
Abstract In the Midwestern United States, the

General Land Office (GLO) survey records provide

the only reasonably accurate data source of forest

composition and tree species distribution at the time

of pre-European settlement (circa late 1800 to early

1850). However, GLO data have two fundamental

limitations: coarse spatial resolutions (the square

mile section and half mile distance between quarter

corner and section corner) and point data format,

which are insufficient to describe vegetation that is

continuously distributed over the landscape. Thus,

geographic information system and statistical infer-

ence methods to map GLO data and reconstruct

historical vegetation are needed. In this study, we

applied a hierarchical Bayesian approach that

combines species and environment relationships

and explicit spatial dependence to map GLO data.

We showed that the hierarchical Bayesian approach

(1) is effective in predicting historical vegetation

distribution, (2) is robust at multiple classification

levels (species, genus, and functional groups), (3)

can be used to derive vegetation patterns at fine

resolutions (e.g., in this study, 120 m) when the

corresponding environmental data exist, and (4) is

applicable to relatively moderate map sizes (e.g.,

792 · 763 pixels) due to the limitation of computa-

tional capacity. Our predictions of historical vege-

tation from this study provide a quantitative and

spatial basis for restoration of natural floodplain

vegetation. An important assumption in this

approach is that the current environmental covari-

ates can be used as surrogates for the historical

environmental covariates, which are often not

available. Our study showed that terrain and soil

covariates least affected by past natural and anthro-

pogenic alternations can be used as covariates for

GLO vegetation mapping.

Keywords GLO Æ GIS Æ Hierarchical Bayesian

models Æ Presettlement vegetation Æ Missouri

Introduction

Historical data provide baseline information

for assessing vegetation change and guiding

H. S. He (&) Æ X. Fan Æ Z. Fan
School of Natural Resources, University of
Missouri-Columbia, 203 ABNR Building, Columbia,
MO 65211, USA
e-mail: heh@missouri.edu

D. C. Dey Æ J. M. Kabrick
US Forest Service, North Central Research Station,
Columbia, MO, USA

M. B. Hooten
Department of Mathematics and Statistics, Utah State
University, 3900 Old Main Hill Logan, Logan, UT,
USA

C. K. Wikle
Department of Statistics, University of
Missouri-Columbia, Columbia, MO, USA

Plant Ecol (2007) 191:85–94

DOI 10.1007/s11258-006-9216-2

123

ORIGINAL PAPER

Mapping pre-European settlement vegetation at fine
resolutions using a hierarchical Bayesian model and GIS

Hong S. He Æ Daniel C. Dey Æ Xiuli Fan Æ
Mevin B. Hooten Æ John M. Kabrick Æ
Christopher K. Wikle Æ Zhaofei Fan

Received: 6 February 2006 / Accepted: 7 September 2006 / Published online: 27 October 2006
� Springer Science+Business Media B.V. 2006



ecological restoration (Dey et al. 2000; Dyer

2001; Bolliger et al. 2004; Schulte et al. 2005).

One of such data is the General Land Office

(GLO) survey conducted from early 18th to mid-

19th century in the Midwestern United States

(Bourdo 1956). Under the GLO, the public land

survey system (PLSS) was developed, in which

land was divided into a grid of square townships,

each containing 36 1-square-mile (1.6 km2) sec-

tions. At each section corner and the mid-point

between section corners (quarter corner) 2–4

witness trees were identified and measured to

mark the corner location by the surveyors. Since

GLO records are spatially referenced, they can be

easily imported into a geographic information

system (GIS) for further spatial analysis and

statistical inference (He et al. 2000). Despite the

survey biases including surveyor’s preference and

exclusion of certain species and age groups

(Manies et al. 2001; Mladenoff et al. 2002),

GLO data provides the only reasonably accurate

data source of forest composition and tree species

distribution prior to the pre-European settlement

(Manies and Mladenoff 2000; Black et al. 2006).

GLO data have two fundamental limitations,

associated with the PLSS structure. First, the

square mile section and half mile distance

between quarter corner and section corner is very

coarse for a typical ecological restoration task

that is often conducted at individual sites of a few

hectares. Although some methods have been used

to map GLO data to finer resolutions (e.g., Brown

1998), they have not been validated. Second,

GLO data are point data, which alone are

insufficient to describe vegetation that is contin-

uously distributed over the landscape. GIS and

statistical inference are needed to convert point

data into more relevant data forms such as grids

of finer resolutions and determine vegetation for

places where data were not recorded. The most

common statistical inference methods used to

reconstruct historic vegetation by interpolating

GLO data are ISOLINE, kriging or co-kriging

embedded in GIS (e.g., Porter 1998; Brown 1998;

Batek et al. 1999). These methods use the vege-

tation values of the known data points to inter-

polate the vegetation values for points that do

not have recordings. They assume that the inter-

polated data are numerical and are spatially

continuous, such as elevation. These methods

can be problematic when applied to GLO data

that are primarily in the form of tree count and

tree diameter. Also, GLO data are not necessarily

spatially continuous because many factors such as

soil, elevation, and competition among other

species often cause the spatial discontinuity of a

species distribution (Bolliger and Mladenoff

2005). Therefore, the interpolation methods may

ignore the ecological principles underlined by

these environmental factors.

Methods have been proposed for mapping

individual species pattern using known environ-

mental covariates that account for ecological/

biotic processes (e.g., Zimmermann and Kienast

1999; Lichstein et al. 2002). These methods,

however, either lack the consideration of residual

spatial dependence inherent in the vegetation

distribution or are limited to small spatial

domains (e.g., 10 ha). Hooten et al. (2003) devel-

oped a statistically rigorous method for combin-

ing species/environment relationships and explicit

spatial dependence for binary response data.

Their method combines information found within

abiotic covariates and spatial dependence that

may be used as a surrogate for various biotic

covariates. They were able to provide spatial

predictions for vegetation with known certainty,

and map ground flora distribution using recent

vegetation plot data (point) for areas ranging

from 265 ha to 530 ha. However, whether this

method can be applied to GLO data and much

larger areas with diverse vegetation and environ-

mental combinations is of interest.

The objective of this study was to apply the

hierarchical Bayesian approach to GLO data and

test its applicability in improving mapping histor-

ical vegetation mapping. More specifically, we

evaluated if this approach (a) can be used to

interpolate GLO data to fine spatial resolutions

(e.g., smaller than 1,600 m), (b) can be applied to

large landscapes (e.g., 103–106 ha), and (c) is

robust at the species, genus or functional plant

group levels. The Bayesian hierarchical approach

differs from traditional statistical approaches

(e.g., logistic regression) because it can account

for uncertainty in various levels of the model

including spatially correlated errors. We applied

this approach by incorporating digital elevation,
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slope, aspect, soil water capacity, soil depth, and

soil organic matter as covariates in the model.

Material and methods

Study area and data preparation

Our study area encompasses a portion of Missouri

River in the region of Columbia and Booneville,

Missouri, USA (Fig. 1). The size of the study area

is about 8,702 km2, involves 14 counties, and

includes 19,000 GLO tree data points. The study

area has diverse terrain, soil, and hydrological

features and consequently a high diversity of tree

species. Thus, it provides an ideal place for

evaluating our statistical approach. The bottom-

land of the study area includes the lower Missouri

River alluvial plain land type association to the

east and Missouri Grand River alluvial plain and

loess woodland/forest breaks land type associa-

tions to the west (Nigh and Schroeder 2002). The

bottomlands have flood tolerant species such as

American elm (Ulmus americana L.), hackberry

(Celtis occidentalis L.), and green ash (Fraxinus

pennsylvanica Marsh.), cottonwood (Populus del-

toides Bartr. ex Marsh.), sycamore (Platanus

occidentalis L.), boxelder (Acer negundo L.) and

pin oak (Quercus palustris Muenchh.). The

uplands of the study area are dominated by white

oak (Quercus alba L.), black oak (Quercus

velutina Lam.), and hickory (Carya spp). There

are a total of 19,000 individual GLO trees

recorded in the GLO data for the study area,

among which white oak is most abundant (30%),

followed by black oak (21%), hickory (11%), elm

(8%), hackberry (5%), and ash (2%). Cotton-

wood, sycamore, boxelder and pin oak are at

1–2%. Native Americans and European settlers

have modified floodplain vegetation for hundreds

of years. The greatest alternation occurred in the

past 100 years including river channelization for

flood control, forest clearing for framing, and

recent urban sprawl. These activities have elim-

inated up to 95% of bottomland forests in the

Missouri River basin and greatly altered the

hydrologic regimes and species composition

(Dey et al. 2000).

To evaluate the robustness of the statistical

approach, we processed the GLO tree data at

three classification levels: individual tree species,

genus, and functional groups. For individual tree

species we chose black oak since it was one of the

most abundant upland species. For the genus

level classification, we chose bottomland oaks

(Quercus Spp.) that included primarily pin oak,

white oak, and red oak. Functional groups were

defined based upon the successional stages for the

bottomland tree species and nut-producing capa-

bility for tree species in the whole area. Bottom-

land tree species were grouped into (a) early

successional, including primarily sycamore, cot-

tonwood, and willow (Salix Spp.), and (b) mid

and late successional, including elm, boxelder,

silver maple (Acer saccharinum L.) and ash. For

the nut-producing functional group tree species

we grouped all oak species, black walnut (Juglans

nigra L.), and hickory.

We identified the seven most significant terrain

and soil covariates for the statistical model

(Table 1). They were elevation, slope, aspect, soil

water capacity, soil organic matter, soil depth, and

depth to bedrock. These covariates were chosen

because (1) they are the determinants of the

availability of basic energy, water, and nutrients

influencing tree species establishment and

growth, (2) they were available at the scale of

N

0 90 180  Miles

Fig. 1 The study area encompasses a portion of Missouri
River in the Columbia and Booneville region. The size of
the study area is 8,702 km2 and involves 14 counties. There
are 605,059 prediction locations (pixels) for 120 m resolu-
tion. There are a total of 19,000 individual GLO trees
recorded in the GLO data for the study area
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our study, and (3) they remain relatively consis-

tent from between the time GLO data were

surveyed to the time these data were measured.

The terrain data were from USGS 7.5 min DEM

at 30-m horizontal resolution with about 7 m

vertical resolution.1 The DEM is the finest pos-

sible to cover the whole study area. The data were

resampled into 120 m resolution using the Bilin-

ear option in ArcGIS 9.1, which performs a

bilinear interpolation and determines the new

value of a cell based on a weighted distance

average of the four nearest input cell. At 120 m

horizontal resolutions, the vertical resolution of

DEM is also improved. Thus distortion of slope

calculation for certain pixels can be reduced from

as much as 23% at 30 m resolution to less than

5% at 120 m resolution. The soil data was derived

from the county soil survey (SSURGO) for each

of the 14 counties and then merged for the study

area. SSURGO database provides the most

detailed level of soil information in the US. In

SSURGO, maps of soil polygons are made at

scales mostly ranging from 1:12,000 to 1:24,360

(USDA Natural Resource Conservation Service

1995). Each polygon may contain multiple soil

components. The minimum map unit is smaller

than 1.14 ha (120 m · 120 m), which is the finest

resolution used in this study. In this study, we

followed the standard procedures of SSURGO

(USDA Natural Resource Conservation Service

1995) to derive the aggregated soil organic

matter, soil depth, and soil to bedrock depth

values for each polygon from the multiple soil

components within the polygon. Each derived soil

attribute was raterized to 120 m resolution using

ArcGIS 9.1.

Statistical modeling

We adopted the hierarchical Bayesian model

developed by Hooten (2001) and Hooten et al.

(2003) to predict the probability of occurrence for

the three vegetative classification groups men-

tioned in the previous section. This generalized

linear mixed model provides a method of prob-

abilistically predicting a binary response variable

based on several environmental covariates and

residual spatial structure. The hierarchical mod-

eling framework teamed with an explicitly de-

fined spatial random effect allows us to

incorporate various sources of uncertainty at

many levels of the ecological process (Wikle

2002; Hooten et al. 2003; Wikle 2003).

Specifically, using the notation in Hooten et al.

(2003), we let Yi represent the presence/absence

of the vegetation group of interest and be defined

as:

Yi ¼
1 if Zi[0;
0 if Zi � 0;

�
ð1Þ

where Zi represents an underlying (latent)

continuous process analogous to that derived by

Albert and Chib (1993). In our case, it is

composed of a covariate component, Xb, and a

spatially correlated component, g. Where X is

comprised of the covariate data (e.g., slope,

aspect, elevation, soil depth, and organic

matter). The model can then be summarized in

matrix notation:

Table 1 Estimated parameters (standard errors) of the logistic models to predict species presence using covariates

Bottom land oak Early succession Middle late succession Nut producing Black oak

Intercept 14.117 (0.939) –5.899 (1.097) –0.447 (0.914) 7.219 (0.208) 5.434 (0.184)
Soil water capacity –3.453 (0.704) 3.993 (0.732) 1.806 (0.661) –2.841 (0.458) –1.468 (0.574)
Soil depth 0.009 (0.004) –0.013 (0.003) 0.006 (0.002)
Slope –0.0267 (0.003) 0.066 (0.008) 0.019 (0.004) –0.021 (0.002)
Soil organic matter 0.0414 (0.018) 0.085 (0.010) 0.0380 (0.010)
Depth to bedrock –0.005 (0.002) –0.003 (0.001)
Elevation –0.0206 (0.002) 0.011 (0.002) 0.003 (0.002) –0.011 (0.000) –0.005 (0.000)
Aspect 0.164 (0.070)

1 Interdisciplinary Center for Research in Earth Science
Technologies at the University of Missouri (http://
icrest.missouri.edu/Projects/Infomart/Hi-resDEMs/in-
dex.htm)
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Zjb; g � Nðbþ g; IÞ; ð2Þ

g � Nð0; r2
gRgÞ; ð3Þ

b � Nðb0;RbÞ ð4Þ

In this setting, Eqs. 3 and 4 represent our prior

distributions for the spatial random effect and the

covariate parameters, respectively. Additionally,

an inverse gamma prior distribution was specified

for r2
g. The matrix Rg is a spatial correlation

matrix although not directly parameterized. That

is, we adopted the same spectral decomposition of

g using Fourier basis functions as in Hooten et al.

(2003). Although not detailed here, this Fourier

(and inverse Fourier) transform allow for imple-

mentation of this model on very large spatial

domains. For additional details see Wikle (2003)

and Royle and Wikle (2005).

Ultimately, our interest lies with the predic-

tions of Yj, where j can exist on some other set of

spatial location than our original data. Perhaps

more informative are the predictions of probabil-

ity of occurrence (p) at location j. That is, the

predictions of EðYjÞ ¼ pj ¼ Uðx0jbþ gjÞ. In this

case F represents the probit transform (standard

normal CDF); note that the probit transform

behaves similarly to the more common logit

transform used in logistic regression.

Preliminary spatial analysis of the dataset was

used to inform the prior for the spatial random

effect. An efficient sampling algorithm similar to

that used in Hooten et al. (2003) was used to

sample from the posterior distribution via the full

conditionals.

Result validation

Due to the dimension of the dataset and predic-

tion grid, a repeated hold-out version of cross-

validation (as in Hooten et al. 2003) was not

feasible. In this study, however, we employed

three approaches for result validation. The first

approach was model-based validation. One ben-

efit of using a rigorous statistical model is that it

provides for model-based validation methods.

This method was used to create maps of predic-

tion error that allowed us to visualize the uncer-

tainty across the spatial domain as well as assess

specific areas of high and low variability (Hooten

et al. 2003). Second, we employed the use of

Receiver Operating Characteristic curves (ROC)

to evaluate model accuracy and compare against

similar but simpler model specifications. Assess-

ing the sensitivity versus specificity of a model,

the ROC curve is a plot of the true positive rate

against the false positive rate based on the

predictions (Hosmer and Lemeshow 2000; Pon-

tius and Schneider 2001). The closer the curve

follows the left-hand and top border of the ROC

space, the better the predictions. Third, we

constructed logistic regression models using the

same response and covariate data, and directly

compared their results to those of hierarchical

Bayesian models. Logistic regression models are

frequently used by plant ecologists to map species

distribution in response to environmental vari-

ables (Franklin 1995; McDonald and Dean 2006).

Results

Spatial resolution and extent

Analysis of GLO data using the hierarchical

Bayesian model at the 120-m resolution yielded

about 600,000 prediction locations. At this reso-

lution, the floodplain and islands in the river

could be delineated finer than that of GLO data

(~1,600 m), thereby allowing GLO data inference

at more than 10 times finer than the 1,600 m

resolution inhabited in the GLO data set. In

addition, the study showed that the model can be

applied to the study area of 8,702 km2, which is

much larger than previously reported (2.65–

5.30 km2) using the hierarchical Bayesian model

(Hooten et al. 2003).

The number of prediction locations increase

exponentially with increasing resolutions. At 60-

and 30 m resolution, prediction locations are

about 2.4 million and 10 million, respectively,

which require computational capacities beyond

the current state-of-art personal computers

(3.7 GHz and 2 GB memory). Our current com-

putational capability limited our analysis from

being applied to finer resolutions. In addition, at

the finer resolution (e.g., 60 m and 30 m), the

proportions of witness-tree data points decreases,
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and consequently, the potential mapping uncer-

tainty increases.

Oak genus and functional group

at bottomland

Maps that display information about the posterior

distribution based on the prediction process can

be viewed as probabilities of species occurrence.

Such values range from 0 to 1 (100% probability

of species occurrence). Results showed that as a

genus group, bottomland oaks have medium

probability (0.4–0.6) of occurring on the north-

western areas of Missouri River floodplain and

other tributaries where floodplains are wide and

islands are high in elevation. These areas are

flooded less frequently compared to narrower and

lower floodplains from northwest to southeastern

portion of the study area. The prediction showed

that the occurrence probability of bottomland

oaks decreased to low (0.2–0.4) in the mid section

of the Missouri River valley and very low (<0.2)

in the southwestern section of the river basin

within the study area (Fig. 2).

The predicted distributions for the early and

late successional functional groups showed a

strong association with the physical variations.

The early successional group had medium prob-

ability of occurring in the mid to southeastern

section of the Missouri River where the valley is

narrow and frequently flooded, while the mid and

late successional groups had a medium probabil-

ity of occurring in the northwestern section of the

Missouri River and small floodplains along other

tributaries (Fig. 2). Overall, the predictions for

the bottomland areas reflect the ecological

dynamics coinciding with floodplain hydrological

processes of erosion and deposition. Species of

the early successional group are adapted to

readily establish on recently deposited and

exposed alluvium. Mid and late successional

group species typically succeed the early succes-

sional group because they do not need mineral

soil for germination and open (full sun) environ-

ments to grow to maturity. Their seed is large

enough to permit seedling establishment in leaf

litter and they are more tolerant of shade than the

cottonwoods and willows.

Fig. 2 Predicted probabilities for various vegetation types.
The prediction maps are draped on the digital elevation
model to show a 3D perspective. The strength of the

Bayesian hierarchical approach over logistic regression is
its ability to provide an error estimate at each pixel
location (last page)
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Individual species and functional group

at whole study area

Predictions for black oak and the nut-producing

group were made for the entire study area

including both bottomlands and uplands. Predic-

tions showed a high probability of black oak

occurring on most upland areas and very low

probabilities on most bottomland areas (Fig. 2).

This pattern also agrees with ecological and

biological characteristics of black oak as a com-

mon upland species that is not tolerant of flood-

ing. The nut-producing functional group

contained the most abundant upland tree species

in this area including white oak, black oak, and

hickory. The predictions showed that this group

had a very high probability of occurrence (0.8–

1.0) on most upland areas (Fig. 2). This pattern

agrees with the ecological traits of these nut-

producing species (Burns and Honkala 1990).

Today they are still the most common tree species

in the uplands.

Result validation

A partial validation of the predicted results was

performed by presenting maps of prediction error

in the form of marginal posterior standard devi-

ations for grid cells and by ROC analysis.

Posterior standard deviations for grid cells were

derived for all predicted classes. Overall, they

suggested that the predictions have general

agreement with the GLO data records. Low

prediction errors were small in places where data

were abundant and relatively high in places where

data were sparse (Fig. 2).

The ROC analysis suggested that the statistical

method was effective in modeling historical veg-

etation at this fine resolution (Fig. 3). Recall

however, that the hierarchical model has taken

into account many other sources of uncertainty

including an explicit spatial random effect.

Although it may not improve on the prediction

in this setting, it is providing us with a more

accurate portrayal of the variability in the pre-

dictions (Fig. 3).

Comparing results from logistic regression

models with those from the hierarchical Bayesian

models suggest that the latter have higher

goodness-of-fit at all levels (Table 2). For the

hierarchical Bayesian models, when prediction

accuracy is between 0.20 and 0.40, the lowest

prediction probability can reach 0.50 (early

successional group) and the highest prediction

probability can reach 0.99 (nut-producing group).

Prediction probabilities of both logistic regression

and the hierarchical Bayesian models decreased

with increasing prediction accuracies. However,

the hierarchical Bayesian models always showed

a better prediction probability than the logistic

regression models (Table 2). The results also

showed that when the sample data were abun-

dant, prediction results of both types of models

was similar. This was seen for the nut-producing

group, most abundant class in this study area

(Table 2). However, when the sample data were

rare (e.g., 413 for early successional group, 672 for

mid-late successional group, and 871 for bottom-

land oak), the hierarchical Bayesian models

showed superiority.
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Fig. 3 ROC analysis for bottomland oak and nut-produc-
ing species group. The ROC analysis suggests that the
Bayesian hierarchical model yields posterior predictions
similar to the predictions from the logistic regression.
However, ROC cannot illustrate the uncertainties in the
predictions
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Discussion

Implications

We demonstrated how GLO data could be

analyzed to reveal the probable distribution of

historical vegetation using a hierarchical Bayesian

approach and GIS. We showed that this approach

was effective in predicting historical vegetation

distribution and robust at multiple classification

levels (species, genus, and functional groups). The

prediction probabilities for each vegetation class

graphically depict the relationships between the

vegetation and environment. Such predictions are

based on a combination of environmental factors

and surrogates for biotic factors, making them a

very complete and robust reflection of species

response on a continuous spatial domain. Such

relationships can be easily validated against the

existing ecological and biological knowledge

about the predicted vegetation.

An important result of the study is that pre-

settlement vegetation distributions are derived at

fine scales, which, in our study, was 120 m, more

than 10 times finer than the 1,600 m resolution

inhabited in the GLO data set. We showed that it

is feasible to incorporate empirical knowledge of

the historical vegetation and environment into a

modeling framework to improve vegetation map-

ping from sparsely recorded witness-tree points.

This is especially true when the study area is large

enough that it provides an adequate number of

witness-tree points and when the corresponding

fine scale environmental data exist. The map size

in this study (e.g., 792 · 763 pixels) covers

8,702 km2 (involving 14 counties and 19,000

GLO tree data points), representing a significant

improvement to previous map sizes (e.g., Hooten

et al. 2003; Brown 1998). At this size it is possible

for forest managers and planners to go beyond

the traditional site scales (a few acres) and

include necessary broader and landscape-scale

perspectives in ecological restoration planning

efforts (Gutzwiller 2002).

Our results show that the hierarchical Bayesian

models have higher prediction probabilities than

those of the traditional logistic regression models

when sample data are sparse. This is because the

hierarchical Bayesian models are better equipped

to capture the randomness and spatial depen-

dence inherited in the sparse data. This finding has

important implications to the disciplines of for-

estry and ecology, which are often confronted with

the issue of data scarcity. The hierarchical Bayes-

ian models present a step forward in dealing with

the data scarcity problem. In addition, the strength

of the Bayesian hierarchical approach over other

conventional approaches (e.g., logistic regression)

is its ability to provide a prediction error estimate

at each pixel location while accounting for various

sources of uncertainty. Maps of prediction error

can be very useful for forest managers and

planners so that they can consider spatially vary-

ing uncertainty in their planning processes.

Finally, the results from this study are useful

for guiding ecological restoration efforts. Flood-

plain forests reflecting the natural processes of

floodplain erosion and deposition, normally in-

clude a wide range of seral communities, however

many of the natural seral communities such as

Table 2 Prediction
probabilities from the
hierarchical Bayesian
models and logistic
regression models

Prediction accuracies by thresholds

Number
of points

0.20–0.40 0.40–0.60 0.60–0.80 0.80–1.0

Bottomland oak Bayesian 871 0.90 0.46 0.01 0.00
Logistic 0.25 0.00 0.00 0.00

Early succession Bayesian 413 0.50 0.18 0.06 0.00
Logistic 0.23 0.02 0.00 0.00

Mid-late succession Bayesian 672 0.77 0.10 0.00 0.00
Logistic 0.61 0.00 0.00 0.00

Black oak Bayesian 3202 0.90 0.16 0.00 0.00
Logistic 0.67 0.01 0.00 0.00

Nut producing Bayesian 8938 0.99 0.99 0.93 0.63
Logistic 0.99 0.96 0.81 0.47
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young and mature floodplain forests are now

scarce due to harvesting and farming (Bragg and

Tatschl 1977; Nelson 1997). Losses of extensive

and continuous floodplain forest communities to

cultivation, or losses of particular seral stages to

the catastrophic, stand replacing disturbances

may lead either to the disruption of the natural

occurrence of organisms along the Missouri River

or to the destruction of particular habitats

required by certain species. While the debate of

how to restore floodplains continues, quantitative

and spatial predictions from this study provide a

scientific basis for identifying appropriate seral

stages for ecological restoration of floodplains.

Limitations

The study quantified the contribution of each of

the seven environmental covariates to the occur-

rence of historical vegetation. One limitation in

our approach was that we had to use the current

environmental covariates as surrogates for the

historical environmental covariates, which were

not available for the time when GLO data were

surveyed. Therefore, some historical situations

could not be reconstructed. Change of the Mis-

souri River channel has occurred in the past 100–

150 years due to both natural and human causes

(Dey et al. 2000). At certain locations, especially

in the lower Missouri River, the river channel has

shifted up to a couple kilometers (unpublished

data). River channel change causes a change in

hydrological regimes in the floodplains and affects

soil erosion and deposition, and hence forest

vegetation and succession. This can render the

use of current terrain and soil variables (e.g.,

elevation, slope, and soil depth) irrelevant at

places where significant changes have occurred.

The change of river channels also limited our

modeling approaches from being applied to fine

resolutions (e.g., 30 m), at which greater predic-

tion uncertainty exists due to the mismatch of the

current and historic environmental data. However,

in our study area most of the channel changes were

less dramatic and are within the resolution of the

current study (120 m). In addition, this study is

conducted at a much broader spatial extent where

the seven historical and current environmental

variables generally agreed. Therefore, the results

provide a broad spatial context for which

ecological restoration can be referenced to.

Land use history is another issue that chal-

lenged the use of current environmental covari-

ates as surrogates for the historical environmental

covariates. Forest clearing for farming has elimi-

nated up to 95% of bottomland forests in Missouri

River basin. Farming can have a direct effect on

changing soil physical and chemical properties and

reducing soil organic matter. However, the terrain

and soil covariates selected in this study were least

affected by the past clearing and farming activi-

ties. Among these covariates, soil organic matter

is probably more subject to change than the

others. Soil organic matter generally decreases

with farming since crop rotations, applying or-

ganic fertilizers, and other soil conservation mea-

sures were uncommon floodplain farming

practices in the past. However, compared to most

soil physical and chemical variables (e.g., available

soil water content and soil nitrogen), organic

matter has very slow change rates. The seven

terrain and soil variables represent a conscious

approximation to the historic conditions.

This study showed that readily available terrain

and soil data were effective for mapping GLO

vegetation at a fine resolution (120 m), as shown

by the result and model validations discussed

above. However, we did not study the degree of

effectiveness that these terrain and soil data can be

used for the fine resolution GLO mapping. Direct

answers to this question require comparing map-

ping results derived using the terrain and soil data

at different scales. We were limited from doing so

because of the data availability problems. Soil

survey data from SSURGO has the most detailed

level of soil information and is for applications

such as site-level soil erosion control in farmland

planning. SSURGO is created using the 7.5 min

USGS base map and thus, has a comparable scale

to the DEM used in this study. The next level

soil data is the state soil geographic data base

(STATSGO), which is designed primarily for

regional, multi-state, and multi-county resource

planning and management, and is obviously too

coarse for this study. It appears that DEMs of

120 m resolution is adequate in this GLO vegeta-

tion mapping. Although we did not map GLO data

at other resolutions, future studies may include
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evaluating terrain and soil data for mapping GLO

vegetation at resolutions larger than 120 m.
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