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Abstract This chapter presents an overview of methods for optimizing wildlife-related 
objectives. These objectives hinge on landscape pattern, so we refer to these 
methods as "spatial optimization." It is currently possible to directly capture 
deterministic characterizations of the most basic spatial relationships: proximity 
relationships (including those that lead to edge effects), habitat connectivity1 
fiagrnentation relationships, population growth and dispersal, and patch size1 
habitat amount thresholds. More complex spatial relationships and stochastic 
relationships are currently best captured through heuristic manipulation of 
simulation models. General treatment of stochastic variables in spatial opti- 
mization is in its infancy. 

Keywords: Habitat connectivity, landscape pattern, reaction-diffusion model, response- 
surface analysis, search heuristics, simulation optimization, spatial optimi- 
zation, stochastic population model 

1 INTRODUCTION 

The objective of this chapter is to review emerging methods that allow 
analysts to make explicit recommendations (prescriptions) concerning the 
placement of different features in managed landscapes, so as to optimize 
wildlife-related objectives. We refer to this general set of methods as "spatial 
optimization." As used here, spatial optimization refers to methods that 
capture spatial relationships between different land areas in the process 
of maximizing or minimizing an objective function subject to resource 
constraints (we draw a distinction between this set of methods and "spatially- 
explicit optimization," which simply involves choice variables that are spa- 
tially defined and includes no spatial relationships). 
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2 STATE OF THE SCIENCE IN SPATIAL 
OPTIMIZATION 

In our view, two basic approaches can be used to describe our current capa- 
bilities in spatial optimization of landscape pattern: direct spatial optimization 
approaches and heuristic manipulation of simulation models. We review each 
of these in turn. 

2.1 Direct Approaches 

se. We would characterize the approach as having a closed-form fo~u la t ion  
with a formal solution method. We would include in this category recent 
augmentations of the basic "adjacency" formulation (discussed elsewhere in 
this book) to addressing ecological problems (see, e.g., Bettinger et al,, 
1997; Barrett et al., 1998; Falcao and Borges, 2001). We would also include 
recent contributions that have endeavored to add spatial relationships to the 
set-covering reserve selection model (some examples are Possingham et al., 
2000; Nalle et a l ,  2002; Onal and Briers 2002, 2003; Fischer and Church, 
2003). Other authors who have taken relatively direct approaches include 
Nevo and Garcia (1 996), Farmer and Wiens (1999), and Loehle (1999). 

Hof and Bevers (1998, 2002) explore a large number of direct spatial 
optimization formulations, including static models, dynamic models, models 
of spatial autocorrelation, and models of sustainability. As an example, wild- Nib= the initii 
life habitat fragmentation (spatial division into disaggregated patches) is a 
common concern with regard to placement of timber harvests. The approach 
is to directly model the wildlife population growth and dispersal patterns that 
make habitat connectivity (nonfragmentation) important. This is a dynamic 
problem where management activities must be scheduled over time, wildlife 
habitat (determined by forest age) must be tracked as forest stands age and 
grow, and different wildlife species respond differently to those habitats. The ri = the "r va 
method is related to the classic "reaction-difhsion models" (Skellum, 195 1; 
Kierstead and Slobodkin, 1953; Allen, 1983). 

Fit = the total 

First, the land is divided into cells, where the cell could be scaled to the 
ecology of the species (e.g., average home range or territory size) or could be 
scaled simply to provide adequate spatial resolution for the optimization expected total 

problem. Then, a set of choice variables is defined for each cell, each of 
which represents a complete scheduled management prescription. For example, 
each prescription could define the time periods for harvesting the given cell, 



including a no-harvest option. Any harvest would reset the forest age class to 
0 and would change the habitat for each wildlife species accordingly. Initial 
forest age classes are assigned to each cell, as well as initial population 

It capa- numbers for each wildlife species included. 

lization 
:w each The following definitions will be used: 

* - 
i indexes species 
k indexes the management prescription 

I h indexes the cells, as does n 

2oncern I t inaexes tne time penoa 
m 

ern, per 
lulation 

recent 
!here in 

q h  = the number of potential management prescriptions for cell h 

T = the number of time periods 

et al., 
include Xkh= the area in cell h that is allocated to management prescription k I 
s to the 
3 et al., 
Zhurch, 
include 

Kh= the total area in cell h 

Siht= the expected population of species i in cell h at time period t 

aihtk= a coefficient set that gives the expected carrying capacity of animal 
species i in cell h at time period t, if management prescription k is imple- 

spatial mented (based on forest age class) 
models 
2, wild- Nib= the initial population numbers for species i in cell h 
2s) is a 
~proach gin,$ = the probability that an animal of species i will disperse from cell n 
ms that in any time period to cell h in the subsequent time period. This includes a 
ynamic probability for n=h, so that the ginh sum to 1 for each combination of h 
wildlife and i 
tge and 
tts. The i.i = the "r value" population growth rate (net of mortality not related to 
1, 1951; dispersal) for species i, and 

I 
Fit = the total population for species i in time period t. 

1 to the 
ould be The simplest objective function would be to maximize a given species' 

lization expected total population: 
2ach of 

I 
Maximize 'S F. for a given i. 
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The minimum population over all time periods (m), for a given species 
could be maximized as follows: 

Maximize m 
Subject to m I <t ,  t = 1 ,..., T for a given i. 

itself in the previous tir 
each species are reflect 
set (4) adds up the expc 
in the previous time pc 
important to note that M 
assumed to disperse i 

Or, a weighted ( y. ) sum of multiple species' populations could be maxi- capacity. Reaction-diffi 
unsuitable regions will 1 
for the expectation that 
accounted for in the P" 

Maximize xi  (x,  4,). pitable surroundings. 7 
combination of potenti 

;_ Many other objective functions are also possible. capacities determined 1 
traint set (5) defines the 

The basic constraint set for such a model is And finally, constraint s 
the area in each cell. 

k=l 
Hof and Bevers (191 

to problems of habitat 
accounted for release sc 
was applied to the black 
dent dispersal behavior. I 
for water-borne seed dl I 

model to optimize the lc 1 
and applied these basic ~ 
(especially stormflow mi 

The primary criticisr 
there are limits to the 
captured in a closed-fon 
in the next section is tc 
model and use heurist 

This model is linear, with continuous variables, and can be solved with different management re 

the simplex algorithm. Equation 1 limits the total management prescription 
allocation to the area in each cell. The management prescriptions are defined 
with no action in the first time period ( t=O),  which is used simply to set 3 HEURlSTlCIC 
initial conditions. Equation 2 sets the initial population numbers for each MODELS 
species, by cell. The Sib, (expected population by species by cell, for each 
time period) is determined by whichever of (3) or (4) is binding. Constraint The fields of wildlife m 
set (3) limits each cell's population to the carrying capacity of the habitat in history in developing st 
that cell, determined by forest age classes. Constraint set (4) limits each commonly used to infc 
cell's population according to the growth and dispersal from other cells and Beissinger and Westphal, 
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itself in the previous time period. The growth and dispersal characteristics of 
species are reflected by the parameters in constraint set (4). Constraint 

set (4) adds up the expected value of the population dispersing from all cells 
in the previous time period to the given cell in the given time period. It is 
important to note that whenever (3) is binding for a cell, some of the animals 
assumed to disperse into that cell are lost because of limited carrying 
capacity. Reaction-diffusion models assume that organisms dispersing into 
unsuitable regions will perish. This mechanism provides a probabilistic basis 
for the expectation that mortality (beyond the nondispersal-related mortality 
accounted for in the r value) occurs in proportion to the usage of inhos- 
pitable surroundings. Thus, actual population growth is determined by a 
combination of potential growth, dispersal, and spatially located carrying 
capacities determined by the management prescription allocations. Cons- 
traint set (5) defines the total population of each species, in each time period. 
And finally, constraint set (6) limits the choice variables to be between 0 and 
the area in each cell. 

Hof and Bevers (1998, 2002) applied this basic type of model structure 
to problems of habitat placement for the black-footed ferret, which also 
accounted for release schedules of captive-born animals. As a follow-up, it 
was applied to the black-tailed prairie dog, accounting for population-depen- 
dent dispersal behavior. Hof and Bevers also modified this structure to account 
for water-borne seed dispersal and for habitat edge effects; converted the 
model to optimize the location of control measures in managing exotic pests; 
and applied these basic ideas to problems other than organism management 
(especially stormflow management and fire management). 

The primary criticism that can be leveled at this type of approach is that 
there are limits to the complexity of ecological relationships that can be 
captured in a closed-form optimization formulation. An alternative explored 
in the next section is to start with a more complex ecological simulation 
model and use heuristic procedures to direct repeated predictions with 
different management regimes, hopefully converging on a near-optimum. 

3 HEURISTIC MANIPULATION OF SIMULATION 
MODELS 

The fields of wildlife management and conservation biology contain a long 
history in developing stochastic models of population viability, which are 
commonly used to inform wildlife management decisions (Boyce, 1992; 
Beissinger and Westphal, 1998). Demographic models predict the birth, death, 
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and migration of individuals in one or more localized populations (e.g., Liu 
et al., 1995). Incidence function models predict the extinction of local 
populations and colonization of empty habitat patches (Hanski, 1994). Both 
types of models incorporate uncertainty in one or more demographic para- 
meters, and Monte Carlo methods are used to sample from the underlying 
distributions and simulate populations many times for different combinations 
of parameter values. Thus, stochastic population models yield probabilistic 
results, which are typically summarized by performance measures for the 
ending population such as mean patch occupancy or probability that pop-  The objective of the 01 

lation size exceeds a threshold. Stochastic population models are routinely persistence of the metar - c used to determine the relative effects of habitat management options (e.g., subject to a budget cons 

Armbruster and Lande, 1993; Liu et al., 1995). In addition, results of variables (Eq. 9). This 

population models, such as relative growth rates of populations in potential objective function valu 

reserve sites, are used in formulations of reserve selection models (e.g., estimated using a stoch: 

Carroll et al., 2003). Only a few studies combine optimization with stochastic subsets of sites (2') incre 

population models to determine cost-effective habitat protection. Here we 
describe some of the basic ideas and approaches. One way to estimate 

replicate simulations 01 

3.1 Stochastic Optimization with Heuristics simulations that go extin 
that N must be large to 

Stochastic population models can be optimized using search heuristics. extinction is low, whic 

Moilanen and Cabeza (2002) addressed the problem of selecting a subset of Variance reduction tech] 

potential reserve sites to maximize the long-term persistence of a species increase precision of tht 

living in a metapopulation given a limited budget for site protection. They Travis, 1 997). Importar 

formulated an incidence function model for the false heath fritillary from the underlying dis 

butterfly, an endangered species in Finland, and applied the model with 125 into the sample that is u 

potential reserve sites of varying size and isolation. Their site selection simulation results is don( 

problem can be described with the following notation: 
Another option is to 

i, 1 = indices for individual sites and total number of sites, to the probability of ex 
sample size to obtain a g 

b = upper bound on budget, used the average one-s 
calculated over time hori 

= cost of protecting site i, 
- 

= 0-1 variable for protecting site i; 1 if site i is protected, 0 otherwise, i' 
p(xl, ..., x l )  = the probability of extinction of the metapopulation in period T. 

where the function bn,t+~ 
The optimization problem was formulated as follows: the subset of sites protec 

and a random environme 
model provided a clot 
probability 4,,,+1, compi 
Moilanen and Cabeza ( 
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Maximize 1 - p(x, , . . . , xI ) (7) 
Subject to: 

I 
C cixi < b 
i=l 

(8) 

The objective of the optimization problem (Eq. 7) was to maximize the 
persistence of the metapopulation (one minus the probability of extinction) 
subject to a budget constraint (Eq. 8) and binary restrictions on the decision 
variables (Eq. 9). This is not a trivial optimization problem because the 
objective function value associated with each subset of sites must be 
estimated using a stochastic population model and the number of different 
subsets of sites (23 increases rapidly with I. 

One way to estimate p(x,, . . . , xI ) for a given subset of sites is to make N 
replicate simulations of the population and compute the proportion of 
simulations that go extinct before time T. The problem with this estimator is 
that N must be large to get a high level of precision if the probability of 
extinction is low, which will slow down the optimization considerably. 
Variance reduction techniques such as importance sampling can be used to 
increase precision of the estimator for a given sample size N (Haight and 
Travis, 1 997). Importance sampling forces a larger number of rare events 
from the underlying distribution of the stochastic demographic parameter 
into the sample that is used for Monte Carlo simulation. Inference fi-om the 
simulation results is done in a way to correct for sampling bias. 

Another option is to define an objective function with properties similar 
to the probability of extinction p(x,, . . . , x,) and which requires a smaller 
sample size to obtain a given level of precision. Moilanen and Cabeza (2002) 
used the average one-step extinction probability of the meta-population 
calculated over time horizon T and N simulations: 

where the function 4n,t+ri~ the probability of extinction in period t+l given 
the subset of sites protected (x,,. . ., XI), the patch occupancy in period t h,J, 
and a random environmental variable (En,,). Because their incidence function 
model provided a closed-form expression for the one-step extinction 
probability +n,t+l, computation of the average (Eq. 10) was fast. Further, 
Moilanen and Cabeza (2002) found that the average one-step extinction 
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probability was closely related to, but not always identical to, the extinction the demographic moa 
risk of the metapopulation during horizon T, and it does not require a large the populations. The 
sample size to obtain a precise estimate. incorporated into an ( 

limited funds among tl 
Once an objective function is defined, a heuristic is needed to search for 

the best set of sites. The operations research community has developed a Suppose we have : 
number of heuristics for optimizing stochastic systems using simulation and a limited budget tc 
(Andradottir, 1998; Goldsman and Nelson, 1 998; Pichitlamken and Nelson, lation is isolated eno 
2001). Moilanen and Cabeza (2002) used a genetic algorithm combined quential. Further, assul 
with a local search to optimize their incidence function model. A genetic 

t the relationship betwet 
algorithm operates on a set of alternative solutions, which are called indivi- Using these risk-area 
duals. Each individual is assigned a fitness value equal to the value of the determining the amour 
objective function (e.g., Eq. 10). The fitness of an individual determines its mizes the expected nur 
probability of taking part in reproduction. Individuals with high fitness horizon. The model has 
reproduce on average more often than those with low fitness. A genetic 
algorithm proceeds generation by generation with individuals in one genera- i, I = indices for indi 
tion combining and producing individuals in the next. Moilanen and Cabeza 
(2002) used 50 replicate simulations to estimate the fitness of each indivi- a, = amount of alre: 
dual in a population. They found that problems with 125 candidate sites 
converged within 25 generations to almost identical site selections and b = upper bound or 
objective function values. 

c, = unit cost of pro1 
Optimization of stochastic population models using search heuristics is in 

its infancy. Commercial simulation packages are beginning to incorporate dl = upper bound o , 
heuristic optimization tools (e.g., April et al., 2001), and it would be worth- 
while to explore their value in optimizing stochastic population models. 

= amount of habii 
3.1 .I Response-surface analysis 

p, (a, + x,)= function for 
Another approach to simulator optimization involves response-surface ana- 
lysis, Monte Carlo experiments with a stochastic population model can be The optimization proble~ 
used to create response surfaces of the relationships between measures of 
population performance and reserve design features. Then, regression equa- 

Maxim] 
tions representing those relationships can be included in an optimization 
model to determine the best reserve design features. Subject 

Haight et al. (2004) used elements of response-surface analysis to address 
a problem of allocating a fixed budget for habitat protection among disjunct 
populations of the endangered San Joaquin kit fox in California to maximize 
the expected number of surviving populations. A demographic model of 
population viability was used to quantify the risk of extinction of each 
population under different amounts of protected habitat. The predictions of 



and a limited budget to protect habitat. By disjunct we mean that each popu- 
lation is isolated enough that migration between populations is inconse- 
quential. Further, assume that we have information for each population about 
the relationship between risk of population extinction and amount of habitat. 
Using these risk-area curves, we can formulate an optimization model for 

: value of the determining the amount of habitat to protect for each population that maxi- 
mizes the expected number of populations that survive over the management 
horizon. The model has the following notation: 

n one genera- 
i, I = indices for individual populations and total number of populations, 

n and Cabeza 
f each indivi- 

ai = amount of already-protected habitat for population i, 
andidate sites 
elections and b = upper bound on budget, 

ci = unit cost of protecting additional habitat for population i, 
teuristics is in 

di = upper bound on the amount of habitat available for protection for 

= amount of habitat that is selected for protection for population i, 

pi (ai + xi)= function for the probability of extinction, population i. 
:-surface ana- 
node1 can be The optimization problem is formulated as follows: 
measures of 

sis to address 
1=1 

to maximize O I x i  I d ,  i= l ,  ..., I 
iic model of 
tion of each 
bredictions of 

I 
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The objective (Eq. 11) is to maximize the expected number of populations  of and Raphael (15 
that survive over the management horizon. The probability of extinction of to a problem of 

each population depends on the total amount of habitat protected, which is the Olympic Peninsula, 
the sum of the already-protected habitat and the newly protected habitat. ~ h ,  size of the owl populaf 
risk function can be estimated using predictions from a demographic model populations in Eq. 7). 
of population viability under different amounts of protected habitat as defined variables for tht 
described below. The first constraint (Eq. 12) requires that spending for owl population in each 

habitat protection does not exceed the budget. The second set of constraints the cell and the total nur 
(Eq. 13) bounds the amount of habitat available for protection. estimated using predictii 

c* S 
viability. Although theil 

Haight et al. (2004) used a stochastic demographic model of a disjunct kit and Raphael (1997) app 
fox population to predict extinction risk in 100 years in habitat patches of which allowed them to 
increasing size. For each patch, the estimator of extinction risk was the protection. Although the 
percentage of 1,000 independent simulations in which population size was equations, it was easy 
<10 individuals in 100 years. The predictions were used to estimate a Results of the optimizat 
relationship between extinction risk and patch area. The risk-area relation- ments in a proposed spot 
ship was a logistic function estimated using a form of logistic regression 
called the minimum logit chi-squared method (Maddala, 1983). Logistic 
regression describes a binary response as a function of one or more explana- 4 DlSCUSSlON 
tory variables. In this case, the binary response was extinction or persistence 
of a population in a habitat patch, and the explanatory variable was patch The primary shortcornin; 
area. The minimum logit chi-squared method of estimation is appropriate logical detail that can be 
when there are multiple observations of the binary response for each level of Simulation Manipulation 
the explanatory variable. Let Pi be the proportion of the 1,000 observations best" alternative from ar 
in which the population became extinct in patch i and Pi/(l-Pi) be the a large number of layout 
estimated odds of extinction. With the logistic model, the log of the odds of point, suppose we have 
extinction is assumed to be a linear hnction of patch area. The model for must consider only one a( 
San Joaquin kit fox was are still 2''' or 1.2676~1 

(all but a trillionth) of th 
I 

log &=bo+bl:+b2 l o g ( ~ ~ ) + p ~ ,  have 1 .2676~ 1 02' option: 
'-pi 4 able, we only have a 7.1 

acceptable solution if wt 
where yi is the area of patch i, bo, bl, and b2 are the regression coefficients, suggests the need for opt 
and pi is the regression error. Because the log of the odds of extinction is a problems. In addition, tht 
continuous variable without limit, ordinary or weighted least squares regres- vex, such that a solution 
sion can be used to estimate the parameters of Eq. 14. Once the parameters of 
Eq. 14 were estimated, the equation was transformed into a risk-area 
relationship by solving for pi on the left-hand-side. The risk-area curve for 
each of eight populations was incorporated into the optimization model (Eqs. 
11-13) and solved using commercial nonlinear programming software. The 
results included priorities for reserve expansion under increasing upper 
bounds on finding and a cost curve showing funding required for incre- 
mental increases in population viability. 

Thus, the choice is be 
an approximate optimun 
application, the answer r 
circumstances surroundii 
placement choices may k 
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and Raphael (1997) used elements of response-surface methodology i 
ss a problem of locating habitat reserves for Northern Spotted Owl in I 

I 

Olympic Peninsula, Washington State (USA), to maximize the overall 
of the owl population (rather than the expected number of surviving 

*lations in Eq. 7). They subdivided the landscape into 1681 cells and 
ned variables for the amount of habitat to be protected in each cell. The 
population in each cell depended on the amount of protected habitat in 
ell and the total number of owls in adjacent cells. These functions were 

ted using predictions of a stochastic model of spotted owl population 
ity. Although their equations for population size were nonlinear, Hof 

Raphael (1997) approximated them as a series of linear line segments, 
ch allowed them to formulate a linear programming model for habitat 

tion. Although their formulation had over 20,000 variables and 12,000 

-area relation- 

DISCUSSION AND CONCLUSION 

e primary shortcoming of the direct approach is that the amount of eco- 
ical detail that can be captured is limited. The primary shortcoming of the 

lation Manipulation approach is, of course, that the outcome is only "the 
alternative fiom among the landscape layouts investigated. Even with 

large number of layouts, near-optimality is not assured. To demonstrate the 
oint, suppose we have 1001 and units (e.g., in a 10 x 10 grid). Even if we 

have 1.2676~ 1 021 options. Even if there are a trillion layouts that are accept- 
able, we only have a 7 .886~ 10-"(1 x 1 09+1 .2676x 1 021 chance of hitting an 
acceptable solution if we randomly arrange our management actions. This 

xtinction is a suggests the need for optimization procedures in all but the simplest spatial 

uares regres- problems. In addition, the implicit response surface may or may not be con- 

Iarameters of vex, such that a solution that appears to be near-optimal may actually not 

a risk-area 
.ea curve for 

Thus, the choice is between a precise optimum to a simplified model and 

3ftware. The an approximate optimum to a more precise model. In a given planning 
application, the answer may depend on the questions being asked and the 

:d for incre- circumstances surrounding the planning problem. For example, habitat 
placement choices may be limited because the pattern of land development 
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has reduced the configuration possibilities (Saunders et al., 199 1). When 5 REFERENCES 
habitat-placement options are restricted to a small set, simulation modeling 
may offer a very useful approach for ranking alternative configurations. ~ f ,  Allen, L. J. S. 1983. Persistence and e> 
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landscape ecology research in landscape management. blooms. Journal ofMarine Research 12: 
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