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Adequate data of known accuracy are critical 
to advancing the field of landscape ecology 

2.1 Introduction 

The science oflandscape ecology is especially dependent on high-quality 
data because often it focuses on broad-scale patterns and processes and deals in 
the long term. Likewise, high quality data are necessary as the basis for build- 
ing policy. When issues, such as climate change, can induce international polit- 
ical and economic consequences, it becomes clear that providing high-quality, 
long-term data is paramount. It is not an accident t l~at  this chapter is posi- 
tioned near the front of this book. Of the priority research topics presented in 
this boolc, this is the most pervasive across other topics because the availability 
ofhigh-quality data Iimits progress in other realms. Be it historic land-use data 
needed to unclerstand the dynamics of land-use change, the independent data 
of varying scales needed to assess scaling phenomena or test new metrics, the 
socioeconomic~cultural data needed to integrate humans into landscape ecol- 
ogy, or the biological and population data needed to evaluate ecological flows, 
the quality of raw data, metadata, and derived data products is critical to the 
core of landscape ecology. For each of these key topics and perspectives, the 
availability and quality of data will affect research results and practical recom- 
mendations. 

2.2 Data advances in past two decades 

It has been two decades since the 1983 worlrshop that many say estab- 
lished the landscape ecology field in North America (Risser et al. 1984). It was 
attended by many who have and still contribute to the field (e.g., Barrett, 
Botkin, Costanza, Forman, Godron, Golley, Hoekstra, Rarr, Levin, Merriam, 

Key Topics in Lnnhqe~rology ,  ed. J .  Wu and R. Hobbs. 
Publisl~ed by Cambridge University Press. 0 Cambridge University Press 2007. 



12 L O U I S  R .  I V E R S O N  

O'Neill, Parton, Risser, Sharpe, Shugart, Steinitz, Thomas, Wiens, and also a 
rookie named Iverson). From a scanty list of databases available, this group 
identified several databases with spatial components useful in landscape ecol- 
ogy: aerial photos; Landsat MSS; biological sampling schemes; and statisti- 
cal measures of demography. They also identified several problems requiring 
attention: merging data from muItiple sources with various levels of precision, 
resolution, and timing; choosing display formats appropriate for various uses 
and without distortions; the need for systematic or stratified field sampling in 
a heterogeneous universe; and decisions about the appropriate resolution for a 
particular problem. Researchers still struggle with these problems. 

It may be useful to remind ourselves, especially our younger readers, where 
we were technologically with respect to data acquisition and manipulation two 
decades ago. I will relay what it was like for me. I was hired by Paul Risser in 
late 1982 to help develop the Illinois Lands Unsuitable for Mining Program 
to ensure lands of particular value were deemed "unsuitable" for surface min- 
ing. Risser had the foresight to identify that the new technology called "GIs" 
might be appropriate to do analysis of multiple mapped features. We hired 
Environmental Systems Research Institute (ESRI) to help us, and we became 
ESRI client number 12. Risser also believed it important that the GIs tech- 
nology be made available to scientists, not just computer geelcs. So I and my 
colleagues of various scientific bents spent three weeks in Redlands, CA train- 
ing with the developers (ArcInfo 2.1 at the time), and the company president, 
Jack Dangermond, would take us during break to the orange orchard on the 
property to pick a few oranges. Subsequently, Illinois was the first state with 
full, integrated vector GIs at 1:500K. Prior to this time, most GIs work was per- 
formed with raster processing, using paper print-outs with different symbols 
for different classes within the matrix. Often entire walls were plastered with 
these print-outs to get theoverall view ofthestudy area. Several people from the 
Oak Ridge National Laboratory were creating and manipulating county-level 
data sets for the conterminous United States (Itlopatek et al. 1979, Olson et al. 
1980). 

ArcInfo 2.1 was vector, but the hardware and software was limited. For 
data, we had a statewide digitized map of pre-European settlement vegetation 
(Anderson 1970) and the Land Use Data Acquisition (LUDA) data from the US 
Geological Survey (Anderson et al. 1976), vintage late 1970s. With these, we 
couId assess long-term vegetation changes (Iverson and Risser 1987) and the 
attributes related to these landscapes (Iverson 1988). At that time, a simple 
overlay process would run all night; in fact, my coReagues forbade me to run 
those overlay batch jobs during the day because the shared computer system 
(which filled a room) would slow to a crawl or crash with more than a few jobs 
running simultaneously. I "divided" the state into many chunks because the 
software could not handle so many arcs. 



Adequate data ofknown accuracy are critical to advancing the field 13 

Other characteristics of the time include the absence of ArcView, GRID, 
FRAGSTATS, CDs, zip drives, disk drives bigger than 300 MB (and these occu- 
pied 1 m3). We had just advanced to 1.4 MB diskettes, and nine-track tapes 
were the main means of data dispersal. There was no internet and no email. 
With remote sensing, there was no SPOT, MODIS, radar, hyperspectral data, or 
any other satellite data besides Lanclsat MSS and the beginning, experimental 
phase of Landsat TM and AVHRR. I was privileged to be an early NASA prin- 
cipal investigator, funded to use forest plot data, TM, and AVHRR in scaling 
forest cover (Iverson e t  al. 1989a,b) and productivity (Cook e t  al. 1987, 1989). 
However, we had to use small pieces of the Landsat scenes, often only 5 12 x 5 12 
pixels. 

Civilian GPS units became available in the late 1980s. There were few satel- 
lites and few base stations so we had only a few hours of sufficient satellites 
and we had to do differential post-processing from a station more than 200km 
away. Of course, selective availability was the norm until May 2000. There were 
essenrially no spatial statistics or metrics for landscapes other than basic patch 
arealperirneter metrics. When Krummel et al. (1987) published on the value of 
the fractal, it opened the door to a flood of landscape metrics, including many 
by the same group in the following year (O'Neill e t  al. 1988). Gardner e t  al. 
(1987) also first published on neutral models to help assess landscape pattern. 
GIs-based habitat or suitability models had appeared earlier (e.g., Hopltins 
1977, Spanner et al. 1983, Iverson and Perry 1985, Donovan e t  al. 1987, Risser 
and Iverson 1988), but spatially explicit simulation models did not begin to 
emerge until the later 1980s (e.g., Turner 1988, Turner e t  al. 1989, Costanza 
et al. 1990). We have, indeed, come a long way in the way we acquire and 
process data. 

2.3 Current status 

Technology and data sources have perhaps advanced at the scale of com- 
puter speed according to Moore's Law, which states that the number of transis- 
tors in computer chips will double every 18 months (Moore 1965). However, the 
people available to analyze these data do not double at this rate, so the workload 
for all landscape ecologists must necessarily nearly double every 18 months as 
well, (Not really, but it seems like i t  sometimes.) Nonetheless, data and ways 
to acquire data are plentiful, though not always of the nature desired, so that 
retrofitting with surrogate data is often necessary. A few of the recent advances 
in data and tools to analyze them are discussed below. 

2.3.1 More powerful computers and associated technology 

Moore's Law has generally held true over the past two decades, result- 
ing in a phenomenal sustained rate of development and an increase in capacity 
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for processing pixels. For example, Riitters et nl. (2000, 2002) and Riitters 
and Wiclcham (2003) have assessed global patterns at 1 km and conterminous 
United States patterns at 30m resolution. 

2.3.2 Small data recorder technology 

Small data loggers now can be attached to a plethora of devices to allow 
long-term data recording of various environmental attributes. For example, 
our group has used them to determine soil and air temperatures, by land- 
scape position, during and in the months following prescribed fires (Iverson 
and Hutchinson 2002, Iverson et nl. 2004b). With these sensors, researchers 
can spatially locate temperature profiles, map and analyze them across land- 
scapes, and animate the actual fire behavior through time (e.g., see animation 
found at http://www.fs.fed.us/ne/delaware/4153/ffs/zaleski.burn.html). These 
devices are being used in more diverse and creative ways to acquire data long 
term and in spatially disparate locations - both very important for landscape 
ecology. 

2.3.3 GPS/GIS on hand-held computers 

With the same trend of shrinking computer components comes 
advances in hand-held computers. GPS and GIs software now can be used 
effectively on palm-sized units, thus permitting much wider access of the 
technology to field biologists and others who otherwise have plenty of field 
equipment to lug around. 

2.3.4 Software in image analysis, spatial statistics, modeling, 
pattern metrics, GIs 

Software development has been rapid and diverse as well. The field of 
data mining and machine learning has been rapidly developing je.g., Breiman 
1996,2001). Spatial statistics have been a real focus for some time (e.g., cliffand 
Ord 1981, Burrough 1987, Legenclreand Fortin 1989, Cressie 1991). Analytical 
tecl~niques not only have been developed by and for landscape ecologists (e.g., 
McGarigal, this volume), but also borrowed and modified from other fields. 

2.3.5 Remote sensing sensors 

Many sensors are orbiting that weren't a decade ago (Table 2.1). The pixel 
sizes have gotten considerably smaller- now often 1 m or less - and the amount 
of data being transmitted daily to Earth is measured in petabytes bytes). 
several countries are involved in developing the sensors and operating the 
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T A B L E  2 . 1  . Current satellite$ 

Satellite 

Best 

Country Launch resolution (m) -pea 

Landsat 7 US 1999 15 Mid-Opt 

EO-1 US 2000 10 Mid-Opt 
SPOT-2 France 1990 10 Mid-Opt 
SPOT-4 France 1998 10 Mid-Opt 
SPOT-5 France 2002 2.5 Mid-Opt 

CBERS-1 China/Brazil 1999 20 Mid-Opt 

Ziyuan-ZY-2A China 2000 9 Mid-Opt 

Ziyuan-ZY-2B China 2002 3 Mid-Opt 

KOMPSAT- 1 Itorea 1999 6.6 Mid-Opt 

Proba (hyperspectral) ESA 2001 18 Mid-Opt 

UaSat 12 Singapore 1999 10 Mid-Opt 
DMC AlSat-1 Algeria 2002 3 2 Mid-Opt 

ASTER US 1999 15 Mid-Opt 
ERS-2 ESA 1995 30 Mid-Rad 

ENVISAT ESA 2002 30 Mid-Rad 

Radarsat 1 Canada 1995 8.5 Mid-Rad 

AVIIRR US 1978 1000 LOW-Opt 

MODIS US 1999 250 Low-Opt 

Landsat MSS US 1972 79 Low-Opt 

IKONOS US 1999 1 High-Opt 

QuicltBird-2 US 2001 0.6 High-Opt 
EROS A1 Israel 200 0 1.8 High-Opt 

IRS TESS India 2001 1 High-Opt 

Helios-1A France 1995 1 High-Opt 
Helios-1B France 1999 1 High-Opt 

a Low-Mid-High = resolution class, Opt = optical sensor, Rad = Radar sensor 

From: William Stoney, Mitretek Systems. 

satellites. Many of the highest-resolution satellites are commercial, while the 
coarser sensors are publicly operated and more utilized in research. For exam- 
ple, the MODIS sensor, with pixels 250-IOOOm, is providing numerous maps, 
including estimated gross primary productivity, leafarea index, and fraction of 
photosynthetic active radiation on a regular basis (e.g., Running 2002, Zhang 
et al. 2003). 

2.3.6 Data clearing houses 

Data is becoming more freely available as government and multi- 
government agencies and irongovernment organizations are anxious to have 



T A B L E  2 .2 .  Example data clearing houses available on the Internet 

Site Common type of data Organization 

www.natureserve.org Biodiversity Natureserve 
edc.usgs.gov Environmental US Geological Survey 
www.wcrnc.org.uk/cis/ Biodiversity World Conservation Monitoring 

Centre 
www.grid.unep.ch General United Nations Environmental 

Program 
gcmd.gsfc.nasa.gov/ Remotely Sensed US National Atmospheric Space 

Administration 

www.gbif.org Biodiversity Global Biodiversity Information 
Facility 

fsgeodata.fs.fed.us Forests, Environment US Forest Service 
geodata.gov General US Government 
www.nbii.gov/ Biological Resources National Biological Information 

Infrastructure 

all data, but especially publicly supported data, available to maximize effi- 
ciency (as long as national or environmental security is not compromised). As 
such, severaI data clearing houses are on the internet to allow free download of 
data. Some examples are listed in Table 2.2. 

2.4 What we will have soon 

We should expect the recent trends in data acquisition will continue. 
National security reviews since September 11,2001, have reduced the scope of 
high-resolution data available on the Internet, but otherwise, the trends will 
lead to better hardware, software, and data availability. Remote data collection 
via sensors attached to data recorders on the ground or satellites in the sky will 
pave the way for almost unimaginable sources of data on our landscapes over 
the long term. As an example of likely near-future data sources, William S toncy 
(personal communication) has compiled a list of more than 50 mid- and high- 
resolution sensors targeted for activation within the next few years (Table 2.3). 

2.5 Issues of data quality 

A better understanding of spatial data quality requires abandonment of 
two basic beliefs that have been the bane of GIs since the beginning: (1) infor- 
mation shown on maps and captured into a GIs is always correct and essen- 
tially void of uncertainty, and (2) numerical information from computers is 
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TABLE 2 . 3  . Sensors targetedfor activation by 2007' 

Best 
Satellite Country Sponsora resolution (rn) p p e b  
- 

Orbview 3 
1KONUS.X 
Quic1Bird.X 
OrbView X 

EROS B 1 

EROS B2 
EROS B3 
EROS B4  
IRS Cartosat 2 
Pleiades-1 
~leiades-2 
Helios-2A 
Helios-2B 
IGS-01 
IGS-02 
Resurs DK-1 
Resurs DK-2 
Resurs DK-3 
KOMPSAT-2 
TerraSAR X 

TerraSAR L 
SAR-LUPO-1 
SAR-Lupo-2 
COSMO-Skyrned-1 
COSMO-Skyrned-2 
COSMO-Skymed-3 
COSMO-Skymcd-4 
IGS-R1 
IGS-R2 
Resurs DK-2 
Resurs Dl<-3 
LCDM-A 
LCDM-B 
RapidEye-A 
RapidEye-R 
RapidEye-C 
RapidEye-D 
IRS Resourcesat-1 

US 
US 
US 
us 
Israel 
Israel 
Israel 
Israel 
India 

France 
France 
France 
France 

Japan 
Japan 
Russia 
Russia 
Russia 
Korea 
Germany 
Germany 
Germany 
Germany 
Italy 
Italy 
Italy 
Italy 

Japan 
Japan 
Russia 
Russia 
US 
US 
Germany 
Germany 
Germany 
Germany 
India 

Corn 
Corn 
Corn 
Corn 
Corn 
Corn 
Corn 
Corn 
Gov 
Gov 
Gov 
Mil 
Mil 
Mil 
Mil 
Gov 
Gov 
Gov 

Gov 
Gov 

Gov 
Mil 
Mil 
Gov 
Gov 
Gov 
Gov 
Mil 
Mil 
Gov 
Gov 
Corn 
Corn 
Corn 
Corn 
Corn 
Corn 
Gov 

High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Opt 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
High-Rad 
Mid-Opt 
Mid-Opt 
Mid-Opt 
Mid-Opt 
Mid-Opt 
Mid-Opt 
Mid-Opt 

(cont.) 



TABLE 2 . 3 .  (cant.) 

Best 
Satellite Country S p o n s o r ~ e s o l u t i o n  (m) Typeb 

LRS Resourcesat-2 India Gov 6 Mid-Opt 
CBERS-2 ChinaIBrazil Gov 20 Mid-Opt 
DMC China DMC China Gov 4 Mid-Opt 
CBERS-3 ChinaIBrazil Gov 5 Mid-Opt 
CBERS-4 ChinaIBrazil Gov 5 Mid-Opt 
RocSat2 Taiwan Gov 2 Mid-Opt 
ALOS Japan Gov 2.5 Mid-Opt 
DMC NigeriaSat-I Nigeria Gov 32 Mid-Opt 
DMC ThaiPhat Thailand Gov 3 6 Mid-Opt 
DMC BilSat Turkey Gov 12 Mid-Opt 

DMC UK UK Gov 32 Mid-Opt 
TopSat UK Gov 2.5 Mid-Opt 
DMC VinSat-1 Vietnam Gov 4 Mid-Opt 
RadarSat 2 Canada Gov 3 Mid-Rad 
ALOS Japan Gov 7 Mid-Rad 

a Com = Commercial; Gov = Government; Mil = Military 
Low-Mid-High = resolution class, Opt = optical sensor, Rad = Radar sensor 

From William Stoney, Mitretek Systems. 

somehow endowed with inherent authority (Shi etal. 2002b). This blind accep- 
tance of GIs. data is its Achilles heel and could undermine the entire tech- 
nology (Goodchild 1998). Maps present a clarified, simplified view of a world 
that is actually complex and confusing. People prefer this simplified view, and 
explicit attention to uncertainty muddles this perspective. Nonetheless, it is 
especially important to pay attention to uncertainty in spatial data because 
of its importance in decision-making. ~ecision-makers usually don't want to 
know about uncertainty and they view GIS as an attractive simplicity. How- 
ever, courts are likely to hold that a GIs user should make reasonable efforts 
to deal with uncertainty and they are likely to take a dim view of regulations or 
decisions based on GIs data in which issues of uncertainty have been ignored. 
Therefore, avoiding the issue of uncertainty will hurt the credibility of the 
profession. 

2.5.1 Sources of uncertainty in spatial data 

Burrough and McDonnell (1998) state that most GIs procedures 
assume that: (1) source data are uniform, (2) digitizing is infallible, (3) map 
overlay is simply intersecting boundaries and reconnecting line network, 
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(4) boundaries can be sharply defined and clrawn, (5) all algorithms operate in a 
fully deterministic way, and (6) class intervals defined for "natural" reasons are 
the best for all mapped attributes. Ofcourse, these implications are rarely true 
in landscape ecological studies and must be rectified. Much of the uncertainty 
can be traced to the original capture and automation of the data. It is especially 
important to have consistency and proper error checking when a large corpo- 
rate database is being developed and will be used by many people (Lund and 
Thomas 1995). Here are some sources of spatial data error (adapted from Stine 
and Hunsaker 2001): 

Geometric error: When data are collected on the Earth (a sphere), and 
transferred to a map (a plane), there are inaccuracies in projecting the 
locations. 
Artributz error: In measuring an attribute at a point, there may be bias or 
error in the measuring tool or the person taking the measurement. This 
error is especially prominent in categorical variables when interpreting 
class membership (e.g., which vegetation type is this?). 
Locationul/boundny uncertainty: Positions, through a variety of reasons 
(e.g., digitizing errors, GPS errors, field-to-map errors), are commonly 
misrepresented relative to their true positions. These positional errors 
can matter to a greater or lesser extent depending on the attribute 
of interest. For example, Lewis and Hutchinson (2000) assessed the 
impact of positional error for estimates of slope angle and elevation, 
and found that small positional errors among three maps led to a 
highly correlated estimate for elevation (R2 = 0.95-0.98) but not for 
slope (R?- = 0.18-0.32). Boundaries of many ecological units are fuzzy, 
so their clepictions as lines of no width in a GIs will carry significant 
uncertainty. 
Physical changes ofattribtctes over time: Nearly all biologically relevant vari- 
ables on landscapes change over time, yet most GIs systems hold data for 
only one time stamp. Landscape ecologists can learn much from stack- 
ing two or more time stamps and analyzing the changes, but caution is 
required to make sure that errors in each of the time stamps are properly 
handled (Walsh etal. 1987). 
Data compntibility: When combining data of different qualities, there are 
new errors introduced. For example, in the case of combining two dates 
of satellite data, if one is Landsat MSS and the other is Landsat TM, 
the differences in spatial and spectral resolution can be important. Or, 
if slope aspect is derived from two digital elevation models of different 
spatial resolution, the estimates are likely to be quite different. 
Errors in interpreting and manipulating data: This error source includes sev- 
eral data processes that can introduce error, such as class aggregations, 



20 L O U I S  R. I V E R S O N  

changing map projections, and conversions between raster and vector 
data. 
Inability to accurately detect attribute ofinterest: In many cases, landscape 
ecologists are not able to measure the variables of interest, but instead 
use surrogates that hopefully are correlated to the attribute of interest. 
For example, in the United States, the Heinz Report on the State of the 
Nation's Ecosystems (Heinz Center 2002) uses 102 indicators on ecosys- 
tem status, yet only 32 percent of the indicators have adequate data for 
assessment. The remainder have to be estimated from surrogates or not 
assessed at all. 

2.5.2 Considering uncertainty in landscape models 

Landscape ecologists frequently are using models to better under- 
stand the system in which they work and to evaluate the influence of an 
altered condition (Sklar and Hunsalcer 2001). Several ecological phenomena 
have spatially explicit characteristics important to consider in the models, 
including environmental gradients, migration, immigration and emigration, 
metapopulation dynamics, competition, fire behavior, and biogeochemical 
cycling (Stine and Hunsaker 200 1). These models are subject to several sources 
of uncertainty, most of which can be traced to uncertainty in data collec- 
tion, data processing, model structure, human intervention, and natural vari- 
ability (Li and Wu 2006). Of these five, only model structure is unique to 
the development of landscape models. Within model structure, there are 
five places where error can influence model outputs (Sklar and Hunsaker 
200 1): 

(1) Inputs- the scale ofsimulated events and states should match the scale of 
events and states of the data used by the model. For example, a habitat 
model is much different from a global climate model and data inputs 
should be matched to the questions being asked. 

(2) Initial conditions - every model requires identification of the conditions 
at a particular point in time and across the entire modeled space as the 
model starts. Often these conditions must be estimated, with associated 
uncertainty, through interpolation and interpretation of point data. 

(3) Rrcingfunctions - these are the inputs needed to move the simulation to 
the next time step. Inputs collected temporally, such as temperature or 
precipitation, often are used as drivers in the simulation, and errors in 
these functions can significantly affect the outputs. The most significant 
uncertainty results from missing data so that, in our example, widely 
dispersed meteorological stations may present problems, especially for 
fine-scale simulations. 
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(4) Calibration pammeters - the mathematical structure that defines rules, 
processes, statistical relationships, or state change in the model, to max- 
imize observed and simulated resemblance. These relationships will not 
be perfectly modeled, so errors are imbedded in the outputs. 

(5) Verijcation components - observational and simulated data again are com- 
pared, but the observational data have not been used in the model devel- 
opment. Again, errors are similar to those of calibration except that 
time increases uncertainty and error is cumulative with time in model 
outputs. 

In general, there is a tradeoff in that the more complex the model, the more 
potential for learning and prediction, but the less accurate (more uncertain) 
the outputs. There are four categories of dynamic landscape models (Sklar and 
Hunsaker 2001): 

(1) Transitional probability models - not mechanistic, but rely on maps from 
two or inore dates to calculate historical trends, which then can be 
applied forward. 

(2) Gradient models - for modeling landscapes with obvious upstream and 
downstream components. 

(3) Process-bmedmosaicmodels- distributes pattern across the landscape using 
site-specific biogeochemical mechanisms to control energy and material 
flows. 

(4) Individulll-based models - focus on behavior rules for an individual or 
an assemblage of individuals as a function of spatial constraints and 
opportunities. 

Sklar and Hurlsaker (2001) also discuss the causes of uncertainty in each of 
these model types. 

2.6 Needs in data acquisition and quality 

In the pages following,I present 14 topics related to dataacquisition and 
quality which I believe need additional research or effort to advance the credi- 
bility and value of the field of landscape ecology and its role in society. There is 
no particular order to this list. Many of these ideas have been gleaned or mod- 
ified from other sources, including Mowrer and Congalton (2000), Hunsaker 
etal. (2001), Wu and Hobbs   ZOO^), and Shi et al. (2002a). 

2.6.1 Strengthen capacity to collect ground information 

World citizens, public officials, and academic institutions need to devise 
a way to populate the world with many 'ologists carrying GPS units, preferably 
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in the context of long-term landscape monitoring programs, and to orga- 
nize the acquired data into hierarchical, GIs databases. Basic biological data 
on organisms and communities is still needed! Natural historians have been 
diminishing in number, and when coupled with increasing information and 
spatial location requirements in this spatially aware age, ground-observed 
information is lacking for accurate spatial processing. These Irinds of data are 
critical for research on biological invasions, conservation planning and mon- 
itoring, sustainability, cause and effects of stressors, change analysis, systems 
and complexity analysis, and model development and validation. 

Associated with the collection of basic biological data is the nearly equally 
important role of automating, managing, and serving up the data. There 
are sevcraI organizations doing this to various degrees. The state of Illinois, 
USA, began automating and distributing information on distributions, ecol- 
ogy, taxonomy, and wildlife and human interactions for more than 3200 plant 
species in the 1950s (Iverson e t  al. 1997b, Iverson and Prasad 1998a, Iverson 
and Prasad 1999). The National Biological Information Infrastruch~re, the 
World Conservation Monitoring Centre, Natureserve, and the Global Biodi- 
versity Information Facility are four other servers of this kind of information 
(Table 2.2). 

2.6.2 Develop key indicators of status and health of landscapes 

To efficiently monitor status and trends, scientists need to identify key 
indicators within various landscape types that can be readily monitored over 
large areas with reasonable costs. As mentioned previously, the "The State 
of the Nation's Ecosystems" report for the United States presented 102 indi- 
cators, but only a third have adequate data and many require research on 
effective monitoring strategies (Heinz Center 2002). Other indicators could 
be developed, especially those that may be more regional in character. Many 
other projects have been conducted to assess status and trends of particular 
locations or landscape components (e.g., Iverson e t  al. 1989b, Illinois Depart- 
ment of Energy and Nattiral Resources 1994, Mac e t  al. 1998, Shifley and Sul- 
livan 2002), but all have been limited in scope and reliability by the selected 
indicators and the available data. 

2.6.3 Design efficient, multi-tiered sampling designs 

It remains a challenge to sample across large regions in a way that pro- 
vides information at multiple scales, while permitting the inference of the 
effects of spatial heterogeneity. For instance, many soil and vegetation vari- 
ables have substantial spatial variability within a few meters, yet we are trying 
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soil type Integrated Moisture Index Value 

High : 82 
sample points 
4 I ,  I Low : 3 

F I G U R E  2.1 

Integrated Moisture Index at 2m resolution, vegetation sample points at 50m 
spacing, and soil polygons at about loom resolution for a study site in southern 
Ohio. USA 

to make repeatable, large-area assessments. For example, in Ohio a map of 1 m 
digital elevation modeled for integrated moisture index shows very high local 
variability (Fig. 2. I), also reported for soil nitrogen availability (Boerner et al. 
2000). What is the best way to extend and use this type of information across 
large areas? Innovative sampling methods are needed, using creative combina- 
tions of current and new methods in field sampling, experimentation, remote 
sensing, statistics, and modeling. Projects like BIGFOOT (Burrows et al. 2002) 
combine flux rowers with multiple ground and remote sensing instruments to 
extend detailed information across large areas. Earlier, forest plot data, Landsat 
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TM, and AVHRR data were used to map forest cover (Iverson et al. 1989a,b, 
1994) and productivity (Cook et al. 1987, 1989). In these and similar projects, 
however, more research is needed to uncover methods to clearly distinguish 
"noise" from the fine-scale heterogeneity that can be attributed to measured 
phenomena. 

2.6.4 Design and implement global landscape monitoring programs 

Society needs to implement global monitoring programs now. The tools 
are currently available to begin. The incentives are high to do assessments of 
status and change, for these ecological processes and functions are critical to 
life itselfl Initially, this program should be largely driven by (nearly) free satel- 
lite data, which are multiple in scale and with a time series of data. For exasn- 
ple, we now have Landsat MSS data back to 1972, Landsat TM back to -1982, 

AVHRR back to -1978, and SPOT (SatellitePour I' Observation de la Terre) back to 
1986. These programs have sufficient data to establish such a program. As dis- 
cussed previously, the satellite data streams are available now and are increas- 
ing dramatically. Today's hardware and software can handle the huge data 
sizes. The program should be interdisciplinary and be able to integrate the 
most appropriate methodologies from each discipline. And it should permit 
adaptive management so that as the science, the indicators, and public opinion 
evolve, so can the questions being asked of the program. In the United States, 
the proposed National Ecological Observatory ~ e n v o r k  (NEON) (Holsinger 
et al. 2003) is working toward this goal, but similar efforts are needed 
globally. 

2.6.5 Develop efficient tools for strategic ground sampling 

As stared in Section 2.6.1 above, there are not enough natural histori- 
ans collecting data onspecies, etc., on the ground in a spatially organized way. 
There will never be enough. Therefore, strategic methods must be derived to 
get the most "bang for the buck" when it comes to sampling species. We need 
GIs tools which will better target ground sampling, so field crews will have a 
higher probability of encountering the species of interest. In this way, places 
rich in threatened and endangered species or invasive species, or biologically 
rich communities, could be modeled and then visited for verification. As an 
example, Iverson and Prasad (1998a) used a GIs model for 102 Illinois counties 
to predict possible plant species richness that had been under-sampled based 
on the richness in the well-sampled counties. Similar efforts and strategies have 
been presented by Palmer et al. (2002) and Ferrier etal. (2002). 
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2.6.6 Develop methods to share sensitive ground-specific information 

Sometimes ground-specific information, or at least the specific locations 
of that information, is sensitive in that it cannot be freely shared without 
restriction. This restriction may be deemed necessary to protect national secu- 
rity, threatened or endangered organisms, or the rights of private landowners. 
It would be great if the information could be shared for research and mon- 
itoring purposes, but not cause legal or other problems. We need research 
into methods that might allow the ecological information to be gleaned with- 
out legal constraints. For example, the US Forest Service Forest Inventory and 
Analysis (FIA) program, by law, cannot release coordinates of their plots which 
number in the hundred thousands. This restriction greatly limits research on 
plant-environment studies. FU is incorporating a "fuzz and swap" technique 
to fuzz locations slightly and to swap attributes with the nearest similar neigh- 
bor, which woi~ld at Ieast allow summarizing to coarse-level polygons (Charles 
Scott, US Forest Service, personal communication). Somewhat related is the 
issue of credit versus data sharing for researchers. Too often researchers are 
reluctant to submit their data for meta- or regional analysis because they have 
not yet fully published on the data, even though the data were collected with 
public funds. Conversely in many instances, the collector(s) of the ground data 
is forgotten by the researchers doing the regional analyses. 

2.6.7 Enhance and categorize methods to interpolatelextrapolate point-level 
data across landscapes 

Because it is not possible, or at least practical, to completely sample any 
landscape attribute that can't be sensed remotely via satellite or aerial photo- 
graph, there always will be a need for interpolation methods to map attributes 
spatially across landscapes from point-sampled data. Attributes neecling to be 
mapped include species or community distributions, fuels, basal areas, soil 
properties, climatic data, and air quality. There are several methods available, 
and the list is growing. What tools to use has been a question for a long time 
and has been reviewed extensively elsewhere (e.g., Lam 1983, Franklin 1995, 
Guisan and Zimmerman 2000, ~ehmann et al. 2002, ~eibhold 2002). Some 
of the methods, along with citations to case studies, follow (in no particular 
order): 

Regressions (general linear models, general additive models, etc.) (James 
and McCulloch 1990, Iverson et al. 1997b, Austin 1998, Franklin 1998, 
Cawsey et al. 2002, Lehmann et al. 2002, Moisen and Frescino 2002). 
Regression includes a wide array of models in which predictor variables, 
often in a stepwise fashion, are selected which explain variation in the 



response variable or variables. Often models are built by fitting lines to 
data that minimize the sum of the squared residuals. 
Kriging (e.g., universal, indicator) (Rossi et al. 1992, Leibhold et al. 1993, 
1994, Hershey 1996, Riemann-Hershey and Reese 1999). These meth- 
ods are theoretically based in multiple linear regression and use semi- 
variograms to describe spatial structure in data, as well as predict val- 
ues across nonsampled areas. Implicit is the notion that samples close 
together in time andlor space will be more similar than those that are 
farther apart. These methods preserve the spatial structure and variabil- 
ity inherent in the sample data but do not work well with ancillary data 
and usual'ly predict a univariate response. 
Splines (e.g., thin plate splines) (Mitasova and Hofierlra 1993, Hutchin- 
son 1995, Mitasova et al. 1996, Price et al. 2000, Hofierlca et al. 2002). 
These interpolation functions include tension and smoothing param- 
eters so that a digital elevation model (DEM), for example, can be viewed 
as a thin plate built at a higher resolution from points, and the ten- 
sion adjusted to minimize overshoots and artificial pits in the resulting 
DEM. 
Classification and regression trees (CART) (Breiman et al. 1984, Franklin 
1998, Iverson and Prasad 1998b, Moisen and Frescino 2002). The model 
is fit using recursive partitioning rules, where data are split into left and 
right branches according to rules defined by the predictor variables. At 
the terminal node, the predicted value (regression trees) or class (classi- 
fication trees) is estimated. 
Multivariate adaptive regression splines (MARS) (Freidman 1991, 
DeVeaux e t  al. 1993, Prasad and Iverson 2000, Moisen and Frescino 
2002). MARS is related to classification and regression trees in that 
it is a flexible nonparametric regression method that generalizes the 
piecewise constant functions of CART to continuous functions by fitting 
(multivariate) splines. 
Computer-intensive data mining and prediction techniques (Breiman 
1996, 2001, Iverson et nl. 2004a). These advanced machine-learning 
techniques use multiple CART trees in determining the best predictive 
models, including measures of variable importance within the mod- 
els. Bagging and random forests are techniques that use a bootstrap 
approach to identify variable importance and produce averaged models, 
sometimes with as many as 1000 CART trees involved. 
Inverse distance weighted methods (ESRI 1993, Price etal. 2000). These 
methods apply asimplelinearly weighted combination ofaset ofsample 
points, with the weight being a function of inverse distance. 
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Most-similar-neighbor methods (Moeur and Stage 1995, Ohmann and 
Gregory 2002). These methods provide site-specific data for nonsam- 
pled areas by choosing the most similar parcel from a set of sam- 
pled parcels to act as its surrogate. Ohmann and Gregory (2002) 
combined most-similar-neighbor methods with direct-gradient analy- 
sis (canonical-correspondence analysis) to produce reasonably accurate 
vegetation maps. 
Artificial neural networlrs (Ripley 1994, Cairns 2001, Moisen and Fres- 
cino 2002). With neural networlts, accurate models can be built for 
prediction when the underlying relationships between predictor and 
response are unltnown; the response is a transformation of a weighted 
combination of the predictor variables. The many coefficients and inter- 
cepts are "learned" via an optimization method. Bt is more of a ''black 
box", however, in that the influences of specific variables are difficult to 
discern. 

As a corollary to the above methods, to spread point-level information out 
across the landscape is also the critical, and often more important, task ofdeter- 
mining where boundaries lie among the patches on the landscape. This is also 
an area of active research je.g., Fortin 1994, Fortin and Drapeau 1995, Lopez- 
Blanco and Trillers-Ruiz 1995, Wang and Hall 1996, Bernert et al. 1997, Fortin 
et al. 2000). 

2.6.8 Develop techniques to best acquire and archive information on 
landscape history 

When we learn about the history of alandscape, we can learn more about 
what is currently making the landscape tick. ~cological legacies are extremely 
important in mostlocations, and they can last for many decades, even centuries. 
Fires, clearing, grazing, wind storms, floods, hurricanes, volcanoes, and land- 
use changes are example legacies that can have long-lasting effects (Wallin etal. 
1994, Foster et al. 1998, August etal. 2002, Turner et al. 2003). 

Landscape history is also important to document so that, especially with 
respect to trends in deforestation, historical trends in one part of the world 
can be used to aid in predicting future trends in another part of the world. 
Then, if need be, actions can be taken to prevent history from repeating itself. 
One of the most distasteful, and sadly often repeated, patterns on the planet is 
when native peoples are "displaced" by colonists from another place (Diamond 
1999). Often but not necessarily related is the subsequent rapid conversion of 
its lands as the new colonists settle. Deforestation patterns in the temperate 
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forests ofIllinois, USA, for example, have more recently been repeated, and still 
continue, in the tropical forests of Costa Rica, Malaysia, and Brazil (Fig. 2.2). 

We now have many years of data for data mining and evaluation of land-use 
histories, yet these data are being under-utilized. We have air photos since the 
early 1 9 3 0 ~ ~  Landsat MSS since -1972, Landsat TM since -1982, AVHRRsince 
-1978, and SPOT since 1986. We have sampling station data (e.g., forest plots, 
water quality sampling, bird census, etc.) over a very long history, but the old- 
est data often are not digital. Those data that are digital are yielding tremen- 
dous value, for example with respect to the breeding bird survey data, contin- 
uous since the mid 1960s (James et al. 1996, Sauer et al. 2001, Rodriguez 2002, 
Matthews et al. 2004). 

Unfortunately, we also have decades of data perishing in old file cabinets and 
storehouses as retirements and budget issues prevent a wealth of data from 
being captured digitally. This is a tragic loss in these days where the evaluation 
of long-term trends is such a critical component of many of today's environ- 
mental issues. 

2.6.9 Determine appropriate methods to merge and analyze data acquired 
at different scales 

Often the significant biological events (e.g., rare occurrences, invasions 
of exotics) are happening at very fine scales, but we can't collect data every- 
where at that scale. We therefore need to have suitable methods for scaling 
up and scaling down to obtain appropriate estimates for the scale of interest 
(e.g., Wiens 1989, Rastetter etal. 1992, Ehleringer and Field 1993, Gardner etal. 
2001, Schneider 2001, Cushman and McGarigal2002). This is an area of active 
research and discussed in separate chapters by Ludwig and Wu. 
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As an example from our research laboratory, we now have 1 m elevation data 
from LIDAR (Light detection and ranging sensor) and can calculate an inte- 
grated moisture index (Iverson etal. 1997a) on those data, but we cannot obtain 
that resolution for soils or vegetation attributes. How do we correctly merge 
and analyze sucli data so that we best understand the relationships between 
long-term moisture and soil and vegetation characteristics (Fig. 2.1)' 

2.6.10 Efficiently handle increasing volumes of data, with minimal user 
pre-processing 

There are petabytes of data streaming back to Earth each day. We need 
additional research to facilitate the pre-processing and screening of these data 
so landscape researchers can readily obtain and process the filtered data with 
less data volume and less up-front cost. As an example, the MODIS (Moderate- 
resolution imaging spectroradiometer) sensor has a science team that has been 
developing algorithms for automatic calculation for several vegetation-related 
metrics so that each user doesn't have to do it (Running 2002, Heinsch et al. 
2003, Zhang et aE. 2003). 

2.6.1 1 New GI!; technologies needed 

There are at least four areas where the development of GIs technol- 
ogy must proceed to enhance the work of landscape ecologists and the sub- 
sequent accountability of that work. We should appeal to vendors and devel- 
opers to proceed with these developments. First, we need a temporal GIs, one 
that allows better analysis of changes through time. Second, we need more 
development in three-dimensional GIs, for better analysis of volumetric and 
mass-flow data. Third, we need the development of an "uncertain GIs," one 
that allows the quantifying, display, and analysis of various forms of uncer- 
tainty (e.g., Duckham and McCreadie 2002). Fourth, we need the development 
of automatic metadata tracking within the GIs, so that a complete history and 
documentation of data generation and manipulation, including error track- 
ing, occurs without human intervention (Beard 2001, Gan and Shi 2002). 

2.6.12 Develop and test theory and methods of uncertainty analysis of 
landscape data 

Though several boolrs have been produced on this topic (e.g., Goodchild 
and Gopal 1989, Mowrer etal. 1996, Mowrer and Congalton 2000, Hunsaker 
et al. 2001, Shi et al. 2002a), there is still a lot of research needed so that every 
landscape ecologist and GIs user can understand the critical nature spatial 
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uncertainty plays in their projects. Some areas needing further development 
include graphical visualization of uncertainty (e-g., Buttenfield 2001, Drecki 
2002), error metrics calculation (e.g., Arbia et al. 1998), and the simulation of 
specific uncertainties for testing analytical procedures. 

2.6.13 Devise methods so error can be evaluated and broken down into its 
various components (error budget) 

Here I emphasize the need to be able to determine where the error lies 
in any GIs analysis - which form of error mentioned earlier in this chapter 
is most problematic, and therefore how might that error be trimmed? Or as 
an example, how can error associated with imagery classification be separated 
from error associated with a simulation model? Or, how does error propagate 
and accumulate in various spatial analyses such as overlay and buffer opera- 
tions? Much of the difficulty associated with this research need is a fundamen- 
tal flaw in the GIs systems that have been developed and accepted over the past 
30 years. Goodchild (2002) discussed the need for a measurement-based GIs, 
rather than the nearly universal coordinate-based GIs, which cannot properly 
deal with error. Measurement-based GIs could retain details of measurements, 
such that error analysis is possible, and corrections to positions can be appro- 
priately propagated through the database. 

2.6.14 Devise methods to assess the effects of varying data quality and grain 
size on the outputs oflandscape pattern analysis, model simulations, 
and resultant decisions 

The quality of data and metadata will determine landscape ecologists' 
ability and effectiveness of detecting patterns and relating them to processes, 
and consequently affect research results, practical recommendations, and final 
decisions. Though some work has been done on the sensitivity of various land- 
scape metrics from varying data quality and grain size (e.g., Wickham and 
Riitters 1995, Wiclrham et al. 1997, Hargis et al. 1998), this is an area needing 
more research. With respect to grain size, we need to determine with more cer- 
tainty how the following processes affect uncertainty: aggregation, interpola- 
tion, transformation, and re-measurement. For many GIs applications, it is not 
possible to compare the outputs to an independently derived "truth"; in these 
cases, it is best to conduct a sensitivity analysis based on randomization of the 
data (Hunsaker etal. 2001). For example, it may be possible to use Monte Carlo 
simulations to determine if a decision becomes unstable because of poor data 
quality (Phillips and Marlrs 1996). Decision-support networks are needed that 



Adequate data ofltnown accuracy are critical to advancing the field 3 I 

support error ailalysis and the spatial characterization ofuncertainty (Eastman 
2001). 

2.7 Policy issues related to data acqnisition and quality 

In addition to the 14 research-focused issues, there are a few issues which 
are based primarily in policy, and so are mentioned briefly here. These issues 
are only presented as idea seeds, with much more effort needed to make them 
proposals. 

First, policy-makers need to get behind the research issues to help provide 
the finances and exposure to make them happen. Otherwise there is no way 
that well-supported, globally represented,long-term monitoring programs, as 
an example, will come into being. 

Second, mechanisms are needed to enable agencies and countries to easily 
cooperate, so that the best data sets possible can be derived and analyzed thor- 
oughly and without perceived or real country-level bias. 

Third, rigorous support within the policy arena is needed for adequate edu- 
cation and training so that the science can develop credibly in the most help- 
ful ways for societal benefit. Finally, the public, the decision-makers, and the 
researchers, need to become aware of GIS/map accuracy issues and the sub- 
sequent validity of any information they use (Spear et al. 1996, Cornelis and 
Brunet 2002). For information to be used and useful in the policy arena, and 
not itself be the subject of debate, it must be policy relevant, technically credi- 
ble, and politically legitimate (O'Malley et al. 2003). 

2.8 Conclusions 

Remote data acquisition is becoming much easier and consistent, 
though information obtained on the ground is still critically important, costly 
to acquire, and generally not achievable by remote sensing. We need to learn 
how to best use these data resources to monitor and manage Earth's resources. 
Data quality is still a major stumbling bloclc for researchers and decision- 
makers, and a current critical research topic. 
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