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Abstract The nearly unprecedented loss of life 
resulting from the earthquake and tsunami of 
December 26,2004, was greatest in the province of 
Aceh, Sumatra (Indonesia). We evaluated tsunami 
damage and built empirical vulnerability models of 
damage1110 damage based on elevation, distance 
from shore, vegetation, and exposure. We found 
that highly predictive models are possible and that 
developed areas were far more likely to be dam- 
aged than forested zones. Modeling exercises such 
as this one, conducted in other vulnerable zones 
across the planet, would enable managers to create 
better warning and protection defenses, e.g., tree 
belts, against these destructive forces. 
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Introduction 

The Indian Ocean earthquake and tsunami disaster 
of 26 December, 2004 claimed nearly 275,000 lives 
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and destroyed billions of dollars' worth of property 
(Barber 2005). One can scarcely comprehend the 
enormity of this disaster and its lasting impact on 
the affected countries and the world in general. 

The development of models capable of 
assessing vulnerable locations before a tsunami 
hits could save countless lives (Geist et al. 
2006). Most modeling exercises necessarily 
incorporate a complexity associated with the 
shape of the ocean floor and how it intersects 
with the coastline. For example, the Method of 
Splitting Tsunami (MOST) model accounts for 
tsunami generation and propagation in the 
ocean, followed by inundation on the land 
(Titov and Gonzalez 1997). However, these 
authors also state that at the time of their paper 
the inundation portion of the model was the 
least well developed partly due to poor bathy- 
metric and topographic data. Titov and Synola- 
kis (1998) estimated that 150-m resolution data 
were needed for "adequate prediction" and 
50-m resolution for predicting extreme run-up. 
However, the data have since been improved. 
For example, the Shuttle Radar Topographic 
Mission of 2000 (http://www2.jpl.nasa.gov/srtm) 
has improved the topographic data available, 
especially for lesser-developed areas. Other 
studies, such as those by Borrero et al. (2003, 
2004), have used the MOST model with success 
in Papua New Guinea and southern California. 
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Other studies use empirical data from past 
tsunamis to estimate the size and location of 
vulnerable sites (e.g., Kulikov et al. 2005 for 
Peruvian tsunamis). This is the general approach 
taken in the current study. Our objectives are to 
use the damage information gleaned from the 
Indian Ocean tsunami along with good, high 
resolution data and a new statistical tool for 
modeling relationships among variables to better 
understand the core relationships and vulnerabil- 
ities along the coast of Sumatra and ultimately 
elsewhere. We also are assessing the relative 
protective value of forests along the coast. While 
the role of trees and mangroves in mitigating 
damage from tsunamis is not new, studies such as 
ours may be able to spatially delineate zones 
where damage is most likely to occur and hence 
equip managers with better information while 
planning protective defenses. 

Methods 

Data collection and preparation 

The following data sets, primarily from the 
geographic area 95-96"E and 4.5-5S0N, were 
used in this analysis: (1) damage polygons (as 
defined by interpreters of high resolution imagery 
when it was clearly visible where the water 
damaged developed and forested areas) as 
acquired by the United States in the initial days 
following the disaster (Figs. 1,2a); (2) elevation at 
30-m resolution (SRTM shuttle missions) (Fig. 
2b); (3) Landsat GeoCover "natural view" 15-m 
Thematic Mapper provided by Earth Satellite 
Corporation (http://www.earthsat.com); and (4) 
boundaries of Banda Aceh Province. All data 
were projected to Universal Transverse Mercator 
Zone 47 at 30-m raster resolution. Processing was 
done in ERDAS (gis.leica-geosystems.com), Arc- 
GIs,  and Grid (http://www.esri.com). 

We limited our zone of interest to the 10 km of 
land next to the coastline and two zones of 
analysis: (1) a small region representing the zone 
receiving a direct hit from the tsunami and (2) a 
large region representing all of the small region 
and extending down the coastline in both direc- 
tions to encompass all of the damage polygons of 

Aceh (Fig. 1). Since we were interested in tsu- 
nami damage only and did not want to process 
excessive pixels of no damage, this band accom- 
modated all of the damaged locations except for a 
few small locations further inland near Banda 
Aceh. The number of 30-m pixels was high, with 
2.2 million of damagelnodamage in the small 
zone, and 8.4 million in the larger zone. 

The coastline was developed from Shuttle 
Radar Topography Mission (SRTM, srtm.usgs.- 
gov) 30-m data, with some adjustment from 
lndonesia coastline data where elevations were 
coded as 0 at the coast. The resulting linear 
coastline was then buffered by 10 km inland to 
clip out the study area. 

Distance to shore was calculated using the 
linedist (GRID) command on the shoreline 
established previously. Output was a 30-m cell 
grid for the 10-km inland strip generated earlier 
(Fig. 2c). The exposure to ocean was created by 
conducting a search around each cell (1 km 
radius) and then counting the number of 30-m 
ocean cells within the radius (using GRID'S 
focalsum). The highest numbers (values ranging 
up to 2821) were in the small peninsulas jutting 
into the sea, while the large zone more than 1 km 
from the coast had a value of 0 (Fig. 2d). 

The natural view data, at 15-m resolution, were 
extracted for the study area from four scenes. Data 
were derived from bands 7, 4, and 2 and were 
collected in 1999-2000. We separated the Landsat 
data into 100 classes using an unsupervised classi- 
fication technique in ERDAS (gis.leica-geosys- 
tems.com). We then reclassified into eight classes: 
water, wetland, builtlbarren, agriculture/low veg- 
etation, low forest, forest, cloud, and cloud shadow 
(Fig. 2e). Built and barren were combined as 
representing very low vegetation classes; less than 
2% of the small area and a slightly larger percent- 
age of the large area were under cloud. The 
classified image was reprojected to 30-m cells. 
Cloud- and shadow-covered areas were eliminated 
from the predictive modeling. Though spot verifi- 
cation was achieved using higher resolution imag- 
ery (IKONOS and SPOT), and visual checking was 
widespread, no formal classification accuracy 
assessment or ground truth assessment was per- 
formed. Nonetheless, the above classes were gen- 
eral and distinct enough to instill confidence in the 
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Fig. 1 Zone of analyses 
for large and small study 
areas around the coastline 
of Aceh 

classification. No information was available on the 
land changes that occurred between 2000 and the 
time of the tsunami in 2004. 

Assessment of forest vs. developed land 

To compare the relative impact of damage to 
forest vs. developed land due to the tsunami, the 
classes were condensed to: (1) forested, from the 
low forest and forest classes, and (2) developed, 
from the builtlbarren and agriculture/low vegeta- 
tion classes. The other classes were ignored for 
this cross tabulation analysis. Ratios of damaged 
to undamaged land areas were calculated for each 
class, and for the small and large study areas. We 
then compared these ratios for forested vs. 
developed regions. 

Model of damage 

The model was built for the small area using 
Random Forests (RF) package in R (R Devel- 
opment Core Team 2004; Breiman 2001; Prasad 
et al. 2006). RF  is a new data-mining technique 
designed to produce very accurate predictions 
that do not overfit the data (Breiman 2001). RF 
uses bootstrap sampling of two-thirds of the data 
to construct multiple trees; each tree is also grown 
with a randomized subset of predictor variables 
(in our case 2 out of the 4 variables were selected 
for each perturbed tree). In RF, a very large 
number of trees (500 in our case) are grown 
(hence a 'forest' of trees) and averaged to yield 
powerful predictions closer to the true error of 
the estimated population rather than just the 
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training error. In all our statistics and mapping, 
we used the 'out-of-bag' outputs from RF, mean- 
ing the statistics were calculated from the third of 
the data not used to build the model, so that 
overfitting of the data is not a problem. We have 
thoroughly documented our procedure in Prasad 
et al. (2006). 

The model was built for the small area only, as 
this zone had the most direct hit from the tsunami 
and represents the best location for validation as 
well. The resultant model was applied to both the 
small and large areas, to produce a vulnerability 
map for damage should they receive a direct hit 
from a large tsunami in the future. The total 
number of pixels for the larger area was divided 
up into 160 subunits and the saved 'forest' was 
applied to each pixel in a piecemeal fashion to 
each subunit before pasting them back together. 
This approach was essential due to memory 
limitations of RF when modeling millions of 
pixels of data. Predictor importance was evalu- 
ated by examining the mean decrease in accuracy 
based on random permutations of predictors 
using out-of-bag data, as output from the RF  tool. 

During the modeling process, we also evalu- 
ated two other data mining techniques that 
compete with RF for predictive accuracy. These 
are two adaptations of the boosting technique: 
See5 (http://www.rulequest.com) and Generalized 
Boosted Models (gbm) package in R (Ridgeway 
2005). See5 uses an adaptive boosting technique 
for discovering patterns that delineate categories, 
assembling them into classifiers, and using them 
to make predictions (Schapire and Freund 1997). 
Gbm package implements boosting techniques 
using greedy function approximation and stochas- 
tic gradient boosting (Freidman 2001: Freidman 
2002). After studying the outputs of both the 
boosting techniques and conducting several tests, 
we found they were inferior to RF  for this study. 
We do not discuss the comparisons as it would fall 
outside the realm of this study. 

The modeled outputs and damage maps were 
compared using the Map Comparison Kit 3.0 
(http://www.riks.nl/mck, Hagen-Zanker et al. 
2005). Kappa statistics including Khisto and KIo, 
were calculated, as was the percentage classified 
correctly by the model. Kappa is the product of 
Khisto and KlOc, where Khisto depends only on the 

total number of cells taken in by each category 
(i.e., only the histogram is considered, not the 
spatial distribution of the cells). KIo,, on the other 
hand, depends on the spatial distribution of the 
categories on the map (Pontius 2000; Hagen 
2003). Kappa is the proportion of agreement 
after chance agreement-the percentage of agree- 
ment expected after randomly relocating all cells 
in the maps-has been removed (Monserud and 
Leemans 1992). It ranges from -1 to 1, with 1 
being perfect agreement. We also calculated 
percent disagreement due to quantity and loca- 
tion according to Pontius (2000). 

Results 

Assessment of forest vs. developed land 

Analysis of damage:undamage ratios indicate that 
relatively higher proportions of the developed 
land were damaged compared to forested lands 
(Table 1). The small region had twice as much 
forest land as developed land (957 km2 vs. 
471.5 km2) but 20% less damaged area. Thus, 
developed land was 2.5 times more likely to incur 
damage than forested land (Table 1). For the 
large region, we calculate twice the likelihood of 
damage on developed lands relative to forested 
lands. 

Model of damage, small region 

According to U.S. Government estimates from 
the air around the time of the disaster, this region 

Table 1 Area of land forested vs. developed with or 
without damage from the tsunami (km2) 

Land cover Small zone Large zone 

No Damage No Damage 
damage damage 

Forested 957.0 162.4 2699.6 198.3 
Developed 471.5 203.5 1784.5 264.4 

Rntio-Dnnznge:No Dnrnnge 
Forested 0.17 0.07 
Developed 0.43 0.15 
Rntio 
Developed: 2.54 2.02 

Forested 
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had 450 km2 or 22.5% percent damage in the 10- 
km strip along its 187 km of coastline. The RF 
model slightly underestimated the area affected 
at 21.7% (Table 2). 

The RF model for damage recorded an out- 
of-bag error rate of 6.02%. The percentage 
disagreement due to quantity was 0.8%, while 
that due to location was 5.2% (Table 2). Most of 
the disagreement occurred approximately 2-4 km 
inland, outside the zones of most severe damage, 
and particularly in the northern regions that 
include Banda Aceh. The damage model on the 
smaller region classified 94% of the pixels cor- 
rectly, with a cell-by-cell Kappa statistic of 0.824 
(a result of KI,, of 0.844 and Khisto of 0.977) 
(Table 2). According to Monserud and Leemans 
(1992), the agreement between maps is "excel- 
lent" (Fig. 2a vs. Fig. 2f). 

With respect to variable importance, elevation 
and distance to shore had almost identical con- 
tribution to the model according to the Mean 
Decrease in Accuracy statistic of the RF software 
(0.1647 vs. 0.1643), followed closely by vegeta- 
tion, with 0.1589, and then exposure with 0.1354 
(Table 2). The lesser importance for exposure can 

Table 2 Statistics of areal estimates, coastal lengths, var- 
iable importance and classification accuracy using the RF 
software for the small zone and large zone 

be attributed to the narrow zone (<I km) of 
influence along the coastline (Fig. 2d). 

Model of damage vulnerability, large region 

For the larger region, the total area of damage, as 
estimated by the U.S. Government, was 886 km2 
or 13.3% of the 10-km strip along the nearly 
730 km of coastline (Table 2). Our model of 
vulnerability for this area classified a total of 
24.6%, or 1632 km2, as vulnerable should they 
receive a direct hit from another large tsunami 
(Table 2, Fig. 3). Of course, this is nearly twice 
the area than was actually damaged in the 2004 
tsunami. Of the zone not in direct line with the 
tsunami, only 8.9% of the area and only 37.8% of 
the vulnerable locations were damaged. The 
model predicted vulnerable zones for portions 
of the northeastern and southwestern sections of 
the larger study area that were not actually 
damaged in the 2004 tsunami because they were 
not in a direct line with the tsunami. These areas 
would be vulnerable, however, should another 
tsunami hit with a direct path into these shore- 
lines. Note that the maps presented (Figs. 1-3) 
are small representations of very detailed maps 
(30 m resolution) that could be used for local 
analysis and planning. 

Variable Small zone Large zone 

US governmerzt dara 
Area (km2) 
Damaged area (km2) 
Damaged area (%) 
Coastline length (km) 

Modeled data 
Correctly classified (%) 
Classified damaged (km2) 
Classified damaged (%) 
Kappa statistic 
Klocation 
Khisto 
Kappa class 
Disagreement, quantity (%) 
Disagreement, location (%) 

Variable inzportance 
Elevation 
Distance to shore 
Vegetation type 
Exposure 

2000 
450 
22.5 
187 

93.9 
435 
21.7 
0.824 
0.844 
0.977 
Excellent 
0.8 
5.2 

0.1647 
0.1643 
0.1589 
0.1354 

Na = Not applicable 
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Discussion 

In this paper we reiterate two points that have 
been made elsewhere but bear substantiation and 
repeating due to the enormity of the devastation 
to human life: (1) forested vegetation near the 
coasts can dampen the impacts of tsunamis and 
storm surges; and (2) areas most susceptible to 
such damage are reasonably predictable (and thus 
impacts can be largely mitigated). 

For the small region, the zone of direct hit from 
the tsunami waves, we found a 2.5 times greater 
likelihood of damage in developed areas vs. 
forested areas. A similar result was found by 
Danielsen et al. (2005) for the Cuddalore District 
in Tamil Nadu, India, where treed areas within 
1000 m of the coast suffered much less damage 
than non-treed areas. We attributed some of the 
difference in damage between forested and 
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Fig. 3 
vulner 
model 
to the 
applie, 

Zone of tsunami 
ability based on the 
for actual damage 
small area and 
d to the entire area 

developed lands to the fact that developed lands 
tend to be in higher proportions at low elevations 
along the coast than farther inland or upland. 
However, much of the forest also is low-elevation, 
mangrove-type vegetation; we calculate that the 
land less than 20 m in elevation and less than 
2 km from the coast was divided equally between 
forest and developed for the small region. Within 
this restricted elevation-distance zone, we also 
found that the ratio of damaged to undamaged 
land was 40% higher for developed than forested 
areas, providing further evidence of the protec- 
tive nature of the forests. In recent decades, 
mangroves have been replaced, mostly by shrimp 
farms. According to a United Nations Food and 
Agriculture Organization report (2003), the area 

of mangroves was reduced by 26% between 1980 
and 2000 for the five South-East Asian countries 
that were affected most by the tsunami. 

Our models of predicting damage areas had 
"excellent" fit to the actual damaged areas, 
according to the Kappa statistics. Particularly 
for the small zone, which corresponded to the 
zone of direct tsunami hit, a reasonably accurate 
map of damage zones can be created, that is 
based primarily on distance to shore, elevation, 
and vegetation type (Fig. 2). The model was then 
extrapolated to a larger area, producing a map of 
vulnerability, at a resolution approaching 30 m 
(Fig. 3). These models may not be as mechanis- 
tically sophisticated as ones in which bathymetry 
and wave propagation through the seas are 
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considered (e.g., Bhattacharjee 2005). Still, they 
are based on high-resolution empirical data that 
were not readily available previously. The data 
sources are now relatively easy and inexpensive 
to obtain over large areas of shoreline, as is the 
modeling capability. The R F  software proved 
effective for this application as it allowed the use 
of both nominal and continuous variables in the 
classification. We are now in an era of data 
mining and predictive modeling that surpasses 
previous times (Iverson et al. 2004; Prasad et al. 
2006; Elith et al. 2006), and these tools should be 
used for disaster preparation purposes such as 
demonstrated here. 

Summary 

We evaluated damage and built predictive mod- 
els, at a resolution of 30 m, within 10 km of the 
coast for a small zone of 187 km along the 
western and northwestern coast, and a vulnera- 
bility map for a larger, 730-km coastline that 
encircles most of the province. In evaluating 
forested vs. developed zones, we found that 
developed land was much more susceptible to 
tsunami damage than forested land, 2.5 and 2 
times greater likelihood, respectively, for the 
small and large zones. Though some portion of 
this result is due to relatively greater develop- 
ment in the near-coast areas, this result also 
provides further evidence of the protective power 
of coastal forests. We also created a RF model of 
damage for both zones based on elevation, 
distance to shore, vegetation type, and exposure 
to the ocean. The model for the small area 
correctly classified 94% of the pixels and had an 
"excellent" fit with actual damage, according to 
the Kappa statistic. The ranked importance of the 
variables overall in predicting damage were 
elevation = distance to shore > vegetation 
type >> exposure. The models can be applied 
elsewhere to assess vulnerabilities of landscape 
positions along coastlines. We recommend that 
managers responsible for coastal zones with some 
level of tsunami risk conduct similar modeling 
exercises to establish zones of vulnerability and 
consequent warning and protection defenses, e.g., 
tree belts, against these potentially devastating 
forces. 
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