric O

 

3

 

,
and foliar N might be much easier to measure or model (e.g.
Smith 

 

et al

 

., 2002) than soil moisture, soil N, soil texture, or
below-ground carbon (C) allocation by the host tree. When
distal variables are easier to measure and highly correlated

 Fig. 1 A simplified conceptual diagram of 
the interactions of mycorrhizal fungal 
communities with selected aspects of 
changing atmospheric chemistry. Distal 
predictor variables are shown as ovals. 
Proximal predictor variables are shown as 
rectangles.



 

Letters

 

www.newphytologist.org

 

No claim to original US government works. Journal compilation © 

 

New Phytologist

 

 (2007)

 

Forum4

 

with proximal variables it will be advantageous to use the
distal variable. However, in some cases distal variables will be
poorly correlated with the proximal variable. Two examples
illustrate the complexities involved in variable choice: below-
ground C allocation; and soil N.

Most models of plant C allocation suggest that below-
ground C allocation is a function of plant C gain and nutrient
status (Le Roux 

 

et al

 

., 2001). The response of the fungal
community to environmental changes, such as N deposition,
CO

 

2

 

 and O

 

3

 

, could depend very much on complex inter-
actions among host nutrition, C gain and below-ground C
allocation, although the exact nature of these interactions
and their effect on mycorrhizal fungal communities is at present
poorly understood. Although it would be ideal to measure
below-ground C allocation directly, these measurements are
notoriously difficult to make (Giardina 

 

et al

 

., 2005), so it
would have to be either ignored or modelled using easier to
measure, but more distal, variables, such as foliar nutrients,
tree growth and atmospheric chemistry. In this case, it becomes
important to incorporate C allocation models that capture
below-ground allocation dynamics and can be appropriately
parameterized across a broad range of species.

In contrast, the proximal variable soil N (e.g. extractable
mineral pools, organic horizon C : N) is relatively easy to
measure and appears to be a good predictor of ectomycor-
rhizal species or genus abundance (Lilleskov 

 

et al

 

., 2001, 2002).
Given that soil N is a complex product of multiple distal
variables (e.g. N deposition, site history, soil type, biota,
climate), during model parameterization it would be preferable
to measure soil N directly, rather than attempting to model
it using distal variables. However, efforts to extend these pre-
dictions beyond sampled sites would still require input from
biogeochemical models that use distal predictors to estimate
soil N at unsampled locations (e.g. Rowe 

 

et al

 

., 2005).
An additional problem with certain distal/indirect vari-

ables (e.g. elevation) is that as the scale of studies expands,
predictions using these variables become worse (Guisan &
Zimmerman, 2000), limiting their utilities in more general,
large-scale models.

 

Class and continuous variables

 

Once we have determined the most relevant predictors for
characterizing species–environment relationships, we need
to determine the most appropriate way to measure them.
Some predictors, such as host identity, are clearly class variables.
Others, such as soil pH or N, are clearly continuous
variables. However, many factors can be conceptualized as
either class or continuous variables (e.g. disturbance, host
community or substrate). When possible, it is more useful
for defining response functions to conceptualize and measure
variables in a continuous manner. For example, rather than
specifying stands as disturbed or undisturbed, more useful
metrics would be related continuous variables such as time

since disturbance, forest floor biomass or host species
biomass. Similarly, host biomass data are preferred to host
presence/absence data. If necessary, continuous data can
always be converted to class data, but not 

 

vice versa

 

.

 

Appropriate models

 

An in-depth discussion of models is beyond the scope of this
article, and many issues are discussed elsewhere (e.g. Guisan
& Zimmermann, 2000; Austin, 2002; Guisan & Thuiller,
2005; Ferrier & Guisan, 2006). We focus here on two key
issues: whether to model distributions of species or
communities; and whether to use static or dynamic models.

 

Modelling species vs communities

 

Most current models focus on predicting individual species
distributions rather than whole communities (Guisan &
Zimmermann, 2000; Austin, 2002). This derives not only
from the relative simplicity of modelling individual species,
but also from our understanding, derived largely from plant
ecology, of the individualistic nature of species assemblages
(Gleason, 1926), as evidenced by their independent assortment
along environmental gradients (Whittaker, 1967) and lability
of community composition over time and space (Davis, 1981).

Community models are either in conflict with this theo-
retical formulation or an extension of it, depending on the
approach used. During community modelling, (1) whole
communities can be characterized then modelled as a func-
tion of the environmental variables, (2) multiple species can
be simultaneously modelled as a function of environmental
variables, or (3) the net result of multiple individual species–
environment models can be assembled into a community
prediction (Ferrier & Guisan, 2006). The first (and least
‘Gleasonian’) class does not allow individualistic species
responses, provide individual species maps, or extrapolate
beyond known communities. The third class should do best
at modelling individualistic species responses and defining
individual species distributions. The first and second classes
have a variety of strengths, for example they can rapidly analyze
large numbers of species and perform well when species are
encountered infrequently (Ferrier & Guisan, 2006), as in
ectomycorrhizal fungal community sampling. The most
appropriate methods for modelling mycorrhizal fungal
communities will have to be determined by comparative
analysis of different approaches, but will probably derive
from the second or third class of models.

 

Static vs dynamic models

 

Most models used to predict distribution and abundance of
species are static (Guisan & Zimmermann, 2000). Static
models predict current distribution in relation to environmental
variables, assuming equilibrium conditions. The major
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advantages of static models are that they are relatively easy to
build, parameterize and test, and are therefore favored for large-
scale species distribution modelling efforts. One of the simplest
classes of static models is regression. Other static models
allow more flexibility in modelling species–environment
relationships (e.g. generalized linear models, generalized
additive models, ordination methods, regression and
classification tree analysis) (Guisan & Zimmermann, 2000).

However, the equilibrium assumption may not be valid when
modelling fungal communities in a changing environment.
Nonequilibrium conditions arise in response to naturally
dynamic conditions (e.g. disturbance, climate change), but
human-accelerated environmental changes may increase
disequilibria. For example, it appears that there may be sig-
nificant lags in the ectomycorrhizal fungal below-ground
community response to elevated N deposition (Lilleskov,
2005). Lags of this sort could lead to poor static model
parameterization.

By contrast, dynamic models can address nonequilib-
rium processes, such as succession, changing soil chemistry,
changing below-ground C allocation and climate change.
Forest ecologists have long used dynamic models to predict
spatio–temporal dynamics in species distribution and com-
munity structure and composition (e.g. Urban 

 

et al

 

., 1991;
Carey, 1996; Gao 

 

et al

 

., 1996; He 

 

et al

 

., 2002; Gratzer 

 

et al

 

.,
2004), and simple dynamic models have been explored for
fungal communities (e.g. Halley 

 

et al

 

., 1994). However, to
structure and parameterize these models correctly requires
much more information than for static models, and so they
are rarely parameterized for species distribution modelling at
large scales. Characterizing the spatio–temporal dynamics of
mycorrhizal fungal species assemblages in relation to multiple
variables across a broad range of environments would be
extremely challenging, requiring data that are not easily
obtainable.

To deal with these difficulties, a viable two-pronged
approach would be initially to build and test static species
distribution and abundance models. If serious deficiencies
are apparent that are probably the result of disequilibria,
then we can work towards the parameterization of dynamic
models, based on the results of experimental, gradient,
chronosequence and longitudinal studies.

 

Conclusion

 

Although it is tempting to throw up our hands given the
complexity of this challenge, we believe that the attempt
should be made to begin to build global data sets and
predictive species/community models, recognizing that this
will be an iterative process, involving continual improvement
of tools, data and models (Fig. 2). An efficient approach to
providing high cross-comparability of both species and
environmental data would be to develop a research
consortium that uses a mutually agreed upon sampling

Fig. 2 A flow diagram describing the outline of an approach to 
developing general predictive models of mycorrhizal fungal 
community distribution. Solid lines represent the primary 
approach based on currently available and appropriate methods: 
gradient-based site selection; polymerase chain reaction (PCR), 
cloning and sequencing of community DNA; combination of 
sampled, pre-existing and modelled environmental data; static 
modelling of both individual and multiple species relationship with 
environment; evaluation of predictions; and iterative improvements 
in data and models. Dotted lines represent alternative approaches 
that are under development (community microarrays) or that can 
be tried if primary approach results indicate that they are required 
(dynamic modelling of communities based on experiments and 
other data sources). GIS, geographic information system; ITS, 
internal transcribed spacer.
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scheme to achieve maximum coverage for minimum effort,
similar to the community effort that supported the Deep
Hypha project (http://ocid.nacse.org/research/deephyphae/
projects.php). The price of not acting now will be a lost
opportunity to define baseline species distribution data in
the face of rapid global change. We have touched on a few
issues. The key next steps are rallying a diverse group of
researchers to collaborate in this process, and finding the
resources to support large-scale data collection and
modelling efforts. The time to take these steps has come.
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