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Abstract — Wildland fire managers deploy suppression resources to bases and dispatch them to fires
to maximize the percentage of fires that are successfully contained before unacceptable costs and
losses occur. Deployment is made with budget constraints and uncertainty about the daily
number, location, and intensity of fires, all of which affect initial-attack success. To address the
deployment problem, we formulate a scenario-based standard response model with two objective
functions: the number of suppression resources deployed and the expected daily number of fires
that do not receive a standard response, defined as the desired number of resources that can reach
the fire within a specified response time. To determine how deployment levels affect the standard
response objective, a weighted sum of the objective functions is minimized, and the weights are
ramped from large to small to generate the tradeoffs. We use the model to position up to 22
engines among 15 stations in the Amador-El Dorado unit of the California Department of
Forestry and Fire Protection in central California. Each deployment is further evaluated in terms
of expected number of escaped fires using CFES2, a stochastic simulation model of initial attack.
The solutions of the standard response model form a tradeoff curve where increasing numbers of
engines deployed reduces the expected daily number of fires not receiving the standard response.
Solutions concentrate engines in a small set of centrally-located stations. We use a simple heuristic
with CFES2 to incrementally remove engines based on simulation estimates of expected utilization
frequency. The deployments obtained with the heuristic contain about the same number of fires as do
solutions of the standard response model, but the heuristic solutions deploy engines to more stations.

Keywords California Fire Economics Simulator, fire suppression, integer programming, linear
programming, scenario optimization, wildfire management

1. INTRODUCTION

Deploying initial-attack resources to meet expected demands

for fire suppression in coming days or weeks is an important

part of wildland fire planning (Martell 1982). When fires

occur, those resources are dispatched to achieve the earliest

possible containment of fire spread by encircling the fires with

a line that is cleared of all readily combustive material or

wetted to make combustion unlikely (Fried and Fried 1996).

Initial-attack resources include fire engines and aircraft that

produce a containment perimeter by wetting vegetation fuels,

and bulldozers and crews operating hand tools that cut a contain-

ment line. It has long been recognized that a strong and fast

initial attack will contain a fire within a prescribed time

window (e.g., six hours) and prevent the fire from escaping

and incurring substantial suppression and damage costs (Parks

1964). At the same time, most fire managers have limited

resources for initial attack, and as a result, they must deploy

and dispatch resources efficiently to minimize escapes.

Both simulation and optimization models have been used to

aid initial-attack planning (see Martell 1982 and Martell et al.

1998 for reviews). Deploying and dispatching decisions can

be viewed in the context of a spatial queuing system with sto-

chastic fire occurrence and growth, rules for dispatching

resources to fires, and stochastic fire line production rates

(Martell et al. 1998). Detailed representations of these processes

are included in stochastic simulation models (e.g., Islam and

Martell 1998, Fried and Gilless 1999), which are used to

evaluate changes in the number and location of resources and

dispatching rules (e.g., Fried et al. 2006). However, because

of their computational requirements, initial-attack simulation
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models have not been directly incorporated into optimization

algorithms.

Researchers have formulated optimization models to

address deploying and dispatching of suppression resources

as separate problems without consideration of stochastic fire

occurrence or behavior (Martell 1982). Deployment models

assign suppression resources to stations to minimize operating

costs while meeting pre-defined resource requirements in sur-

rounding areas (Hodgson and Newstead 1978, Greulich and

O’Regan 1982, MacLellan and Martell 1996). Models of dis-

patching problems are typically built for a single fire and deter-

mine the number and type of suppression resources to dispatch

to minimize suppression cost plus damage subject to resource

availability constraints (Kourtz 1989, Mees et al. 1994,

Donovan and Rideout 2003).

We present a mixed-integer programming model that opti-

mizes both daily deployment and dispatching decisions while

accounting for uncertainty about the number, location, and

intensity of fires. The model includes locations of fire

stations and possible locations of fires along with times

required for travel between stations and fires. Ignition uncer-

tainty is characterized with a set of fire scenarios, each

listing the location and intensity of fires that could occur in a

single day. Resource deployment and dispatching decisions

are included in a two-stage formulation. Deployment takes

place at the beginning of the day before the number,

location, and intensity of ignitions are known, and dispatching

takes place during the day contingent on the fire scenario. The

objective is to minimize the expected number of fires that do

not receive a standard response—defined as the required

number of resources that can reach the fire within a

maximum response time—subject to resource availability con-

straints. We demonstrate the standard response model with data

for a 3,642 km2 study area in central California (Fig. 1). We use

the model to deploy up to 22 engines among 15 stations in the

Amador-El Dorado unit administered by the California Depart-

ment of Forestry and Fire Protection (CDF). We compute the

tradeoffs between the objectives of minimizing the number

of engines deployed and the expected number of fires that

don’t receive a standard response.

A common objective of deploying and dispatching suppres-

sion resources is to contain all fires within a specified size or

time limit. Although our model optimizes deployment and dis-

patching decisions based on a standard response objective, the

model does not estimate the number of escaped fires. To

evaluate the initial-attack effectiveness of solutions obtained

from the standard response model, we use the California Fire

Economics Simulator Version 2 (CFES2), a stochastic simu-

lation model of initial attack (Fried and Gilless 1999, Fried

et al 2006), to estimate the percentage of fires that escape

initial attack. Further, we compute alternative engine deploy-

ments using a simple heuristic combined with CFES2 simu-

lations and compare their performance with engine

deployments obtained with the standard response model.

2. COVERING MODELS FOR EMERGENCY SERVICE
DEPLOYMENT

Our scenario-based standard response model is an extension of

the maximal covering location model for emergency service

deployment. In covering models, the goal is to provide

coverage to demand areas, where a demand area is covered if

a facility or vehicle is available to serve the demand area

within a distance or time standard (see ReVelle 1989 for

review). Recognizing that the number of resources available

for deployment is not sufficient to cover all of the demand

areas, the maximal covering location problem deploys a fixed

number of resources to maximize the number of demand

areas covered (Church and ReVelle 1974). For example,

Hodgson and Newstead (1978) determine the location of a

fixed number of home bases for airtankers to maximize the

number of potential fire locations that are within a maximum

distance for effective service. The maximal covering location

problem has been extended to handle standard response require-

ments. Urban planners define a standard response for fire pro-

tection service based on expected fire size, and a standard

response may include several types of suppression resources

and maximum response distances (e.g., three engines within

2.4 km and two trucks within 3.2 km). In this context, the

Figure 1. Amador-El Dorado ranger unit located in the western foothills

of the Sierra Nevada in central California.
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problem is to deploy suppression resources to stations to

maximize the number of demand areas that are covered with

the standard response (Marianov and ReVelle 1991).

While covering models for emergency service deployment

typically assume that model parameters are known with cer-

tainty, we want to build a standard-response model that

accounts for uncertainty in number, location, and intensity of

wildfires. One approach to handling uncertainty in the

number of calls for service is to make server availability a

fixed probability and include reliability constraints for the like-

lihood that each demand area is covered (Daskin 1983, ReVelle

and Hogan 1989). A more flexible approach is to create scen-

arios of possible fire occurrences and include those scenarios

in a maximal covering location problem.

Scenario optimization is commonly used to model uncer-

tainty in the parameters of facility location models (Owen

and Daskin 1998, Snyder 2006). With scenario optimization,

planners specify a set of scenarios that represent the possible

realizations of unknown parameters and determine a compro-

mise or robust solution that performs well across all scenarios

(Mulvey et al. 1995). Objectives include optimizing expected

performance, optimizing the worst-case performance, and opti-

mizing the worst-case regret. Although scenario optimization

problems can be difficult to solve when the number of scenarios

is large (100s or 1000s), they are often more tractable than

problems with continuous random variables. Further, the

two-stage structure of scenario formulations—choose locations

for deployment first and then react once the uncertainty has

been resolved—makes scenario optimization attractive to

practitioners.

Our model is the first example of scenario optimization in a

maximal covering location problem for emergency service

deployment. There are two important relatives in the urban

and wildfire suppression modeling literature. Serra and

Marianov (1998) formulate a scenario-based location model

for fire stations in the city of Barcelona. Scenarios are used

to model uncertainty in demand for service and time for equip-

ment travel. The model locates emergency service facilities to

minimize the maximum total travel time achieved across all

scenarios. MacLellan and Martell (1996) formulate a model

to locate airtankers in home bases in the Province of Ontario.

From their home bases, planes are deployed to meet daily

demand for airtankers at initial attack bases. The daily

demand for airtankers is represented by a set of scenarios.

The problem is to determine airtanker home bases and daily

deployment to minimize costs and meet the demand require-

ments across all scenarios.

3. METHODS

3.1 Scenario-based standard response model for
initial attack

The formulation is a scenario-based standard response model

with two objective functions: the number of suppression

resources deployed to stations and the expected daily number

of fires that do not receive a standard response. A weighted

sum of the objective functions is minimized, and the weights

are ramped from large to small to generate the tradeoffs

between the objectives. The model is for a single fire

planning unit. The data include the locations of fire stations

and representative fires. Each station has a capacity to house

initial attack resources, and the times required for those

resources to reach each representative fire location are

known. Uncertainty about the daily number, location, and

intensity of fires is represented by a set of independent fire

scenarios along with their probabilities of occurrence. Each

scenario represents a different set of fire occurrences during a

single day. Each fire is characterized by location, intensity,

and standard response, which is the number and maximum

response time of suppression resources that are required to

contain the fire during initial attack. The standard response

varies with fire intensity: more intense fires require more

resources and faster response times. The model has decision

variables in two stages. The first stage includes integer vari-

ables for the number of resources assigned to each station at

the beginning of the day. The second stage includes integer

variables for the number of resources dispatched from each

station to each fire during each potential fire day. The two-

stage model is formulated with the following notation:

Indices:

j, J ¼ index and set of fire stations,

k, K ¼ index and set of potential fire locations,

s, S ¼ index and set of fire days (scenarios),

Objective functions:

Q1 ¼ number of suppression resources,

Q2 ¼ expected number of fires that do not receive the standard

response,

Parameters:

w ¼ objective weight; 0 � w � 1,

bj ¼ upper bound on number of resources at station j,

ps ¼ probability that fire day s occurs,

rks ¼ number of resources required at location k during fire

day s;

tjk ¼ response time from station j to location k,

T ¼ maximum response time,

Nk ¼ set of stations from which resources can reach location

k within the maximum response time; i.e., Nk ¼ f j j

tjk , T g.

Decision variables:

xj ¼ integer variable for number of resources deployed at

station j,

INFOR, Vol. 45, No. 1, February 2007, pp. 31–39 DOI 10.3138/infor.45.1.31
ISSN 0315-5986 j EISSN 1916-0615 Copyright # 2007 by INFOR Journal

DEPLOYING WILDLAND FIRE SUPPRESSION RESOURCES 33



yjks ¼ integer variable for number of resources at station j that

are dispatched to fire location k during fire day s,

zks ¼ 0-1variable; 1 if fire location k receives a standard

response during fire day s; 0 otherwise.

The model is formulated as follows:

Minimize : wQ1 þ ð1� wÞQ2

subject to:

Q1 ¼
X
j[J

xj ð2Þ

Q2 ¼
X
s[S

ps

X
k[K

ð1� zksÞ ð3Þ

xj � bj for all j [ J ð4Þ

X
k[K

y jks � xj for all j [ J and s [ S ð5Þ

zksrks �
X
j[Nk

yjks for all k [ K and s [ S ð6Þ

zks [ f0; 1g for all k [ K and s [ S ð7Þ

The objective (Eq. 1) is to minimize the weighted sum of the

two objective functions: the number of resources deployed at

stations in stage one (Eq. 2) and the expected number of fires

that do not receive the standard response in stage two (Eq.

3). The weight w represents the decision maker’s preference

for the two objectives. When w is closer to one, more weight

is put on minimizing the number of resources deployed.

When w is closer to zero, more weight is put on minimizing

the number of fires that do not receive a standard response.

In Eq. 3, the expectation is the weighted sum of the daily

number of fires not receiving the standard response, where

weights ps represent probabilities of occurrence of the fire

days. Eq. 4 defines the capacity of each station. Eq. 5

requires that the number of resources dispatched from each

station during each fire day is less than the number of resources

deployed at the station. Eq. 6 is the condition for whether a fire

receives a standard response in stage two. A fire receives a

standard response (zks ¼ 1) only if the number of resources

that are within the standard response time and dispatched to

the fire
P

j[Nk
yjks is greater than the number of resources

required rks. If rks ¼ 0, there is no fire at location k during

fire day s and zks ¼ 1 without any resource commitment.

It is important to recognize that each stage represents a

different time period. The first stage includes resource deploy-

ment decisions to meet possible resource demands in the

coming day. Once the resources are deployed, the second

stage represents the dispatching of those resources to fires

that may occur during the day. The dispatching rules assume

that fires in a single fire day occur close enough in time to

compete for the same resources.

The dispatching objective and data requirements differ from

previous optimization models of initial attack. For example,

Donovan and Rideout’s (2003) model has an objective of mini-

mizing area burned and includes binary containment variables

for a single fire based on the ratio of fire line to fire perimeter in

discrete time intervals (e.g., hours) after ignition. With an

objective of minimizing area burned, the model dispatches

resources to contain the fire in the earliest possible time

interval. Further, the model requires rates of fire line pro-

duction and fire area and perimeter growth. In contrast, our

standard response model assumes that multiple fires may

occur in a day and has the objective of minimizing the

expected number of fires that don’t receive a standard

response. As a result, a single binary covering variable is

defined for each fire along with resource and response time

requirements, which are related to expected fire intensity.

Because the standard response is a proxy for fire line pro-

duction and spread rates, those parameters are not incorporated

in the model.

3.2 Application

We apply the standard response model using data for a portion

of the Amador-El Dorado unit administered by the California

Department of Forestry and Fire Protection (Holmes 2005).

The unit is located on the western slope of the north-central

Sierra Nevada range in central California (Fig. 1). The study

area (3,642 km2) is composed of federal, state, and private

lands for which CDF has contractual or statutory protection

responsibility. The study area includes rolling hills and steep,

rugged river canyons with elevations rising 300–1200 m,

west to east. Over 70% of the study area contains hazardous

fuels including grass, brush, oak-woodland, and conifer vege-

tation. The fire history includes numerous small fires with

large fires occurring every 30–40 years, the most recent

burning 138 km2 in 1961. Low fuel moisture and severe fire

weather combine to create the greatest potential for large

fires during the period June-October. Over half of the study

area is wildland-urban interface, which has grown rapidly

over the past 20 years and become a significant factor in the

complexity of the fire protection environment. The resident

population in 2005 was estimated to be greater than 300,000

people. The study area is a good choice for demonstrating

our model because of the availability of data, diversity of fire

environments, wide range of accessibility for firefighting, and

fire load.

The analysis focuses on the deployment of fire engines

among 15 stations owned and operated by the CDF or the

USDA Forest Service (Fig. 1). The study area includes 46 repre-

sentative fire locations (RFLs) identified by CDF staff for fire

protection planning and analysis (Fig. 1). Given the estimated

response time for engines to travel from each station to each

RFL, we construct a set of stations within 30 minutes of each

RFL. We use a 30-minute response threshold because
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fast-spreading fires tend to escape initial attack if firefighting is

not well underway within 30 minutes following a fire report.

We formulate the optimization model to deploy engines in

days during the “high” fire season when multiple fires occur.

We focus on days with multiple fires because draw-down of

suppression resources on such days increases the likelihood

that fires escape initial attack (Fried and Gilless 1988). We con-

struct 100 fire days representing days in which four or more

fires occur. The fire days are constructed using stochastic simu-

lation of the fire occurrence and behavior models of CFES2.

The fire occurrence model includes random variables for

whether or not any fires occur, and if so, number of fires,

RFL of each fire, and ignition time (Fried and Gilless 1988).

The behavior model includes random variables for the rate of

spread and dispatch index of each fire depending on fire

weather and time of day (Gilless and Fried 1999). Distribution

functions for the random variables are estimated from fire

occurrence and weather data recorded in the ranger unit

during 1980–1990.

The parameters of the 100 fire scenarios in the optimization

model are derived from information in the fire days obtained

from stochastic simulation. Each fire scenario represents a

single fire day and includes a list of RFLs where fires occur

along with the number of engines required in the standard

response to each fire. Mean daily number of fires is 4.82 with

range 4–10. The standard responses range from 1 to 3

engines (i.e., rks ¼ 1, 2, or 3) reaching the fires within 30

minutes. The standard response to each fire depends on the

fire’s dispatch index, which is derived from the maximum

burning index for the day and scaled by a diurnal adjustment

factor based on the time of occurrence. The higher the

dispatch index, the more engines are required in the standard

response. For each location k without a fire, the standard

response is zero (i.e., rks ¼ 0). We do not estimate the

probability of occurrence of each fire day. Instead, we

assume that each scenario is equally likely (i.e., ps ¼ 0.01,

s ¼ 1,. . .,100).

Our analysis focuses on the trade-offs between the number

of engines deployed to stations in stage one and the expected

number of fires per day that do not receive a standard

response in stage two. We compute optimal engine deployment

for problems in which the objective function weight w is

decreased from 1.0 (minimize number of engines deployed)

to 0.0 (minimize number of fires not receiving standard

response) in increments of 0.05 subject to a capacity constraint

of four engines per station.

The two-stage standard response model (Eqs. 1–7) is a

mixed-integer program. Applications are solved on a Dell

Pentium 4 laptop computer (CPU 2.4 GHz) with the integrated

solution package GAMS/Cplex 9.0 (GAMS Development

Corporation 1990), which is designed for large and complex

linear and mixed-integer programming problems. Input files

are created in GAMS (General Algebraic Modeling System),

a program designed to generate data files in a format that

standard optimization packages can read and process. Cplex

solves a mixed-integer programming problem using a branch

and cut algorithm, which solves a series of linear programming

sub-problems.

Although the standard response model provides a spatial

optimization of engine deployment based on a standard

response objective, the model does not estimate the number

of escaped fires. Therefore, we use CFES2 to evaluate the

initial-attack effectiveness of optimal engine deployments

obtained with the model. CFES2 simulates fires and initial

attack in chronological order during each fire day. When a

fire ignites, the model identifies the closest resources of the

user-specified types to dispatch while accounting for resources

previously committed to earlier fires. Fire perimeter growth

and fire line production are simulated to determine whether

or not containment is achieved within specified time and size

limits. When all of the day’s fires are contained or declared

escapes, resources are reset at initial positions and the simu-

lation of the next fire day begins. Statistics for the expected

number of escaped fires and expected area of contained fires

are calculated over the set of fire days.

We configure CFES2 using data for the Amador-El Dorado

planning unit. The model has the same 15 fire stations owned

and operated by CDF or USDA Forest Service, each capable

of hosting up to four engines staffed by personnel trained in

wildland firefighting and considered capable of a relatively

high rate of fireline construction. In addition to these primary

engines, the model includes other initial-attack resources avail-

able to the planning unit, including hand crews, bulldozers, air

resources (tankers and helicopters), and secondary engines

operated by volunteer or local fire protection districts. The

crews of secondary engines primarily protect buildings and

produce fire line at much lower rates than do the crews of

primary engines.

We use CFES2 to estimate the expected number of escapes

associated with each deployment of primary engines obtained

with the standard response model. Initial attack is simulated

over the same set of 100 fire days from which the scenarios

in the standard response model were derived. Hand crews, bull-

dozers, air resources, and secondary engines are present in their

current number and position. We also compare the perform-

ance of primary engine deployments obtained with the

standard response model with the performance of primary

engine deployments obtained with a simple heuristic based

on CFES2 estimates of expected engine utilization frequency.

Starting with the current deployment of 22 primary engines

in 15 stations, we incrementally drop the primary engine

least utilized on fires greater than 4 ha during the 100 fire

days and compute expected number of escapes for the resulting

deployments.

4. RESULTS

The curve showing the tradeoff between number of primary

engines deployed and expected number of fires per 4þ fire
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day (days on which 4 or more fires occurred) not receiving the

standard response has a convex shape in which non-coverage

decreases at a decreasing rate as number of engines deployed

increases (Fig. 2). The points on the curve represent non-domi-

nated solutions and their relative performance with respect to

the two objectives. For each non-dominated solution, improve-

ment in one objective cannot be achieved without simul-

taneously causing degradation in the value of the other

objective. As a result, the points represent a frontier below

which there were no better solutions.

The best deployment of primary engines depends on the

objective function weight. If minimizing the number of

engines deployed is most important (i.e., w ¼ 1), the choice

is solution A in which the expected number of fires not receiv-

ing the standard response is equal to the average daily fire fre-

quency of 4.82 (Fig. 2). As more weight is given to minimizing

the number of uncovered fires, more engines are deployed and

fewer fires are not covered. For example, with 11 engines

deployed (solution G), the expected number of fires left uncov-

ered is 0.66 (14% of the average number of fires per 4þ fire

day). Increasing the number of engines from 11 to 22

(solution K) reduces the number of uncovered fires to 0.05

(1% of the daily average). The slope of the tradeoff curve,

which represents the gain in daily number of fires covered

per unit increase in number of engines deployed, is relatively

steep between solutions A and G (0.40 fires/engine).

Between solutions G and K, the slope is relatively flat (0.06

fires/engine).

Optimal solutions concentrate engines in stations that are

close to RFLs with the highest fire loads. Over half of the

fires (242) in the 100 fire scenarios occur in 12 RFLs near

Highway 50, which crosses the northern half of the planning

unit (Fig. 1). As a result, optimal solutions deploy engines to

stations 2, 5, 6 or 8, which are within 30 minutes of those

RFLs (Table 1). Locating 3–4 engines in each of those

stations covers more than 90% of the fires (solution H).

Engines are deployed elsewhere only when more than 14

engines are available (solutions I, J, K).

Because the engine deployments obtained with the standard

response model (Table 1) are computed with a single set of 100

fire scenarios, we investigate the robustness of optimal engine

deployments to changing the set of fire scenarios. Alternative

solutions with 3, 11, and 22 engines are computed using four

different sets of 100 scenarios with four or more fires per

day. Relative to the solutions in Table 1, engine deployments

obtained with different sets of scenarios differ by at most one

station.

Using CFES2 to evaluate the performance of engine deploy-

ments obtained with the standard response model (Table 1), we

found that the expected number of escapes per 4þ fire day

dropped as the number of engines deployed increased

(Table 2). With only one engine deployed, the expected

number of escapes was 0.97 (20% of the daily average

Figure 2. Tradeoff between number of primary engines deployed and

expected number of fires per 41 fire day (days on which 4 or more fires

occurred) that do not receive a standard response.

TABLE 1

Objective function values and number of engines deployed per station for solutions from spatial optimization

Objective value Engines deployed per station number

Solution

Engines

deployed

Fires not

covered 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 0 4.82

B 1 4.12 1

C 3 3.05 2 1

D 5 2.17 2 1 2

E 7 1.52 3 2 2

F 9 1.02 1 3 3 2

G 11 0.66 3 3 3 2

H 14 0.35 3 4 4 3

I 16 0.22 3 3 4 3 3

J 18 0.13 3 4 4 3 4

K 22 0.05 4 4 4 4 3 3
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number of fires), indicating that hand crews, bulldozers, air

resources, and secondary engines contained 80% of the

fires without help from primary engines. Increasing the

number of primary engines to 14 or more reduced the

expected number of escapes to 0.31 (6% of the daily average

number of fires).

For comparison with engine deployments obtained with the

standard response model, we use a simple heuristic in conjunc-

tion with CFES2 to determine engine deployments. Starting

with the existing configuration of 22 engines in 15 stations,

we incrementally remove engines that are least used on fires

greater than 4 ha during the 100 fire days. The resulting

deployments place engines in more stations than do deploy-

ments obtained with the standard response model (Table 3).

The engine deployments obtained with the heuristic leave

more fires uncovered according to the objective function

used in the standard response model (Table 3); however, the

engine deployments obtained with the heuristic produce

almost the same number of escapes as do the deployments

obtained with the standard response model (Table 2). When

nine or more engines are deployed, solutions obtained with

the standard response model contain slightly more fires than

do solutions obtained with the heuristic. When fewer than

nine engines are deployed, solutions obtained with the heuristic

are slightly superior.

For comparison with solutions obtained with the standard

response model and the heuristic, we compute the performance

of five random engine deployments for each level of engine

force. The solutions obtained with the standard response

model and the heuristic allow up to 30% fewer escapes

compared with random engine deployments, suggesting that

engine location does affect the likelihood of fire containment.

The setup and computation times required for the optimiz-

ation and simulation models provide an interesting comparison

of work loads. All of the applications were run on a Dell

Pentium 4 laptop computer (CPU 2.4 GHz). Once the optimiz-

ation model has been programmed in GAMS, manually

changing the setup parameters (e.g., upper bound on number

of engines deployed) takes seconds. Computation time

required to solve problems with 46 representative fire

locations, 15 stations, and 100 fire scenarios using GAMS/
Cplex 9.0 is less than 10 minutes. With CFES2, setting up

the files for a given engine deployment is done manually and

requires about three minutes. Simulating the initial attack per-

formance of a given engine deployment over 100 fire days

requires a few seconds.

TABLE 2

Expected number of escapes per 4þ fire day (days on which 4 or more

fires occurred) computed with CFES2 for engine deployments

obtained from the standard response optimization model and from a

simple location heuristic combined with CFES2

Expected escapes for engine deployments

obtained from

Engines

deployed

Standard response

model

Heuristic

with CFES2

1 .97 1.04

3 .82 .80

5 .66 .63

7 .59 .53

9 .42 .43

11 .38 .38

14 .31 .33

16 .31 .33

18 .30 .33

22 .30 .33

TABLE 3

Objective function values and number of engines deployed per station for solutions from a simple location heuristic

combined with CFES2

Objective value Engines deployed per station number

Engines

positioned

Fires not

covered 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4.82

1 4.28 1

3 3.10 1 1 1

5 2.40 1 1 1 2

7 1.90 2 1 1 1 2

9 1.37 1 1 2 1 1 1 2

11 0.95 1 2 2 1 1 2 2

14 0.80 2 2 1 2 1 1 2 2 1

16 0.73 2 2 1 2 1 1 2 2 1 1 1

18 0.71 2 2 1 2 1 1 2 2 1 2 1 1

22 0.61 2 2 1 2 1 1 2 2 1 1 1 1 2 2 1
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5. DISCUSSION

The problem of deploying and dispatching wildland fire sup-

pression resources can be formulated as a standard response

model with resource constraints and uncertainty about the

daily number, location, and intensity of fires. The model

assumes that fire managers have a desired response to each

fire, expressed as the number of resources that must reach the

fire within a specified time, and an objective of minimizing

the number of fires that do not receive the desired response.

Ignition uncertainty is characterized by a set of daily fire scena-

rios, each listing the location and intensity of fires that occur in

a single day. The model includes locations of fire stations and

potential fires along with times required for travel between

stations and fires. The model does not include rates of fire

line construction and fire growth and does not attempt to

model or predict fire containment as a relationship between

fire line and fire perimeter (e.g., Donovan and Rideout 2003).

The model is well suited to determining trade-offs between

objectives of minimizing the number of resources deployed

and minimizing the number of fires that do not receive a

standard response, and those tradeoffs can provide valuable

information to fire managers. The tradeoff curve has a

convex shape with slope representing the gain in daily

number of fires covered per unit increase in deployment. Esti-

mates of the cost of increasing deployment can be compared

with estimates of the benefits of reduced fire damage that

result from additional fire coverage to determine appropriate

levels of initial attack investment.

In contrast to the standard response model that we present,

stochastic simulation models of initial attack include more

detailed rules for growing fires, dispatching resources, produ-

cing fire line, and evaluating initial attack effectiveness. As a

result, stochastic simulation models are increasingly used by

fire managers to evaluate changes in the deployment of

initial attack resources (e.g., Fried et al. 2006). Stochastic

simulation models of initial attack are not typically used to

optimize resource deployment. Although methods for optimiz-

ing stochastic simulation models are well established in

research (e.g., Fu et al. 2005), their practical application is

often hindered by software and computational requirements.

For example, CFES2 currently requires about three minutes

to manually setup a given engine deployment. Because heuris-

tic algorithms typically evaluate 100s or even 1000s of alterna-

tive solutions, constructing alternative solutions must be

automated in conjunction with the heuristic. The automation

of engine deployment would require additional software for

CFES2.

Another approach to simulation optimization is to formulate

a tractable model that is a caricature of the simulation system.

Our formulation of a standard response model is an example of

this approach. Although the standard response model is a sim-

plified version of an initial attack system, the model can easily

be applied to practical problems and solved with commercial

software on a laptop computer. The results of standard

response optimization can then be evaluated with stochastic

simulation and compared with alternative resource configur-

ations suggested by heuristics or expert knowledge.

Our application in the Amador/El Dorado planning unit in

California focuses on the deployment of up to 22 primary

engines among 15 stations, assuming that other resources

such as hand crews, bulldozers, air resources, and secondary

engines are retained in their current locations. The application

involves 100 scenarios of potential fire days, each with 4–10

fires occurring at different locations. With this setup, we find

that 22 primary engines along with the other initial attack

resources contain 94% of the fires. Incrementally reducing

the number of primary engines from 22 to 1 reduces the con-

tainment rate to 80%. The number of contained fires is sensi-

tive to where the primary engines are deployed, and

deployment configurations obtained with the standard

response model perform as well as those obtained with a

simple heuristic for incrementally removing engines based on

simulation estimates of expected utilization frequency.

Solutions obtained with the standard response model and the

simulation heuristic demonstrate that different strategies for

deploying a given number of engines can have about the

same level of performance in terms maximizing the expected

number of contained fires. The standard response model con-

centrates engines at busy, central locations whereas the simu-

lation heuristic disperses engines among a larger number of

stations. Having a range of high-performing strategies allows

managers to consider other objectives. For example, concen-

trating engines at a few stations may have lower costs of

station opening and maintenance. However, spreading

engines among several stations may produce more equitable

fire containment across districts of the fire planning unit.

Further, a fire planning unit typically has mutual aid agree-

ments with neighboring units thereby increasing the demand

for engines at fringe stations.

The strength of the scenario-based standard response model

is its tractability. The model is easy to program and can be

solved in minutes on a laptop computer using commercial

software. Although we used 100 scenarios of fire days in our

application, fewer scenarios could be used in cases with less

variability in the number and location of fires. Models with

fewer scenarios would solve in seconds. More research is

needed to evaluate the effectiveness of the standard response

model on problems with several types of resource and cost

constraints.
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